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Abstract 

In this paper we are concerned with the mathematical and numerical analysis 
of the one-dimensional Saint-Venant equations. Thus, we prove the existence 
of a weak solution for any fixed time and with low regularity on the data. For 
the numerical approach we use the Rusanov scheme to approximate the flux 
and the hydrostatic reconstruction method which consists of decentering the 
source term at the interface. A numerical test of the proposed resolution is 
performed on a non-uniform topography. 
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1. Introduction 

The Saint-Venant equations are very used to describe many physical phenomena: 
like the runoff [1] [2], the transport of pollutants in the river [3] [4]. These equa-
tions are based on certain physical laws, namely the mass conservation and the 
momentum conservation [5]. Due to the recurrence of floods around the world 
and in particular in arid countries, we use these equations to study this phe-
nomenon of floods. 

Inspired by the hyperbolic nature of the Saint-Venant equations, we establish 
an existence result of weak solution using the Rankine-Hugoniot relation. To do 
this, we subdivide the domain into two parts and we first prove the existence on 
each part. Then, the existence in the whole domain is obtained if we have at the 
interface separating the two subdomains: the equality between the jump of the 
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continuous flux and the jump of conservative variables. 
The paper is organised as follows. In Section 2 we make a brief presentation of 

the Saint-Venant equations. Section 3 is devoted to showing the existence of a 
weak solution of Saint-Venant equations. In Section 4, the numerical solution is 
computed by the finite volume methods where the discrete flux is obtained by 
the Rusanov scheme and the topography term is processed by the hydrostatic 
reconstruction method combined with the well-balanced scheme. This scheme 
preserves the positivity of the height. Finally, Section 5 is intended for the nu-
merical simulation of the flood phenomenon on a domain with not completely 
flat topography. 

2. Continuous Problem 

The Saint-Venant equations derive from the Navier-Stokes equations by per-
forming an average operation along the vertical, the hydrostatic and the imper-
meability assumptions [6]. The mathematical model relates the fluid height h 
and the flow velocity u. In one-dimensional they are given by:  

2
2

0,

,
2

h hu
t x
hu gh zhu gh
t x x

∂ ∂ + = ∂ ∂
  ∂ ∂ ∂ + + = −  ∂ ∂ ∂ 

                 (1) 

where g is the gravity, z the bottom topography. This hyperbolic system can be 
rewritten into the form:  

( )
( )( ) ( ), , ,x t x t

t x
∂∂

+ =
∂ ∂

f UU S                   (2) 

with ( ),h q=U , ( ) 2 2

2

q
q gh
h

 
 =  + 
 

f U , 
0

zgh
x

 
 = ∂ − ∂ 

S  and q hu=  the mo-

mentum. 

3. Weak Solution of the Saint-Venant 1D System 

The system (2) being hyperbolic, we will show the existence of a weak solution of 
the Saint-Venant equations with 0S = . For this aim we use the mathematical 
analysis of hyperbolic partials differentials equations [7]: 

( )
( )( ) ( ) ( )

( ) ( )

*

0

, , 0, ,

,0

x t x t x t
t x

x x x

+

 ∂∂
+ = ∈ ×

 ∂ ∂
 = ∀ ∈

f UU

U U

 


            (3) 

with Dirichlet boundary conditions. 
Definition 1. Let ( )2

0 L∞∈U   and ( )21C∈f  .  
A weak solution of (3) is a function ( )2L∞ +∈ ×U    such as:  

( ) ( ) ( )( ) ( )( ) ( ) ( ), , , , d d ,0 ,0 d 0t xx t x t x t x t x t x x xϕ ϕ ϕ
+×

+ + =∫ ∫U f U U
  

 (4) 

for all ϕ  a continuous derivable function with compact support on +×   
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( )( )1 .cCϕ +∀ ∈ ×    
Proposition 1. Let D be an operator in time or space, then we have:  

