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Abstract 
Several efficient analytical methods have been developed to solve the solid-state 
diffusion problem, for constant diffusion coefficient problems. However, these 
methods cannot be applied for concentration-dependent diffusion coefficient 
problems and numerical methods are used instead. Herein, grid-based numer-
ical methods derived from the control volume discretization are presented to 
resolve the characteristic nonlinear system of partial differential equations. A 
novel hybrid backward Euler control volume (HBECV) method is presented 
which requires only one iteration to reach an implicit solution. The HBECV 
results are shown to be stable and accurate for a moderate number of grid 
points. The computational speed and accuracy of the HBECV, justify its use 
in battery simulations, in which the solid-state diffusion coefficient is a strong 
function of the concentration. 
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1. Introduction 

Since the discovery of the electrochemical intercalation reaction of lithium in 
layered titanium disulfide (TiS2) by Whittingham in 1976, lithium-ion batteries 
(LIB) have grown in popularity and application to surpass all other electrical 

How to cite this paper: Chayambuka, K., 
Mulder, G., Danilov, D.L. and Notten, P.H.L. 
(2020) A Hybrid Backward Euler Control 
Volume Method to Solve the Concentra-
tion-Dependent Solid-State Diffusion Prob-
lem in Battery Modeling. Journal of Applied 
Mathematics and Physics, 8, 1066-1080. 
https://doi.org/10.4236/jamp.2020.86083 
 
Received: April 21, 2020 
Accepted: June 2, 2020 
Published: June 5, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2020.86083
https://www.scirp.org/
https://doi.org/10.4236/jamp.2020.86083
http://creativecommons.org/licenses/by/4.0/


K. Chayambuka et al. 
 

 

DOI: 10.4236/jamp.2020.86083 1067 Journal of Applied Mathematics and Physics 
 

energy storage devices [1] [2]. This groundbreaking discovery demonstrated the 
reversible shuttling of lithium ions in solid layered materials and sparked the 
development of intercalation electrode materials for room temperature second-
ary batteries. However, due to the low voltage of TiS2 as a cathode material (ap-
proximately 2 V vs. Li+/Li) and the lack of a safe anode the time, the Li/TiS2 bat-
tery was not commercialized. 

The intercalation mechanism would later be revisited in the search of a safe 
anode, which completely avoids the danger of lithium dendrites. These needle-like 
structures protrude from the metallic anode surface during platting, causing in-
ternal short circuits and battery-related fires. The coupling of two intercalation 
electrode materials is therefore, the fundamental basis of the ubiquitous LIB 
which are used in most consumer electronics and have recently captured public 
attention due to their application in electric vehicles. It is therefore meritorious, 
for the 2019 Nobel Prize in chemistry, to be awarded to John Goodenough, M. 
Stanley Whittingham and Akira Yoshino, for developing the LIB [3]. We should 
also mention the nickel metal hydride batteries (NiMH), the emerging so-
dium-ion batteries (SIB) and potassium-ion batteries, which likewise make use 
of intercalation active materials. 

Inasmuch as intercalation of energy carrying species inside electrodes is fun-
damental to the operation of the aforementioned battery chemistries, the ma-
thematical modeling of this mechanism is equally critical to the success of phys-
ics-based battery models. The time-dependent radial transport of species inside 
spherical active particles is governed by Fick’s second law 

2
2

1 ,c cDr
t r rr
∂ ∂ ∂ =  ∂ ∂ ∂ 

                     (1) 

where ( ),c c r t=  is the concentration of the intercalated species [mol·m−3], 
( )D D c=  is the solid-state diffusion coefficient [m2·s−1], r is the radial distance 

from the center of the particle [m] and t is time [s]. Equation (1) does not assume a 
constant diffusion coefficient, which indeed, may vary as a function of the concen-
tration. This has consequences on the complexity of the numerical solution method 
as we shall later explore in detail. For a physics-based battery model, we should 
highlight that the ultimate goal is to derive the particle surface concentration for a 
given surface flux boundary condition (Neumann boundary condition) using a 
numerical solution method that is both robust and computationally inexpensive. 
The surface concentration is the most important parameter which governs reaction 
kinetics and the state-of-charge in electrochemical battery models. 

