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Abstract

Given a simple connected graph G, we consider two iterated constructions
associated with G F*(G) and R*(G). In this paper, we completely obtain
the normalized Laplacian spectrum of F*(G) and R'(G), with k>2, re-

spectively. As applications, we derive the closed-formula of the multiplicative
degree-Kirchhoff index, the Kemeny’s constant, and the number of spanning

trees of F*(G), R'(G), riterative graph Frk (G), and r-iterative graph
Rf (G), where k22 and r>1. Our results extend those main results pro-

posed by Pan ef al. (2018), and we provide a method to characterize the nor-
malized Laplacian spectrum of iteratively constructed complex graphs.
Keywords

Normalized Laplacian, Multiplicative Degree-Kirchhoff Index, Kemeny’s
Constant, Spanning Tree

1. Introduction

Graph matrices, such as adjacency, incident, Laplacian and normalized Lapla-
cian matrices, can well describe the structure and complex dynamic informa-
tions of complex networks. The eigenvalues and eigenvectors of these matrices
represent some significant physical or chemical properties of networks. Recently,
the normalized Laplacian has been a research hotpot, due to the consistency of
eigenvalues in spectral geometry and random processes. Moreover, iteratively
constructed graphs are very common in complex networks. Therefore, how to
characterize the normalized Laplacian spectrum of such graphs is still a question

worthy of study.
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Let G=((G),E(G)) be asimple connected graph. V(G) and E(G) are
called the order and the size of G, respectively. The adjacency matrix of G, denoted
by A(G), is an nxn matrix with the (i, ;) -entry equals to 1 if vertices v,
and Vv, are adjacent (v, ~V;) and 0 otherwise. Let D(G) = diag(d,,d,, --d,)
be the diagonal matrix of vertex degrees, where dvi is the degree of v, e V(G)
for 1<i<n. The matrix L(G)=D(G)—A(G) is called the (combinational)
Laplacian matrix of G. Recent research on Laplace spectrum one can refer to [1]
[2].

In 2007, Chen and Zhang [3] introduced a new resistance distance-based pa-
rameter, named the multiplicative degree-Kirchhoff index, defined as
Kf(G)=2.d, d,r, - The multiplicative degree-Kirchhoff index is closely related
to the normalized Laplacian matrix £(G), which is defined as

1 1
L(G) = D(G) 2 L(G)D(G)* (If the degree of v, in graph Gis equal to 0, then

1
d,) 2 =0 [4].It’s easy to know that

1 ifi=j

L(G)=1- — ifi # jandv, ~v,. (1.1)
vi Vi
0, otherwise

Let S(G)={A4.4,,"--4,} be the spectrum of L(G) with 4 <A, <---<A4.
Let Py (4) be the multiplicity of eigenvalue 4, of L£(G).If G is a con-
nected graph, it is easy to conclude that 4, =0 and 4 >0 for 2<i<n, and
the explicit formula of multiplicative degree-Kirchhoff index of G can be written
by [3]

: 51

Kf (G)=2|E(G)|ZI (1.2)
i=2 7Y

Hunter (2014) [5] studied the Kemeny’s constant of G, which is denoted by

Ke(G) . The Kemmeny’s constant provides an interesting quantity for finite er-

godic Markov chains and can be given by
Kf'(G)=2| E(G)| Ke(G) (1.3)

In recent years, more and more researchers have been devoted to studying the
normalized Laplacian spectra. Relevant research results on normalized Laplacian
and multiplicative degree-Kirchhoff index one may refer to [6]-[11].

Now we consider two iterated constructions associated with G F* (G) append
k 3-cycles T' = ”111 ullzu;ufl (I=12,---,k ) parallel with each edge ¢ =u,V, of
G, and then adding in edges u,u, an v,u; , while R'(G) appends & 4-cycles
Qf :uilluf2 uf}uiu,]l (I=1,2,---,k ) parallel with each edge ¢ =u,V,, and then
adding in edges u,u; and v,u; . Two iterative graphs are shown in Figure 1.

Motivated by [7] [10], in this paper, we completely obtain the normalized
Laplacian spectrum of F*(G) and R*(G), respectively, where k>2. As ap-
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plications, we derive the closed-formula of the multiplicative degree-Kirchhoff
index, the Kemeny’s constant, and the number of spanning trees of F'(G),
R*(G), riterative graph F(G), and riterative graph RY(G), where k>2
and r2>1.

2. Main Results

In this section, we will give the main conclusions of this paper.