( ) ( )d d , , , ,s s

f f

z z
s s f fz z

D F z DF z F x y z Dz F x y z Dz= + −∫ ∫          (5) 

Theorem 2. Let assume the curve ( ) ( ){ }, ,x
t x t x tσ∗

+Γ = ∈ × =   where 
( )1Cσ +∈  . x

tΓ  partitions an open domain +Ω ⊂ ×   into two subdo-
mains: −Ω  and +Ω , given by:  

( ){ } ( ){ }, , ,   , , .x x
t tx t x x t x− +Ω = ∈Ω < Γ Ω = ∈Ω > Γ  

A function ( ) ( )2 21 1C C− +∈ Ω ΩU 
 is a weak solution of (3) if and only if  

( ) ( ) ( )( ) 0,σ + − + −′− − + − =U U f U f U  

where ( ) ( )lim ,
x t

t x t
σ +

+

→
=U U  and ( ) ( )lim ,

x t
t x t

σ −

−

→
=U U .  

Proof. Let U  be a weak solution of the problem (2) with 0=S , then we 
have:  

( ) ( ) ( )( ) ( )( ) ( ) ( ), , , , d d ,0 ,0 d 0t xx t x t x t x t x t x x xϕ ϕ ϕ
+×

+ + =∫ ∫U f U U
  

 (6) 

( )1
cCϕ +∀ ∈ ×  . By choosing ϕ  such as ( )supp ϕ +⊂ Ω , we obtain:  

( ) ( ) ( )( ) ( )( ), , , , d d 0t xx t x t x t x t x tϕ ϕ
+×

+ =∫ U f U
 

 

( )1
cCϕ +∀ ∈ ×  . An integration by part in +Ω , giving: 

( ) ( )( )( ) ( ) ( )1, , d d 0,   t cx
x t x t x t Cϕ ϕ

+
+Ω

+ = ∀ ∈ ×∫ U f U    

ϕ  being arbitrary we deduce: 

( ) ( )( ), 0.t x
x t + =U f U  

This proves that U is solution in +Ω . 
Similarly we prove that U  is solution in −Ω . 
Let us now consider: 1 2,M M  in  ; 1 2,t t  in +  and ϕ  such as  

( ) ] [ ] [1 2 1 2, ,supp M M t tϕ ⊂ ×  

( ) ( ) ( )( ) ( )( ), , , , d d 0.t xx t x t x t x t x tϕ ϕ
+×

+ =∫ U f U
 

 

Performing the integration on ] [ ] [1 2 1 2, ,M M t t× , we have:  
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1 1
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Let us set:  

( ) ( ) ( ) ( )( ) ( )( )2 2

1
, , , , d d ,

t M
t xt t

I x t x t x t x t x t
σ

ϕ ϕ= +∫ ∫ U f U  

( ) ( ) ( ) ( )( ) ( )( )2

1 1
, , , , d d .

t t
t xt M

J x t x t x t x t x t
σ

ϕ ϕ= +∫ ∫ U f U  

We begin with I  
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So by Proposition 1, with 
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Finally we obtain: 

( ) ( )( ) ( ) ( )( )( ) ( )( )2

1
, , , d .

t

t
I t t t t t t t tσ σ σ ϕ σ+ +′= − −∫ f U U  

By the same calculations we have:  

( ) ( )( ) ( ) ( )( )( ) ( )( )2

1
, , , d .

t

t
J t t t t t t t tσ σ σ ϕ σ− −′= −∫ f U U  

The summation of I and J implies:  

( ) ( )( ) ( ).U U σ+ − + −′− = −f f U U  

For the reciprocal, it is sufficient to do the same calculations in the opposite 
direction.  