Several efficient methods for solving Equation (1) in the case of a constant 
diffusion coefficient exist and have been applied in many battery models [4] [5] 
[6]. A constant diffusion coefficient is the customary assumption in battery 
models, a simplification which allows analytical and numerical solutions from 
heat transfer theory to be used [7]. Such numerical methods are detailed in the 
classic reviews by Subramanian et al. [8] and Zeng et al. [9]. In our assessment, 
Liu’s pseudo steady-state method (PSS) resolves the seemingly antagonistic re-
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quirements of computational speed and numerical accuracy [4]. A recent mod-
ification to the PSS method, provides faster and stable results for long time si-
mulations [5]. 

A challenging problem which has remained relatively unscrutinized for many 
years, is how to efficiently simulate a variable diffusion coefficient [10] [11] [12]. 
This problem deserves increased attention because of the need to address stress 
effects in particles, [13] phase separation in two-phase materials and tempera-
ture effects occurring at high discharge rates. Overwhelming evidence corro-
borates that a constant diffusion coefficient is a rare exception in intercalation 
particles. For example, the diffusion coefficient in nickel hydroxide particles 
used in NiMH batteries, varies by 3 orders of magnitude over the span of the 
state-of-charge [14] [15]. In addition, the diffusion coefficient in Na3V2(PO4)2F3 
active particles in SIB varies by 2 orders of magnitude, even though ex situ XRD 
patens reveal negligible variation in lattice parameters, a characteristic of sol-
id-solution processes [16] [17]. 

While incorporating a concentration-dependent diffusion coefficient in elec-
trochemical models leads to more accurate simulation results, the lack of an 
analytical exact solution method for Equation (1), for a general, nonlinear form 
of the diffusion coefficient, means one has to rely on numerical methods. [18] 
Traditionally, this is solved by the explicit and implicit finite difference methods 
(FDM) [6] [19]. However, explicit schemes are conditionally stable and therefore, 
computationally expensive. For a grid spacing Δx , the von Neumann stability 
condition for the explicit scheme 

2ΔΔ ,
2

xt
D

≤                            (2) 

imposes a strong time step restriction for particle sizes of the order of 0.5 - 5 µm 
in radius. In general, FDM do not conserve a perfect mass balance and this er-
ror is propagated to the overall battery simulation at long times [20]. Other 
grid-based methods, with a perfect mass conservation include, the finite ele-
ment method (FEM) and the finite volume method (FVM). While both me-
thods are renowned for their robustness, they have the inherent disadvantage 
of not calculating concentrations at specific node points, in particular, at the 
surface boundary [20] [21]. Instead, one obtains volume averaged concentra-
tions within discrete volume elements. Despite the additional computations and 
approximation errors arising from approximating the surface concentration, 
these methods have been successfully applied to battery simulations, with varia-
ble diffusion coefficients.  

To address the shortcomings of the FEM and FVM, Zeng et al. [21] proposed 
the control volume method (CVM). The CVM is a class of finite volume discre-
tization, which computes concentrations at node points. Therefore, surface con-
centrations are obtained directly in the CVM. Compared to the FVM, the CVM 
has a higher accuracy for a given number of mesh points and is more suited for 
battery modeling. [21] While these authors focused on the Crank-Nicolson time 
domain discretization, which sometimes produces oscillatory solutions, we 
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herein present a backward Euler control volume method (BECV) to resolve the 
spherical diffusion problem with a variable diffusion coefficient. This method 
incorporates all the advantages of the CVM, with the added advantage of being 
stable and easier to implement. Because obtaining a fully-implicit solution in-
volves a series of iterative steps, a hybrid backward Euler control volume method 
(HBECV) is herein introduced for the first time. The HBECV method is based 
on the linearization of the functional form of the diffusion coefficient and ob-
tains the implicit solution in a single iteration. Using the HBECV, computation-
ally efficient, accurate and unconditionally stable results are obtained for the 
surface concentration. While this work focuses on the single particle diffusion 
problem, the solution extension to a full, physics-based battery model is trivial. 

