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Abstract 
In this paper, we are interested to find the most sensitive parameter, local and 
global stability of ovarian tumor growth model. For sensitivity analysis, we 
use Latin Hypercube Sampling (LHS) method to generate sample points and 
Partial Rank Correlation Coefficient (PRCC) method, uses those sample 
points to find out which parameters are important for the model. Based on 
our findings, we suggest some treatment strategies. We investigate the sensi-
tivity of the parameters for tumor volume, y, cell nutrient density, Q and 
maximum tumor size, ymax. We also use Scatter Plot method using LHS 
samples to show the consistency of the results obtained by using PRCC. 
Moreover, we discuss the qualitative analysis of ovarian tumor growth model 
investigating the local and global stability. 
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1. Introduction 

Ovarian cancer is the fifth leading cause of death from non-skin cancers among 
women around the globe. “Silent killer” is another name of ovarian cancer, 
causes more deaths than any other gynecological malignancies. The American 
Cancer Society estimates 22,240 new cases of ovarian cancer and 14,070 deaths 
due to ovarian cancer only in United States in 2018. Almost 300,000 new pa-
tients have been diagnosed with ovarian cancer in 2018  
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(https://ocrahope.org/patients/about-ovarian-cancer/statistics/). Ovarian cancers 
were previously believed to begin only in the ovaries, but recent evidence sug-
gests that many ovarian cancers may actually start in the cells in the far (distal) 
end of the fallopian tubes [1]. Only 20 percent ovarian cancers are detected at 
early age. Despite the advancement of last few decades, ovarian cancer still re-
mains a major problem [2]. A mathematical expression called Droop’s cell quota 
model [3] governs the tumor growth, where cell quota represents the intracellu-
lar concentration of necessary nutrients provided through blood supply [4] [5]. 

For every mathematical model, input factors such as parameters are not al-
ways known with a sufficient degree of certainty because of natural variation, 
error in measurements or even simply a lack of current techniques to measure 
them. Our goal is to analyze the uncertainty of parameters of our model. Because 
uncertainty in parameter values chosen, introduces variability to the model’s 
prediction of resulting dynamics. So, the more uncertain parameters there are, 
the more significant the variability introduced. LHS-PRCC sensitivity analysis is 
an efficient tool often employed in uncertainty analysis to explore the entire pa-
rameter space of a model [6]. Scatter plot is an alternate of PRCC which works 
in a different way but able to give a meaningful understanding of the parameters 
behavior for a particular mathematical model [7]. 

The mathematical methods used in modeling biological systems vary accord-
ing to different steps of the process. We focus on the mathematical representa-
tion of the system. However, other important steps in the modeling processes are 
parameters fitting and model selection [8]. Mathematical models of complex bi-
ological systems are central to systems biology [9] [10]. They can be used as an 
exploratory tool to complement and guide experimental work. Model simula-
tions can be used to predict the system-wide effects of molecular targets, such as, 
determine the effects of molecular target(s) inhibition in specific populations [11] 
[12]. They can also serve as an important clinical tool, for example, classify be-
nign and malignant tumors, predict disease prognosis for individual patients, 
and predict outcomes of treatments [13] [14] [15] [16]. All these studies em-
ployed to fit both on-treatment and off-treatment preclinical data using the same 
biologically relevant parameters. Using mathematical tools, similar study was 
considered in a proposed model that consisted of healthy cells, tumor cells, and 
mature vascular endothelial cells in the tumor [17]. The growth of the cancerous 
cells can also be limited by the lack of blood vessels, which carry important nu-
trients and supplies. 

Scientists have been using ordinary and partial differential equations to model 
biological systems for a long time. As these models are utilized as a part of an at-
tempt to better understanding of more and more complex phenomena, it is be-
coming obvious that the simple models cannot capture the complexity of dy-
namics observed in natural systems [18]. Different types of approaches can be 
taken to deal with these complexities. One way of dealing with this issue is con-
structing large system of ODE, which can be quite good at approximating ob-
served behavior [19] [20]. Such models have the benefit of merging a simple, in-
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tuitive derivation with an extensive variety of possible behavior regimes for a 
single system. Also, these models hide lots of detailed workings of complex bio-
logical systems, where sometimes precise details are important for this system. 