4. Numerical Resolution 

The numerical discretization of the system (2) is done by using the finite volume 
method [8], so let us consider a finite volume mesh: with mean a union of  

disjoint intervals 1 1
2 2

;i i i
C x x

− +

 
=  
 

 of size iC x= ∆ , centered at 
1 1
2 2

2

i i

i

x x
x

− +
+

= ,  

1, ,i N=  . Let us denote t∆  the time stepsize and n
iu  the approximation of 

the cell average of the exact solution ( ),u t x  at time nt n t= ∆ .  
The finite volume method consists to integrate the system on 1,n n

it t C+ ×  , 
which gives:  

( ) ( )( ) ( )
1

1 2

1 2

1
1 1, , , d d ,

n
i

n
i

t xn n n n n n
i i i i i i t x

t t x x t
x

+
+

−

+
+ −

∆
− + − =

∆ ∫ ∫U U U U U U S     (7) 

where 

( ) ( )1 1 2 1 1 2, ;     ,n n n n n n
i i i i i i+ + − −= =U U F U U F   

and  
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( )( ) ( )( )1 1
1 2 1 2 1 2 1 2

1 1, d ;    , d .n n

n n

t tn n
i i i it t

t x t t x t
t t

+ +

+ + − −∆ ∆∫ ∫F F U F F U   

It remains now to compute the interfacial flux 1 2
n

iF + , 1 2
n

iF −  and also evaluate 
the discrete source term. 

4.1. Flux Approximation 

Several methods exist in literature to approximate the flux, in the present work, 
we use the simpler and thus more popular: the Rusanov flux [9]. It is a generali-
zation of Lax-Friedrich flux [10]. Let us note LU  and RU  the data in the two 
neighborring cells, then the Rusanov flux is given by:  

( ) ( ) ( )
,

2 2
G D D G

G D c
+ −

= −
F U F U U U

U U             (8) 

where the Rusanov speed c is given by:  

{ }
( ) ( )( )

1;2
max ,k G k Dk

c λ λ
∈

= U U  

and kλ  are eigenvalues of the matrix:  

2

0 1
,

2gh u u
 ∂

=  −∂  

F
U

 

one obtains: ( )1 u ghλ = −U  and ( )2 .u ghλ = +U  
Remark 1. The time step discretization t∆ , must verify the condition: 

1
2

tc
x
∆

≤
∆

 

where c is the maximum wave velocity obtained by calculating the maximum ei-
genvalue of the local Jacobian matrix of the cell. 

4.2. Traitement of the Bottom Topography 

The well-balanced method is based on the hydrostatic reconstruction method 
[11] [12] [13], which consists of decentering the source term at the interfaces. 
These schemes have the advantage to preserve the equilibrium of the fluid, 
which means that the height and the velocity being constant in time. Using this 
property we obtain the relation: 

2

,
2

gh zgh
x x
 ∂ ∂

= − ∂ ∂ 
 

called hydrostatic equilibrium. 
Applying the differentiation rule, we show that h z+  is constant. The hydro-

static reconstruction method is based on the idea that near the equilibrium, the 
flows are almost hydrostatic. 

The reconstructed water heights on either side of the interfaces adjust to sat-
isfy equation: 

2

.
2

gh zgh
x x
 ∂ ∂

= − ∂ ∂ 
                       (9) 
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Integrating on a cell we obtain a following discretization of the source term:  

1 2

1 2

2 2
1 2, 1 2, ,

2 2
i

i

x
i L i Rx

z g ggh h h
x

+

−
+ −

∂
− = −

∂∫  

where 1 2, , , 1 2i L i r i r ih h z z+ += + −  and 1 2, 1, 1, 1 2i R i l i l ih h z z+ + + += + −  with 1 2iz +  is 
the topography at the interface gives by: ( )1 2 , 1,max ;i i r i lz z z+ += . 

Finally the discrete system (7) becomes:  

( ) ( )( )1
1 1, , ,n n n n n n n

i i i i i i i
t t
x

+
+ −

∆
− + − = ∆

∆
U U U U U U S          (10) 

where n
iS  is given by:  

2 2
1 2 1 2

0
,

2 2

n
i i G i Dh h

g g+ −

 
 =  − 
 

S  

with: ( )1 2 1 2 ,max 0;i G i G rh h+ += ; ( )1 2 1 2 ,max 0;i D i D lh h+ += .  