The challenge with all grid based methods is that, the number of states in a 
system of coupled differential equations dramatically increases, when the num-
ber of spatially distributed grid points increases [6] [21]. In order to reduce the 
number of grid points, while maintaining a high accuracy, it is recommended to 
implement a non-regular grid spacing, which allocates more points towards the 
surface boundary, where the concentration gradients will be steep initially. 
Therefore, we present the CVM for non-uniform grid spacing and further per-
form a mesh optimization study in which factors affecting optimum mesh spac-
ing are identified. It is shown that the diffusion length is a primary factor, which 
determines the optimum grid spacing. 

2. Model 

The second order, time-dependent, partial differential equation for species diffu-
sion inside a spherical particle, is governed by Fick’s second law which is ex-
pressed in Equation (1). Two Neumann-type boundary conditions are relevant 
for a battery simulation, at the surface and at the center of the particle. At the 
surface, due to interfacial electrochemical reactions, the rate of species transport 
across the surface is expressed as a flux. This boundary condition is written as 

, at , ,cD J r R t
r
∂

− = = ∀
∂

                   (3) 

where J is the interfacial flux of species [mol·m−2·s−1] and R is the radius of the 
particle [m].  

We define J as positive for species diffusing out of the particle. J can also be 
expressed in terms of the current density and its magnitude is the same at all 
points of the surface, i.e. it is uniform. In turn, this implies spherical symmetry. 

At the center of the particle, due to the flux symmetry, the flux is zero 

0, at 0, .cD r t
r
∂

− = = ∀
∂

                   (4) 

To obtain the concentration profile inside the particle, we apply the CVM. For 
Neumann-type boundary conditions, the CVM performs better compared to the 
FDM because mass conservation breaks down in the FDM.  

Since the diffusion problem of Equations (1), (3)-(4) is spherically symmetric, 
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the magnitude of flux depends only on r. Consider a set of N discretization 
points on r, such that 

{ } , for 1N
i i

r i N≤ ≤                      (5) 

where the index i defines node positions of CVM, and N is a non-zero natural 
number of grid points. Accordingly, 1 0r =  and Nr R=  are the particle center 
and surface, respectively.  

Each ith node point in Equation (5) can be assigned a control volume element 
to it. For a spherical geometry, and for 2 1i N≤ ≤ − , such a control volume ele-
ment is a shell whose external faces (boundaries) are located halfway between 
adjacent nodes.  

Let IBi  and OBi  define the ith inner control volume boundary and outer 
control volume boundary, respectively, according to 

1
1IB , for 2 1

2
i

i i
r

r i N−
−

∆
= + ≤ ≤ −                (6) 

OB , for 2 1
2

i
i i

r
r i N

∆
= + ≤ ≤ −                 (7) 

where 1i i ir r r+∆ = −  is the spacing between two adjacent node points. In this 
way, the ith inner control volume element is a shell imbedding node point i.  

At the boundaries, exceptions arise. Both 1IB  and OBN  are not located 
between node points but right at node points 1r  and Nr , respectively. This im-
plies, 1IB 0=  and OBN R= . On the other hand, 1OB  and IBN  are located 
between adjacent node points and can be expressed as 

1
1OB ,

2
r∆

=                         (8) 

1
1IB .