Ordinary differential equations (ODE) and delay differential equations (DDE) 
are useful in framing many biological phenomena [20]. Though delay differen-
tial equations and ordinary differential equations have many similarities, DDE 
have several features which make their analysis more difficult. ODE hold deriva-
tive which depend on the solution at current value of the independent variable 
(time), while DDE additionally contain derivatives, which are dependent on so-
lutions at earlier times. One of the most significant difference between the ODE 
and DDE is the initial data. The solution of an ODE is resolved by its value at the 
initial point t a= . However, for the interval a t b≤ ≤ , the term like ( )y t τ−  
requires initial point to solve the system [20]. 

Basically, ovarian tumor growth model is DDE which has two phases namely 
on-treatment and off-treatment. Here we are investigating for only on-treatment 
case and for this reason, the model turns into ODE. We have introduced the 
Runge-Kutta method of order 5 to solve the system of non-linear differential 
Equation (1), as prescribed in the next Section 2. 

The rest of the paper is organized as follows. The mathematical model is de-
scribed in Section 2 with parameter estimations. The solution methodology is 
prescribed in Section 3. Also the Scatter plotting idea is articulated in this section. 
The results of numerical illustrations are presented in Section 4. LHS perfor-
mance, Monotonicity plots analysis and PRCC studies are also investigated in 
this section. The contents of Section 5 are analyzing the treatment strategy to 
reduce the Ovarian cancer. Theoretical results such as local and global stability 
analysis are presented in Section 6. Finally, Section 7 concludes summary and 
discussion of the results. 

The dynamics of mathematical model are integrated in the following section.  

2. Mathematical Model of Ovarian Cancer Dynamics 

Ovarian Tumor Growth Model is a simple vascularized model; a type of tumor 
that forms from cells that make blood vessels or lymph vessels. Vascular tu-
mors may form on the skin, in the tissues below the skin, and/or in an organ. 
There are many types of vascular tumors. The most common type of vascular 
tumor is hemangioma, which is a benign tumor that usually occurs in infants 
and goes away on its own. In this model, the idea of nutrient limited induced 
angiogenesis has been used [21]. As already mentioned, the model is a DDE, 
but for on-treatment case it becomes an ODE where the delay part 

( )0y y t τ= −  has established values ranging 200 - 10,300 [22]. We are inves-
tigating the case from the beginning of the on-treatment case for the time de-
lay, 10τ =  and initial time 0 29t =  which tends to give approximately  

( ) ( ) ( )0 29 10 19 375y y t y yτ= − = − = =  (see Figure 7 in [22]). 
Following is the ovarian tumor growth model [22],  
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( ) ( )0
1 1

d 1 ,
d

d .
d

m

m

y q y yd
t Q

y tQ p Q q
t y

µ

τ
α µ

  
= − −  

  


− = − −

                (1) 

For convenience and parameter estimations, the variables and parameters of 
system (1) are described in Table 1.  

We simulate the model for 100 days of on-treatment case to get both Tumor 
volume, y and Cell Quota Q, see Figure 1.  

Now it’s time to describe the solution methods.  

3. Methodology 
3.1. LHS-PRCC 

To explore the uncertainty of parameters, one of the most useful sensitivity 
analysis method is Latin Hypercube Sampling-Partial Rank Correlation Coeffi-
cient (LHS-PRCC). It determines the full parameter space of a model with an 
optimal number of computer simulations [6]. This method uses the combination 
of two statistical procedures, Latin Hypercube Sampling (LHS), which was first 
presented by McKay [23] in 1979 and Partial Rank Correlation Coefficient 
(PRCC) analysis. 
 

 
Figure 1. Solution curves for Tumor Volume (y) and Cell Quota (Q). 

 
Table 1. Variable and parameter list for ovarian tumor growth model.  