5. Numerical Results 

As real numerical test application, we apply the proposed numerical resolution 
to observe the flow of water at the free surface on a ground having the form giv-
en in Figure 1. 

The water flows from the zone (A) with an imposed discharge towards the 
zone (B) with a blockade at the end. 

The bottom topography is given by: 

( )

[ ]
[ ]

( ) [ ]
[ ]

( ) [ ]

2

2

0.6 0.25
1.6 1 0.25;0.5

0.2 0.5;0.7

0.2 0.01 0.8 0.7;0.9

0.2 0.9;1.1

0.2 0.01 1.2 1.1;1.3

0.2 1.3

x
x x

x

x xz x
x

x x

x

≤
− + ∈
 ∈

 − − − ∈= 
 ∈
 + − − ∈
 ≥

 

 

 
Figure 1. Form of the topography. 
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with initial condition given by: 0.65 mh z+ =  and 30.9 m sq = . The numer-
ical tests are performed on a domain [ ]0;1.5 , subdivided into 150 cells. 

The objective of this simulation is to measure the risk of flooding in urban en-
vironment with non-flat topography with a high rainfall without taking into ac-
count the rate of the infiltration. For that, we had imposed a very important flow 
of water upstream and a closure downstream. The question here is: how long 
will the water take to invade zone (B)? 

In Figures 2-5: the water has submerged progressively the hump and the hol-
low but not completely the zone B. In Figures 6-8 we see a start of water return 
due to the blockade. In Figures 9-15 the water continues to flood zone B and we 
observe two ridges on the surface due to the meeting between the two waves: one 
coming from zone A and the other from zone B. In Figure 16 and Figure 17 we 
see that the water has completely flooded the zone B at 0.97 st = . 
 

 
Figure 2. Water height at t = 0 s. 

 

 
Figure 3. Water height at t = 0.0011 s. 
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Figure 4. Water height at t = 0.012 s. 

 

 
Figure 5. Water height at t = 0.017 s. 

 

 
Figure 6. Water height at t = 0.026 s. 
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Figure 7. Water height at t = 0.036 s. 

 

 
Figure 8. Water height at t = 0.046 s. 

 

 
Figure 9. Water height at t = 0.051 s. 
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Figure 10. Water height at t = 0.061 s. 

 

 
Figure 11. Water height at t = 0.066 s. 

 

 
Figure 12. Water height at t = 0.075s. 
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Figure 13. Water height at t = 0.090 s. 

 

 
Figure 14. Water height at t = 0.11 s. 

 

 
Figure 15. Water height at t = 0.19 s. 
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Figure 16. Water height at t = 0.58 s. 

 

 
Figure 17. Water height at t = 0.97 s. 

6. Conclusions 

The present work concerns the mathematical study of the flooding phenomenon 
in areas with variable topography. As a model we use the Saint-Venant equations, 
thus: 
 We have proved the existence of a weak solution using a geometric argu-

ment. 
 We point out through numerical simulations that the water first invades the 

hollow areas and then floods the areas with elevations.  
 Our approach allows us to predict the necessary time for the water to invade 

a residential area, which is important for countries where constructions are 
made on not completely leveled grounds.  

Acknowledgements 

The authors thank the anonymous referees who provided valuable comments 

https://doi.org/10.4236/jamp.2020.87090


M. Y. A. Kader et al. 
 

 

DOI: 10.4236/jamp.2020.87090 1205 Journal of Applied Mathematics and Physics 
 

resulting in improvements in this paper. This work is supported by The World 
Academy of Science under grant: 18-047-RG/MATHS/AF/AC_I. The authors 
declare no conflicts of interest regarding the publication of this paper.  