Theorem 2.1. Let G'be a simple connected graph with n vertices and m edges.
Then the normalized Laplacian eigenvalues of F' £ (G) (k>2) can be obtained
as following:

(i) If A isan eigenvalue of £(G) such that A#0,2, then 0,,0,,0, and
o, are the eigenvalues of L(F *(G)) with
pL(F"(G))(Gl) = pL(Fk(G))(O-Z) = pL(F"’(G))(G3) = pL(Fk(G))(O-4) = pg(c)(/l) , where
o,, 0,, o, and o, arerootsof

18(k + 1) —(72k +184 +54)0” + (94k + 541 + 46)c>
—(40k +46A1 +2kA+8)c +(3k +8)A =0.

8k +4k> +8k +13 +5 q 8k —~J4k> +8k +13 +5

(i) o, an are the eigen-
6(k+1) 6(k+1)

values of L(F*(G)) with multiplicity 1.

Tk +~13k* +8k +4 +10 Tk —\13k* + 8k +4 +10

(iii) and are the eigen-
6(k+1) 6(k+1)

values of L(F*(G)) with multiplicity 1 if Gis bipartite and 0 otherwise.

5+\/E
6

(iv) If G is non-bipartite, then L(F *(G)) has eigenvalues with
8

5-J13
6

4
multiplicity km—n, with multiplicity km—n and 3 with multip-

licity km—n+1.

5+«/§

(v) If Gis bipartite, then L(F"(G)) has eigenvalues with multiplicity

6

F*(B)

Figure 1. Graph F*(P) and R*(P).
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5-413
6

km—n+1, with multiplicity km—-n+1 and g with multiplicity

km—n+1.

Theorem 2.2. Let G'be a simple connected graph with n vertices and m edges.
Then the normalized Laplacian eigenvalues of R¥(G) (k=2) can be obtained
as following:

(i) If A is an eigenvalue of L(G) such that A+0,2, then 14, 1,, 1
and p, are the eigenvalues of L(R*(G)) with
P 6y () = Prirt oy (1) = Pk @y () = P 6y () = Pr (4) ,  where
H> > iy and g, areroots of

Ok + 1) — 36k + 92 +27) 1> +(45k + 274+ 21) 112
—(18k+21A+3)u+(k+3)A =0 '

9% + 33k +8k+8 +6 9% — 33k +8k +8 +6

(i) o, and are the ei-
6(k+1) 6(k+1)

genvalues of L(R*(G)) with multiplicity 1.

o 6k BN + 4k +3 49 6k —3N4K> + 4k +3+9 ,
(iii) and are the eigen-
6(k+1) 6(k+1)
values of L(R*(G)) with multiplicity 1 if G'is bipartite and 0 otherwise.

3+\/E
3

with mul-

(iv) If G is non-bipartite, then L(R“(G)) has eigenvalues

3- f

tiplicity km—n, ——— with multiplicity km—n and 1 with multiplicity
2km—n+1.

(v) If Gis bipartite, then L(R*(G)) has eigenvalues 3F

3- \/_

ity km—n+1, ——— with multiplicity km—n+1 and 1 with multiplicity

with multiplic-

2km-n+1.

3. Preliminaries

Before you begin to format your paper, first write and save the content as a sep-
arate text file. Let Gbe a connected graph with n vertices and m edges, the order
of FX(G) is n+3km and its size is (5k+1)m. Similarly, the order of RY(G)
is n+4km and itssizeis (6k+1)m . Let
0=4 <A, <<,
0=0,<0,<<0,,34m>
0= g4 <pty << phy g
be all the normalized Laplacian eigenvalues of G, F*(G) and R'(G), respec-
tively.
The incident matrix /(G) of Gisan nxm matrix (b;) with the (i, /) -entry
equals to 1 if the vertex v, and the edge e, areincident in Gand 0 otherwise,
The rank of incident matrix /(G) is written by r(/(G)). Then we have the
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following lemma.
Lemma 3.1. [12] Let G'be a simple connected graph with 7 vertices, then
n—1, if G is bipartite,
n otherwise.

r(1(G)) ={

E)

If Gis a connected oriented graph, the directed incident matrix of G, called
I (G),isan nxm matrix. The rank of the directed incident matrix Y(G) satis-
fies the following lemma.

Lemma 3.2. [13] Let G'be a simple connected graph with n vertices. Then

r(I(G)=n-1.

The following lemmas provide the calculation formula of the multiplicative
degree-Kirhhoff index, the Kemeny’s constant and the number of spanning trees
of graph G, based on the normalized Laplacian spectrum.