Symbol Definition(Unit) Value Ref 

y Tumor volume (vol) - - 

Q Cell nutrient density (mol/vol) - - 

q Minimum cell nutrient density (mol/vol) 0.0021 - 0.0099 assume 

mµ  Maximum growth rate (per day) 0.41 - 1.58 [18] 

d Death rate (per day) 0.28 - 1.43 [18] 

1α  Nutrient uptake coefficient (mol/(vol day)) 0.0084 - 0.70 assume 

1p  Reduction in nutrient uptake rate (-) 0.17 - 0.47 assume 

τ  Time delay (day) 10 [1] 

y  Tumor size 10 days before treatment (vol) 375 [22] 
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Within a given range of parameters value, LHS samples them to generate dif-
ferent values at each simulation and PRCC uses those value to describe the rela-
tion of parameters with the output of a particular mathematical model [24]. 
PRCC is a sample based method to examine the correlation between a model 
output variable and parameters using sample points generated by LHS. 

The goal of LHS-PRCC sensitivity analysis is to identify significant parameters 
which have great impact for model prediction and to rank these parameters de-
pending on their contribution for a precise model prediction [25]. This section 
presents details on the steps of LHS. The method uses the following procedure:  

1) Make a list of the parameters for the model with their consistent values. 
2) We have to predict the uncertain parameters from the parameter lists. For 

some of these, it might not be difficult to find the possible range where the exact 
values might fall. 

3) Next step is to decide the sample size and to do this we need to determine 
the number of simulations we intend to run. Assume we decide to run N model 
simulations for analysis and we have K uncertain parameters, ,1iv i K≤ ≤ . Then 
the parameter space for the uncertain parameters would be defined by K dimen-
sions. 

4) K dimensions will correspond to uncertain parameters and N determines 
the length of dimensions. For every uncertain parameter, each of the N input 
values would be selected/determined by the LHS sampling scheme. 

5) We need to specify a probability density or distribution function (pdf) for 
each uncertain parameter to implement this LHS sampling scheme. In this way, 
the variability in the pdf becomes a direct measure of the variability of the un-
certain parameter. 

6) Each probability density function is divided into N non-overlapping equi-
probable intervals for sampling the values of each parameter. 

7) Each equiprobable interval of each parameter is then randomly sampled 
once. The parameters are uncorrelated because each parameter is sampled inde-
pendently. 

8) Once step 7 is complete, each of the K uncertain parameters, ,1iv i K≤ ≤ , 
will have N values. Hence, we store the sampled values in an N K×  ta-
ble/matrix.  

3.2. Scatter Plot 

Scatter plots are occasionally used to examine the correlation between a model 
output variable and parameters visually [26]. It’s a variance based method to 
find a trend or pattern of the data obtained from LHS sampling. An output va-
riable that is sensitive to the selected parameter will yield an obvious correlated 
pattern in the scatter plot. Generally, a Monte Carlo algorithm is used to sample 
the parameter space, and multiple scatter plots are drawn illustrating the rela-
tionship between each parameter and each output variable of interest. But in this 
paper, we use LHS instead of Monte Carlo algorithm for sampling the parameter 
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space. Visual recognition of the correlation between parameters and model out-
put values can be contingent on the choice of axis scales. 

For the sake of comprehension and clarity, we state and discuss our illustrated 
key results at this point.  

4. Results 
4.1. Performing LHS on the Ovarian Tumor Growth Model 

There are five (since y  and τ  have a fixed values) uncertain or Latin Hyper-
cube Sampling (LHS) parameters in Table 1. To identify their various roles in 
the model predictions, we start performing LHS. In our analysis, 100 model si-
mulations were performed with 1000 samples per run. Thus, the parameter 
space (LHS matrix) for the LHS parameters has dimension of length five with 
each dimension specifying an uncertain parameter vector of length 100. We as-
sume the maximum and minimum values for each of the five LHS parameters 
(see Table 1). The baseline value for each LHS parameter has been set to a value 
at or near the middle of the range for a particular parameter. For every LHS pa-
rameter, each of the 100 input values are obtained by sampling a uniform proba-
bility density distribution. The 100 input values are then used to populate the 
LHS matrix from which we produced monotonic plots for each variable. We 
calculate tumor volume, y, cell quota or cell nutrient density, Q and maximum 
tumor size, ymax for each run after 100 days. 