2
N

N N
r

r −
−

∆
= +                      (9) 

Figure 1 illustrates the CVM discretization. Black dots and solid black lines 
represent node points while white dots and dotted black lines represent control 
volume boundaries. A magnified view of the discretized particle illustrates the 
3D nature of spherical shells arising from inner control volume discretization. 
Several important features of the control volume discretization should be noted: 

1) Concentrations are calculated at the node points only. No concentrations 
are calculated at the boundaries between control volume elements.  

2) The concentration profile between nodes is assumed to be linear. 
3) Concentration gradients are calculated at spherical shell boundaries using 

concentration values from adjacent nodes.  
4) Interior boundaries of the control volume shells are located halfway be-

tween adjacent nodes.  
Let iv  denote the control volume element at node point i. Assume ( )im t , 

the amount of electrochemically active species [mol] inside iv  at arbitrary time 
t, can be expressed as a product of the concentration at node point i and volume 
of corresponding spherical shell. This means 
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Figure 1. Diffusion in a spherical particle illustrating the control volume discre-
tization along the particle radius. The solid black lines and solid black dots 
represent grid point i, while the dotted black line and white dots represent con-
trol volume boundaries. In the magnified view, i is surrounded by an imaginary 
control volume between the outer boundary OBi  and inner boundary IBi . 
The flux is defined positive for species diffusing out of the particle. 

 

( ) ( ) ( ) ( ) ( ) ( )d d ,
i i

i i i i
v v

m t c r V r c r V r c r U= ≈ =∫ ∫          (10) 

where iU  is the total volume of iv  [m3].  
Mass conservation law in the absence of source term(s) dictates that any 

change in im  corresponds to the net-flux via control of the volume inner and 
outer boundaries, i.e. 

( ) ( )1 1 , for 1t i t i i i i i im t c U J A J A t i N− −∆ = ∆ = − ∆ ≤ ≤         (11) 

where iJ  represents mass flux though control volume boundaries [mol·m−2·s−1], 
t∆  is the time step [s] and the symbol t∆  denotes a change of a variable in 

time. iA  is the surface area of the ith control volume boundary [m2] which is 
defined as 

2

4 , for 1 1,
2

i
i i

r
A r i N

∆ = π + ≤ ≤ − 
 

               (12) 

at the surface boundary OBN  as 
34 ,NA R= π                          (13) 

and at the center boundary 1IB  as  

0 0.A =                            (14) 

Note that, the absence of source term(s) in Equation (11) is due to the lack of 
internal species production or consumption within the active particles.  

Now, according to remarks ii and iii, the fluxes at the control volume bounda-
ries can be derived as follows  

( ) 1 1
1 2 1 2

1
2

  
,

i
i

i i i i
i ir

r r i i i

c c c ccD c D D
r r r r

+ +
+ +∆

= + +

− −∂
− ≈ − = −

∂ − ∆
       (15) 

where 1
1 2 2

i i
i

c c
D D +

+

+ =  
 

 is the concentration-dependent diffusion coeffi-

cient at the control volume boundary [m2·s−1]. A half-sum is applied because of 
remarks ii and iv. Substituting Equation (12) and (15) into Equation (11), gives 
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2 2
1 1 1

1 1 1
12 22 2

 , for 2 1.
4

i i i i i i
i ii i

i i

i
t i

c c r c c r
D r t D r t

r r
U

c i N

− − +
−

− +
−

− ∆ − ∆   − + ∆ + + ∆   ∆ ∆   

= ∆ ≤ ≤ −
π

      (16) 

In order to eliminate the factor 4π from subsequent derivations, let a norma-
lized volume iV  be defined as 

3 3
1

1
1 , for 2 1,
3 2 2

i i
i i i

r r
V r r i N−

−

 ∆ ∆   = + − + ≤ ≤ −    
     

        (17) 

at the center ( 1i = ) and at the surface boundary ( i N= ), 1V  and NV  are de-
fined as 

3
1 1

1 ,
24

V r= ∆                       (18) 

3
3 11 .