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Delestre, O., Cordier, S., James, F. and Darbaux, F. (2008) Simulation of Rain-Water 

Overland-Flow. 12th International Conference on Hyperbolic Problems, College 
Park, June 2008, 537-546. https://doi.org/10.1090/psapm/067.2/2605249 

[2] Delestre, O. and Marche, F. (2011) A Numerical scheme for a Viscours Shallow 
Water Model with Friction. Journal Scientific Computational, 48, 41-51.  

[3] Benkhaldoun, F., Elmahi, I. and Seaid, M. (2006) Well-Balanced Finite Volume 
Schemes for Pollutant Transport on Unstructured Meshes. Journal of Computa-
tional Physics, 226, 180-203. https://doi.org/10.1016/j.jcp.2007.04.005 

[4] Derakhshan, H. and Bistkonj, M.Z. (2013) A New Two Dimensional Model for 
Pollutant Transport in Ajichai River. Journal of Hydraulic Structures, 1, 44-54. 

[5] Stoker, J.J. (1957) Water Waves: The mathematical Theory with Applications. 
Interscience, New York.  

[6] Hervouet, J.-M. (2007) Hydrodynamics of Free Surface Flows Modelling with the 
Finite Element Method. John Wiley & Sons, Hoboken.  

[7] Edwige, G. and Raviart, P.A. (1991) Hyperbolic Systems of Conservation Laws. Se-
ries Mathematics and Applications, Ellipses, Paris.  

[8] LeVeque, R.J. (2002) Finite Volume Methods for Hyperbolic Problems. Cambridge 
University Press, Cambridge, UK.  

[9] Chen, G. and Noelle, S. (2015) A New Hydrostatic Reconstruction Scheme Moti-
vated by the Wet-Dry Front. IGPM, RWTH Aachen University, Aachen.  

[10] Edwige, G. and Raviart, P.A. (1996) Numerical Approximation of Hyperbolic Sys-
tems of Conservation Laws. Collection Applied Mathematical Sciences, 118. 
Springer-Verlag, New York. 

[11] Duran, A., Liang, Q. and Marche, F. (2013) On the Well-Balanced Numerical Dis-
cretization of Shallow Water Equations on Instructured Meshes. Journal of Com-
putational Physics, 235, 565-585. https://doi.org/10.1016/j.jcp.2012.10.033 

[12] Audusse, E. and Bristeau. M.O. (2005) A Well-Balanced Positivity Preserving Se-
cond-Order Scheme for Shallow Water Flows on Unstructured Meshes. Journal of 
Computational Physics, 206, 311-333. https://doi.org/10.1016/j.jcp.2004.12.016 

[13] Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R. and Perthame, B. (2006) A Fast 
and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow 
Water Flows. SIAM Journal on Scientific Computing, 25, 2050-2065.  
https://doi.org/10.1137/s1064827503431090 

 
 
 
 

https://doi.org/10.4236/jamp.2020.87090
https://doi.org/10.1090/psapm/067.2/2605249
https://doi.org/10.1016/j.jcp.2007.04.005
https://doi.org/10.1016/j.jcp.2012.10.033
https://doi.org/10.1016/j.jcp.2004.12.016
https://doi.org/10.1137/s1064827503431090


M. Y. A. Kader et al. 
 

 

DOI: 10.4236/jamp.2020.87090 1206 Journal of Applied Mathematics and Physics 
 

Notations 

The support of the function f in Ω  is ( ) ( ){ }suc 0h assupp f x f x= ∈Ω ≠ . 
( )cC Ω  is the space of continuous functions with compact support in Ω . 
( )kC Ω  is the space of functions k-th continuously differentiable in Ω . 
( ) ( )k

k
C C∞

∈
Ω = Ω

 
. 

( ) ( ) ( )k k
c cC C CΩ = Ω Ω . 

( ) ( ){ }: , d
ppL f f x x

Ω
Ω = Ω→ < +∞∫ . 

( ) ( ){ }: , 0, , . . L f K f x K a e x∞ Ω = Ω→ ∃ ≥ ≤ ∈Ω .  
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