4.2. Analyzing the Monotonicity Plots 

Analysis of Monotonicity plot is a precondition to apply PRCC on LHS gener-
ated samples. Three outcome measures mentioned in the last section are pre-
sented in the following figures. The subplots in Figure 2 (x-axis represents the 
parameter values and y-axis represents the respective outcome measure) have 
monotonic relation with all the outcome measures except reduction in nutrient 
uptake rate (p1) with maximum tumor size, ymax.  

To solve this issue one approach is to breakdown that graph into two mono-
tonic regions. If instead of the small range of outcome measures observed for p1 
in ymax, the range had been several hundred or thousand units, we would have 
considered truncating the range and looking at each truncated half separately. 
However, the current effect of p1 in ymax is minimal since the range is very 
small (i.e. 1000 - 1010) for number of orders of 103. So, no action is needed. 
Hence, all LHS parameters of our model have a monotonic relationship with the 
outcome measures tumor Volume, y, cell quota, Q and maximum tumor size, 
ymax. 

4.3. Analyzing the PRCC 

In PRCC analysis, we consider the parameters with PRCC values > 0.5 (for direct 
relation) or <−0.5 (for inverse relation) and corresponding small P-values (<0.05) 
as the most influential parameters for the model. 
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Figure 2. Monotonicity Plots for Q and ymax. 
 

In each PRCC plot (Figures 3-5), x-axis contains the parameters and the 
y-axis contains PRCC values. Also, for each PRCC plot there is a corresponding 
P-value plot where x-axis represents the parameters and the y-axis represents the 
corresponding P-values. 

We observe that each PRCC and P-value plot show strong correlation of death 
rate, d and maximum growth rate, mµ  with all three outputs.  

4.4. Analyzing the Scatter Plots 

In Scatter plot analysis we try to find a pattern (relation or trend) for each out-
put corresponding to each parameter of our model. 

To get the result, we use 1000 sample in each run. The subplots of Figure 6 
(x-axis represents outcome measures y, Q and ymax respectively in each subplot 
and y-axis represents range of parameters (Table 1)) show that the most impor-
tant parameters are the death rate, d and the maximum growth rate, mµ  as we 
can clearly get a trend for these two parameters. Additionally, from the first and 
third subplot of Figure 6, we observe that nutrient uptake coefficient ( 1α ) shows 
a good trend for both tumor volume, y and maximum tumor size, ymax but fails 
to be considered as important as d and mµ  due to more spreading shape at the 
beginning. Moreover, it’s trending nature is far away from the trend of both d 
and mµ  for the output measure cell quota, Q (second subplot of Figure 6). 

Hence death rate, d and maximum growth rate, mµ  are the two most sensi-
tive parameters of our model.  

Next, let us proceed to test the treatment strategies for sensitive parameters.  

5. Treatment Strategy 

In this section, we will suggest few treatment strategies depending on the results 
of model simulations for different values of the two most sensitive parameters 
(death rate, d and maximum growth rate, mµ ).  
• Figure 1 shows the primary solution curves of the model with base values 

(see Table 1) for d and mµ .  
• Figure 7 and Figure 8 show the change in tumor volume and cell quota re-

spectively due to the change in d while mµ  is fixed at 0.995.  
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• Figure 9 and Figure 10 show change in tumor volume and cell quota respec-
tively due to the change in mµ  while d is fixed at 0.855.  

Now we want to understand the relation of the two most sensitive parameters 
death rate, d and maximum growth rate, mµ  with tumor volume, y and and 
cell quota, Q.  
• Figure 11 shows that the tumor volume, y decreases with the increase of 

death rate, d and increases as the maximum growth rate, mµ  increases. We 
also observe that for the value (approximately) of 0.95d >  and 0.98mµ < , 
tumor volume, y approaches zero.  

• Figure 12 shows that the cell quota Q remains zero until death rate, d ap-
proaches to 1.4 (approximately) and then increases rapidly for a small in-
crease in d. It also shows that Q decreases rapidly for a small increase in 
maximum growth rate, mµ  until it reaches approximately 0.45. After that, 
Q remains zero for any increasing value of mµ .  