3 2
N

N
r

V R R −
 ∆ = − −  

   
                (19) 

To further economize notations, let variable iK  [m3] be introduced 
2

1 2   , for 1 1.
2

i
i i i

i

rtK D r i N
r+

∆∆  = + ≤ ≤ − ∆  
         (20) 

Therefore, taking Equations (17) and (20) into account, Equation (16) can be 
expressed in terms of iK  and iV  as 

( ) ( )1 1 1 , for 2 1.i i i i i i i t iK c c K c c V c i N− − +− − + − = ∆ ≤ ≤ −         (21) 

Rearranging Equation (21) we finally obtain 

( )1 1 1 1 , for 2 1.i i i i i i i i t iK c K K c K c V c i N− − − +− + + = ∆ ≤ ≤ −         (22) 

Equation (22) is defined at interior node points. It is possible, starting with the 
general mass balance expression of Equation (11) and following the steps shown 
in Equations (15)-(22), to obtain expressions for the two remaining boundary 
cases, 1i =  and i N= . 

At the center (at 1i = ), there is zero flux through 1IB  according to Equation 
(4). Furthermore, the surface area at 1IB  is zero according to Equation (14). 
Applying the general mass balance on 1v  gives 

2
2 1 1

1 1 2 1 1 1
1

,
2 t

c c rD r t V c
r+
− ∆ + ∆ = ∆ ∆  

               (23) 

Finally, Equation (23) expressed in terms of the variable iK , becomes 

( )1 2 1 1 1 .tK c c V c− = ∆                       (24) 

At the surface (at i N= ), there is a uniform interfacial flux J. Applying the 
boundary condition of Equation (3) and the general mass balance on Nv , we 
obtain 

2
21 1

1 2 1
1

,
2

N N N
N N N t N

N

c c r
D r t JR t V c

r
− −

− −
−

− ∆ − + ∆ − ∆ = ∆ ∆  
       (25) 

https://doi.org/10.4236/jamp.2020.86083


K. Chayambuka et al. 
 

 

DOI: 10.4236/jamp.2020.86083 1073 Journal of Applied Mathematics and Physics 
 

Finally, introducing the variable iK  into Equation (25) gives 

( ) 2
1 1 .N N N N t NK c c JR t V c− −− − − ∆ = ∆                (26) 

Up to this point, the temporal discretization is intentionally omitted because 
the system of equations, Equations (22), (24) and (26) can be solved either by the 
forward Euler or the backward Euler method. 

Let the superscript j represent the current time step and 1j −  represent the 
previous time step. Therefore, ( ) ( ) 1Δ j j

t i i i i ic c t c t t c c −∆ = − − = − . The system of 
equations, Equations (22), (24) and (26) is thus expressed in the backward Euler 
scheme as 

( ) 1
1 1 1 1  , for 2 1j j j j j j j j

i i i i i i i i i iK c K K V c K c V c i N−
− − − +− + + + − = ≤ ≤ −     (27) 

at the center 

( ) 1
1 1 1 1 2 1 1  ,j j j j jK V c K c V c −+ − =                  (28) 

and at the surface  

( ) 1 2
1 1 1 .j j j j j

N N N N N N NK c K V c V c JR t−
− − −− + + = − ∆            (29) 

Equations (27)-(29) represent a coupled system of equations since all values at 
time step j are unknown while values at time step 1j −  are unknown. 

2.1. Solving the Coupled System of Equations 

As a first step to finding the solution, the coupled system of Equations (27)-(29) 
is expressed in matrix form. This is expressed as 

1 2 ,j jc c R t− − ∆=M V J                      (30) 

where jc  is a column vector containing concentrations at all node points at 
time index j, i.e. ( )1 2, , ,j j j j