Lemma 3.3. [4] Let Gbe a graph with n vertices and m edges.
(i) Ll <A,£2 with A =2 ifand onlyif Gis bipartite.
n—
(ii) G'is bipartite if and only if the eigenvalues of L£(G) are symmetric with

respect to 1.
(iii) 141, 4 =2mz(G), where 7(G) isthe number of spanning trees

of G
Lemma 3.4. [3] If Gis a n-vertices graph of size m. Then
. |
Kf (G)= 2mzl_:27 .

Lemma 3.5. [14] Let G be a simple connected graph with n vertices and m

edges, then we have

Ke(G)=Y, (11 %), Kf"(G)=2mKe(G).

+
Lemma 3.6. Let G be an eigenvalue of L(F*(G)) such that o # é’ 5 —g/ﬁ '
Then
o[18(k + 1o —(72k +54)c> + (94k + 46)c — (40k +8)] (3.1)

180° — 5407 + (46 + 2k)o — (3k +8)

is an eigenvalue of L£(G) with the same multiplicity as that of o .

Proof. Let E(G)={e,e,,"--,e,} and V(F¥(G)) =V UF, where Vis a set of
common vertices of G and F*(G) (ie. V=V(G)NV(F"(G))), and Fis the
rest vertices of V(F*(G)). For each edge e, =uve E(G), k 3-cycles are added

between the vertices u, v. Denote these 3-cycles by T =ul.'1u.12uf3 ”111 . Let

Fl=tul oy ool b (j=1,2,31=1,2,+,k). We have

F=UUF

I=1 j=1

'

Denote the degree of vertex win F*(G) by d., then

w?
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(k+1)d , wel
d, = 3, weFUF, (3.2)
2, weF,

Let X=(x,X,,""",X,,3,) be an eigenvector with respect to the eigenvalue
o of L(F*(G)). According to the characteristic equation L(F*(G))x=0x,

we can obtain that

1
(-o)x, = z —X, (3.3)
Jdd,
for any vertex weV(F “(G)).
For any vertex u €V ,let N,(u) be the set of the neighbour of vertex u in-
herited from G. According to the construction of F *(G) from Gand (3.2) and

(3.3), we can get

x+z;x

1
Z ! TR
1 u? eFlI(u) d ] du g veNg (u) dud‘,
B (3.4)

i 1 1
= —_X, + —_—X.
;ug;w/z(ml)dﬂ % ve%(u>(k+l)1/dudv '

Similarly, for any ”111 eF,

M=

(I-o)x, =

~
Il

1 1 1
(I-0)x, =—F/—x, t——x, +—14,
Jd,dl Jd,dl Jd,d,,
Ml.] Ml.z Ml.] Ml.3 ui] (3.5)
_ X, + ! X, + ! X,
J6 3T Blk+nd,
Analogously, for the vertex ufz eF/,
1 1 1 1
(l1-o)x, = X, + X, =—=X, +—=x,. (3.6)
M,’z \/d'l d'l lll.ll \/d'l d'] u’g ‘\/g M’{l ‘\/g ull3
uil Miz uiz M‘.3
For the vertex u; which is adjacentto u; , u; eV (T') and ve N,(u),
1 1 1
(I-0)x, =—F/—x, +——x, t———=1,
“ \/d,d, \/d,d, “ ld.d
ul.l M’3 Mlz ul.3 lll.3 (3 . 7)
1 1 1

=—Xx, +—Xx, +——x,.
J6 e 37 Bk+d,

Combining (3.5)-(3.7), we can have

=0y —tpx, -2y 43729 |
67" \f3(k+1d, 6
[(l—a)z—l]x, = 3-20 xu+1_0x,.
67" \3(k+1)d, 6 U
Then
3(60° —120 +5) 33-20)
2(4-30)30> =50 +1)x, = x, + x, (3.8)
4 Jk+1d, S+,
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Similarly,

_ 2 _
2(4-30)(30° =50 +1)x 30-20) 60 12943

LT Brnd, T Plrnd,

According to (3.8), (3.9), we can get that

(3.9)

X| =X, = =X,,X =X, ="=X,.
M? u.z lt{c’ u? lt.z l({‘
1 1 il 3 3 3

4 5+13

for any o #—, .
R

Substituting (3.8) into (3.5) yields

2(1-0)(4-30)30° =50 +1)x,
2 - - 2 3.10
_ k(60® ~126 +5) o+ k(3-20)+2(4-30)(30> =50 +1) 5 1 .. (3.10)
(k+1) k+1 vehg \/d,d,

If k(3-20)+2(4-30)30" =56 +1)=0, then
2(k+1)(1-0)4-30)30” =50 +1) = k(60" 120 +5)]x, =0.