The following section shows the stability of equilibrium solutions.  
 

 

Figure 3. PRCC and P-values Plot for Tumor Volume (y). 
 

 

Figure 4. PRCC and P-values Plot for Cell Quota (Q). 
 

 

Figure 5. PRCC and P-values Plot for Maximum Tumor Size (ymax). 
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Figure 6. Scatter plots for Tumor Volume, Cell Quota and Maximum Tumor Size, 
respectively. 

 

 

Figure 7. Model Simulations for 0.995mµ =  and 0.5,0.9936,1.2d = , respectively. 
 

 

Figure 8. Model Simulations for 0.995mµ =  and 0.5,0.9936,1.2d = , respectively. 
 

 

Figure 9. Model Simulations for 0.855d =  and 0.5,0.85604,1.2mµ = , respectively. 
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Figure 10. Model Simulations for 0.855d =  and 0.5,0.85604,1.2mµ = , respectively. 
 

 

Figure 11. Treatment Graph of Tumor Volume (y) for d and mµ . 
 

 

Figure 12. Treatment Graph of Cell Quota (Q) for d and mµ . 

6. Qualitative Analysis 

In this section we are going to discuss the stability of our model. Since d and 

mµ  are the two most sensitive parameters then they should play vital roles in 
the stability analysis of this model. Stability are of two types namely local stabili-
ty and global stability. 

6.1. Local Stability 

Local stability of a system of ODE occurs only surrounding by a small neigh-
borhood of equilibrium points. If we move far away from the neighborhood, lo-
cal stability can be altered. Using the system (1), we consider  

( ), 1m
qf y Q y yd
Q

µ
 

= − − 
 

                  (2) 

( ) ( )1 1375
, m

pg y Q Q q
y
α

µ= − −                  (3) 

We have used 375y =  [22] in the second equation of (1). Now for Equili-
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brium points  

( ), 0

1 0

0,

m

m

m

f y Q

q y yd
Q

q
y Q

d

µ

µ
µ

=

 
⇒ − − = 

 

∴ = =
−

 

( )

( )

( )

1 1

1 1

, 0

0

375
,

m

m m

m m

g y Q
yp Q q
y

p d q
y Q

qd d

α µ

α µ µ
µ µ

=

⇒ − − =

−
∴ = =

−

 

In this mathematical model, y being the tumor volume, cannot be zero (also, 
0y =  makes ( ),g y Q  undefined). So, the only biological meaningful equili-

brium point of the system is  

( ) ( )1 1375
, ,m m

m m

p d q
E y Q E

qd d
α µ µ

µ µ
 −

≡   − 
 

and for the choice of m dµ > , E is always positive. 
Now the Jacobian Matrix is defined as follows:  

2

1 1
2

1

375

m
m

m

qyq d
Q Q

J
p

y

µ
µ

α
µ

  
− −  

  =
 −

− 
  

 

at, E 

( )
( )

( )
( )

1 1
2

2

2
1 1

375
0

375

m

m

m
m

m

p d

q d
J

q d

p d

α µ

µ

µ
µ

α µ

 −
 
 

=  
− − − 

 

So, the trace and determinant of the Jacobian Matrix are  

( ) ( ) ( )0 for any choice of , 0,m m
m

dTr J Det J
d

µ µ
µ

= − < = >
−

 

for the choice of m dµ > , which concludes that E is locally asymptotically stable 
as long as m dµ > . 

Let us now define the characteristic equation of the Jacobian matrix  

( ) ( )2 0Tr J Det Jλ λ− + =  

2 0m
m

d
d

λ λµ
µ

⇒ + + =
−

 

2 4

2

m m
m

d
d

µ µ
µ

λ
− ± −

−
⇒ =  

3 2 4
2 2

m mm

m

d d
d

µ µµ
λ

µ

− −−
∴ = ±

−
 

The non-zero (see Table 1 for the value of mµ ) real part of the eigenvalues 
λ  shows that E is hyperbolic. So, the stability of E is robust i.e. for small per-
turbation on E, the stability may distort but does not change the phase portrait 
near the equilibrium qualitatively as shown in Figure 13. 
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Figure 13. Phase plane with solution trajectories 
of ovarian tumor growth model (1). 