Nc c c c=  , M  is an N-by-N matrix  

1 1 1

1 1 2 2 2

2 2 3 3 3

2 2 1 1 1

1 1

0 0 0 0 0
0 0 0

0 0 0 0

0 0 0 0
0 0 0 0 0

j j

j j j

j j j j

j j j j
N N N N N

j j
N N N

K V K
K K K V K

K K K V K

K K K V K
K K V

− − − − −

− −

 + −
 
− + + − 

 − + + −
 
 
 − + + −  − + 







       





 

V  is expressed as  

1

2

0 0
0

0 0 N

V
V

V

 
 
 =
 
 
 

V



 



 

and J  is a (column) vector, ( )0,0, ,0, J ′
 , whose only non-zero entry is at the 

Nth point, corresponding to the surface. 
M  is a tridiagonal matrix. If  0iV > , a condition which is trivially satisfied by 

the construction of sequence r as shown in Equation (5), M  is strictly (row) 
diagonally dominant. By the Levy-Desplanques theorem, M  is non-singular 
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and therefore invertible [22]. The tridiagonal matrix algorithm (TDMA) can 
thus be applied to solve Equation (30) as a stable and fast solution method [23]. 
The TDMA, also known as the Thomas algorithm, is a variant of Gaussian eli-
mination, which is applicable to a diagonally dominant tridiagonal system of N 
unknowns. Compared to the standard Gaussian elimination or matrix inversion, 
which require ( )3O N  operations to solve, the TDMA only requires ( )O N  
operations [24].  

For a constant diffusion coefficient, Equation (30) is linear. The solution jc  
is rapidly obtained in a single run of the TDMA. However, for the problem 
posed above, the diffusion coefficient at time step j is not known a priori since D 
is an implicit function of jc . Equation (23) therefore takes form 

( ) 1 2 ,j j jc c c R t−= − ∆M V J                  (31) 

and represents a non-linear system of equations. Equation (31) can be iteratively 
solved by various fixed point methods such as Newton’s method, Jacobi, 
line-by-line and Gauss-Seidel. These iterative methods can be used in combina-
tion with the TDMA to obtain convergent solutions [23] [25]. The Newton’s 
method in particular, attains quadratic convergence if the initial guess is suffi-
ciently close to the solution [21] [25]. Nevertheless, great care must be taken to 
correctly construct and solve the Newton equation and a poor initial guess may 
even result in a lack of convergence [25]. In this work, the following iterative 
scheme (Jacobi) is used 

( ) 1 2
1 , for 1j j j

k k totc c c R t k k−
− = − ≤ ≤∆M V J             (32) 

where subscript k denotes the iteration number in a total of totk  iterations. j
kc  

is therefore the implicit solution obtained after k iterations. The initial value 
needed for the first iteration, is defined as 

1
0 .j jc c −=                           (33) 

For 20totk ≈ , the fully-implicit, BECV solution is obtained. It shall be dem-
onstrated that, due to the initial condition Equation (33), the first iteration of 
Equation (32) achieves a stable and approximately accurate solution, which is 
acceptable in many cases. This solution is herein referred to as the HBECV. The 
HBECV is therefore a linearization of the concentration-dependent M , in order 
to obtain implicit solutions in a single iteration.  

2.2. Grid Spacing 

In order to accurately determine concentration profiles, many grid points are 
required. However, more grid points come at considerable computational costs. 
The accuracy of the CVM, for an economical number of grid points, depends on 
the spatial distribution of the same. The choice of grid spacing, however, de-
pends on the nature of the problem and boundary conditions. More points are 
required at the regions where the concentration profile has steep gradients and 
this holds true at the particle surface boundary.  
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While the scheme of equations presented in this work, allows for variable 
spacing of grid points, the literature around grid/mesh optimization is very 
sparse, this in turn makes it difficult to comprehend the principle factors affect-
ing the optimum grid spacing. In order to evaluate the different grid-point loca-
tions, the following geometric spacing equation is applied 

1 11 , 1 ,
1

N i
N

i
Yr R i N

Y

−
−

 
− = − ≤ ≤ − 

 

                 (34) 

where Y is the common factor of the geometric series. In this study, Y varies 
between 2 and 20. If 10Y = , the logarithmic spacing is obtained, a notable 
choice in the preceding publication [21]. To evaluate the error in each value of Y, 
as a function of D and R, a solution obtained from a linear spaced grid of 501 
points and 5dt =  s is used as reference solution. 