 
Also, the discriminant of the characteristic equation is  

2 4
m

m

dD
d

µ
µ

= −
−

 

Being locally asymptotically stable, E will be a stable node if 0D >  and will 
be a stable spiral if 0D <  [27].  

6.2. Global Stability 

If equilibrium points are stable everywhere (beyond of the small neighborhood) 
then they will be globally stable. We can check the global stability of our model 
using Lyapunov stability. Finding a Lyapunov function for our model will be 
cumbersome due to the number of parameters and the non-linearity of the 
model. So, we will start with the usual Lyapunov function for a two dimensional 
system of ODE  

( ) ( )2 21,
2

V y Q y Q= +                     (4) 

then ( )
2

2 2 21 1375
, m

m m m
y q p QV y Q y y d Q qQ

Q y
µ α

µ µ µ= − − + − +     (5) 

( )
2

2 2 2 1 1375
, m

m m m

ba

y q p QV y Q y d Q y qQ
Q y
µ α

µ µ µ
   

⇒ = − + + + + +   
  




   (6) 

For global stability,  

( ), 0V y Q <  

0a b⇒ + <  

( ) ( )3 2 3
1 1375 0m m m my Q q Qd Q p y q y Qµ µ α µ µ⇒ − − + + − <  

which is vauge in terms of biological meaning. So, we want to adopt a different 
approach to cope with this situation. 

Clearly, a will always dominate over b i.e. a b>  which yields ( ), 0V y Q < . 
To verify our statement numerically, we calculate ( ),V y Q  for several (starting 
value, base value, ending value etc.) values of all parameters (using Table 1) and 
variables (y and Q). Every time, we get ( ), 0V y Q <  and by Lyapunov stability 
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theorem, E is globally asymptotically stable. 
We can also proceed with Poincaré-Bendixon theorem to verify that E is glo-

bally asymptotically stable. Using Equations (2) and (3), we get  

0mqf g d
y Q Q

µ∂ ∂
+ = − − <

∂ ∂
 

So, by Bendixon’s negative criterion, we can find a simply connected and po-
sitively invariant set containing no closed orbits. Note that, both y and Q will be 
bounded (for a quick guess see Figure 1) on that connected positively invariant 
set. 

Then by Poincaré-Bendixon theorem, every solution starting in that con-
nected, positively invariant set will approach to E. Hence E is globally asymptot-
ically stable. 

7. Conclusions 

Both PRCC and Scatter plot method techniques are very useful to identify the 
parameters that have significant impacts on a mathematical model. In our inves-
tigation, we used LHS to sample points for both these methods. Since both death 
rate, d and maximum growth rate, mµ  have significant effects on tumor vo-
lume, y, cell quota Q and maximum tumor size ymax, identifying them as the 
most sensitive parameters can help us to introduce new treatment strategies in 
this field. 

In this study, we observed and listed out the main findings:  
1) When there is no treatment therapy for maximum growth rate 1.58mµ =  

(see Table 1), then limiting the supply of nutrient affects the growth of cancer of 
cells, which results in higher death rate, d.  

2) On the other hand, when there is a no treatment therapy for death rate, 
0.28d =  (see Table 1), then reducing the maximum growth rate, mµ  will re-

duce the number of cancer cells.  
3) Controlling nutrient supply for cancer cells with some level of treatment 

can have remarkable effects on cancer treatment strategies.  
4) It is concluded about the treatment by referring Figure 11 that, if we can 

increase the death rate ( 0.95d > ) (by restricting nutrient supply or by using 
medicine) or control the maximum growth rate ( 0.85mµ < ) of tumor cells then 
the tumor volume will eventually get smaller and approach to zero (die out).  

5) Both mµ  and d controlled the stability of the model. Based on their rela-
tion ( m dµ > ), the system gets local asymptotic stability around the equilibrium 
point, see Figure 13.  

6) Finally, we identified that the equilibrium point of our system obtains glob-
al asymptotic stability. 
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