3. Results and Discussion 

To investigate the accuracy of HBECV, the set of parameters from Zeng et al. [21] 
is used. Table 1 shows the parameters for Li(Ni1/3Mn1/3Co1/3)O2 particles used in 
the referenced work and also in this work. 

The concentration-dependent diffusion coefficient for Li(Ni1/3Mn1/3Co1/3)O2 
used by Wu et al. (see ref. [26]) is 

( ) ( )
3
2

max

max

ˆ
1 100 ,ˆ

theoref

prac

C c c
D c D

C c

 
 − = +    
   

             (35) 

where refD  is defined as the reference diffusion coefficient of 2 × 10−16 m2·s−1, 
ˆ

theoC  is the theoretical capacity of the electrode material (277.84 mAh·g−1) and 
ˆ

pracC  is the practical capacity of the electrode material of 160 mAh·g−1.  
Figure 2 illustrates the agreement between our results and literature. After a 

discharge time t = 400 s, the surface concentration nearly reaches cmax and thus 
the end of discharge. For the parameters in Table 1, a dense mesh of 501 grid 
points is needed to eliminate errors due to spatial discretization. These results 
validate the BECV method whose solutions are obtained after 20totk =  itera-
tions of the Jacobi method. 

It is interesting to evaluate the effect of reducing ktot because the computation 
speed increases with less iteration. Figure 3 shows that the relative error in sur-
face concentration progressively increases when ktot decreases. Furthermore, ap-
proximately 10 iterations of the Jacobi method are necessary to obtain a ful-
ly-implicit BECV solution. With regards to fast simulations, the HBECV solu-
tion obtained when 1totk =  is interesting. From the results, the relative error on 
the surface concentration of the HBECV method is approximately 0.1%, which is 
good enough for practical purposes and moreover the results are stable. This va-
lidates the HBECV and justifies its use for fast, stable and practically accurate 
results. 
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Table 1. Parameters for modeling diffusion in spherical particle with variable diffusion 
coefficient.  

Parameters Value Units Description 

R 5 × 10−6 m Particle Radius 

J −5.35 × 10−5 mol·m−2·s−1 Interfacial flux 

c0 2 × 104 mol·m−3 Initial concentration 

cmax 4.665 × 104 mol·m−3 Maximum concentration 

Δt 5 s Time step size 

 

 

Figure 2. Comparison of the results of the simulated concentration gra-
dients obtained in this work, using the BECV method and results from Zeng 
et al. [21] Results are obtained using 501 uniformly spaced grid points, us-
ing the parameters of Table 1 and the concentration-dependent diffusion 
coefficient expression, Equation (35).  

 

 

Figure 3. Relative error in surface concentration over 400 s simulation as a 
function of the number of iterations. The relative error of the HBECV me-
thod is compared to the iterative implicit BECV method. 501 uniformly 
spaced grid points and parameters in Table 1 are used to calculate the sur-
face concentration. As ktot, the total number of iterations per time-step in-
creases, the solution converges to the reference solution of 20 iterations. 

 
A uniform grid of 501 points is nevertheless impractical for use in battery si-

mulations where the number of grid points is limited. The first step in reducing 
the number of grid points is to determine optimal grid spacing. This is herein 
determined by changing the value of Y in a model with 301 grid points. The op-
timization of Y is performed using the uniform grid of 501 points as the refer-
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ence solution, while the cost function is the normalized root of squared devia-
tions between these solutions. 

Figure 4 illustrates the dependence of optimum Y ( optY ) on the dimensionless 

parameter 4 refD T
R

. This parameter represents a scaled diffusion length since 

the mass diffusion length is known to be equal to 4 refD T . Two regions can be 
easily identified in Figure 4. 

1) high diffusion length region where 4 0.1
refD T

R
>  and 3 6optY≤ ≤ ,  

2) low diffusion length region where 4 0.1
refD T

R
≤  and 6optY > .  

For a high diffusion length, which is more than 10% of R, an evenly spaced 
grid defined by low Y values should be used. On the other hand, for a low diffu-
sion length, which is less than 10% of R, a logarithmic grid spacing, defined by 
high Y values, is more appropriate. The immediate conclusion is that more 
points are needed close to the surface only when the diffusion length is low. This 
highlights the importance of carefully selecting the grid spacing for a given refD  
and R values and not rely on an intuitive feeling of the grid spacing. 

For the parameters listed in Table 1, 12optY =  and the number of grid points 
distributed by optY  is defined as optN . It is important to further reduce optN , 
to a practical number, relevant to full-cell battery modeling. Figure 5 shows the 
relative error on surface concentration at 400 st =  and 0.1 sdt = , as a func-
tion of optN . As expected, the error relative to the fine grid mesh increases as 

optN  decreases. However, the BECV and the HBECV remarkably converge to 
the same error when optN  decreases. This implies is that, the spatial discretiza-
tion error exceeds the linearization error of the HBECV when the number of op-
timally spaced grid points is below 21. Therefore, based on the results shown in 
Figure 5, the HBECV should be used in battery simulations, instead of the more 
computationally expensive BECV. 

 

 

Figure 4. Grid optimization, effect of the geometric factor Y and the dimension-

less factor 4 refD T
R

. The red squares show the optimum geometric factor, optY  

for selected refD  and R values. The bars represent variance within 1% of optY . 

Inset showing the distribution of 6 grid points for 2Y = , and 10Y = . 
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Figure 5. Relative error on surface concentration at 400 s of the BECV and the 
HBECV as a function of optN , the number of optimized grid points. The op-

timum geometric factor, 12optY =  and time step, 0.1sdt =  are used. The 

reference solution is obtained from 501 uniform grid points and 0.1sdt = . 

4. Conclusions 

In this paper, the backward Euler control volume (BECV) and the hybrid back-
ward Euler control volume (HBECV) methods are presented as efficient numer-
ical methods to resolve the solid-state spherical diffusion problem for a variable 
diffusion coefficient. The implicit scheme of nonlinear equations is herein 
shown to be strictly diagonally dominant and efficiently solved by the tridiagon-
al matrix algorithm (TDMA).  

The fully-implicit BECV is shown to require more computations, approx-
imately 10 iterations of the TDMA, in order to reach a convergent solution; 
however, the HBECV only requires one iteration. The HBECV achieves this by 
linearization of the implicit scheme of equations. Although, in comparison to 
the BECV method, the error in surface concentration in the HBECV method is 
around 0.1%, for a fine grid of 501 points, the error difference decreases when 
the number of grid points decreases. For a course grid of 21 optimally spaced 
grid points, the error in surface concentrations converges to the same order of 
magnitude, which demonstrates that the error due to spatial discretization out-
weighs the error due to the linearization, as introduced by the HBECV method. 

This work further explores the parameters governing optimal grid spacing. 
The diffusion length emerged as a guiding parameter for selecting optimum grid 
spacing. It is found that low diffusion length problems require more points dis-
tributed near the surface, compared to high diffusion length problems wherein 
an evenly spaced grid more appropriate. 

As demonstrated in this work, the HBECV is accurate, stable and easy to im-
plement. In practical battery simulations, where the number of grid points is 
minimized, the HBECV performs as well as the BECV method. Therefore, given 
the aforementioned advantages of the HBECV, this method is a justified choice 
for modeling the second order partial differential equation of solid-state diffu-
sion with a concentration-dependent diffusion coefficient. 
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