The eigenvector X can be completely decided by x,=(x,),. , when

4 5++/13
o*—,—— a
3 6

[2(k +1)(1-6)(4-30)(30° =50 +1) = k(66> 120+ 5)]x, %0
Let k(3-20)+2(4-30)(36° ~50+1)=0 and
[2(k +1)(1-6)(4-30)(30> =50 +1) = k(65" =120+ 5)]x, =0,

nd

then we have

_2(4—0')(30'2 -50+1) 80 —170 +8

. (3.11)
3-20 (B3-20)1-0)

k:

Then we have o(180° —176° +926-37)=0. Since k is a integer (k2>2),
combining with (3.11), it is easy to conclude that the above equation does not
hold. Thus,

k(3-20)+2(4-30)30" =50 +1) #0.

Then we can obtain that

- o[18(k +1)a” = (72k +54)c* + (94k + 46)c — (40k + 8)] .
1 180° — 5407 + (46 + 2k)o — (3k +8) ‘ (3.12)
= Z xv
veNg () A d,d,
+
for o# i, ERE .
3 6

o[18(k +1)o” — (72k + 54)c> + (94k + 46)c — (40k + 8)]
180° — 5467 + (46 + 2k)o — (3k +8)

So, is an eigenvalue

of £(G) and X, =(x, )., isone of the corresponding eigenvectors. Hence,
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2p (o).

= Frrt ey

O18(k +1)5° — (72K + 54)5° + (94k + 46)c — (40k +8)]
Pee 180" — 5407 + (46 + 2k)0 — (3k +8)

If

ol18(k +1)o” — (72k + 54)0” + (94k + 46)0 — (40k + 8)]
£6) 3 2 > Pt oy (O
180" —540° + (46 + 2k)o — (3k +8) (F(G)
then there exists an eigenvector X;) with respect to

o[18(k +1)0° — (72k +54)5” + (94k + 46)0 — (40k +8)]
180° — 5407 + (46 + 2k)o — (3k +8)

without a corresponding eigenvector in L(F H(G)). Combining the (3.5) and
(3.8), we can get

ol18(k +1)o’ —(72k + 54)c” + (94k + 46)c — (40k + 8)]
Pr) 3 > _ = pﬂ(Fk(G)) (o).
180° — 546" + (46 +2k)o — (3k +8)
This completes the proofs.
346

Lemma 3.7. Let 4 be an eigenvalue of L(R*(G)) such that J7EN 7
Then

3u[3(k + 1) — (12K +9) % + (15k + 7) e — (6k +1)]

5 > (3.13)
Ow =27u" +21u—(k+3)

is an eigenvalue of L£(G) with the same multiplicity as that of 4.

Proof. Let E(G)={e,e,,"--,e,} and V(R*(G))=OUR, where Ois a set of
all the vertices of inherited from G, and R is the rest vertices of V(R"(G)). For
each edge e, =uve E(G), k 4-cycles are added between the vertices u,v. De-

ror

note these 4-cycles by O/ =u; u; u; u; u; .

Then we let Rj = {ull :uév?"'yu,lﬂv} (] = 17253,471 = 1727'”,]{ ) Then we have
k 4
R=UUR,.
=1 j=1
The degree of vertex uin R'(G) is denoted by d,, then
(k+Dyd,, ue0
d = 3, ueR UR,. (3.14)
2, ueR,

Suppose X, = (X, X,," X, 4, )" is an eigenvector with respect to the eigen-
value ¢ of L(R'(G)).Based on the characteristic equation L(R"(G))x = ux,

we can obtain

(A=-wx, = z X (3.15)

1
for any vertex u € V(R*(G)).
For any vertex u€0,let N(u) be the set of the neighbour of vertex u in-
herited from G. According to the structural of R*(G) from G, (3.14) and
(3.15), we can get
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k 1 1
(1_/1):22 —X ; + z —X,
=1 u:l eRII du] du i veNg (u) dudv
! (3.16)
Sy L .y 1
= N N
=14 <] J3k+Dd, i vengw (kK+1)4d d,
Similarly, for any ”111 € R/, we have
1 1 1
(l_lu)xl = - - X, + - - X +—' - X,
A, Jdyd, 4,
i Ui Wy Uiy U (3 1 7)
_ X, + ! X, + ! X
J6 N6 \Blk+nd, "
Analogously, for the vertex u, € R, and u, e R!,
2 3
1 1 1 1
(I-p)x, =———=x, +——=x, =—=Xx, +—=X,, (3.18)
M’IZ \/dul d . M’{l \/d , d . 1.(;4 \/g uf] \/g 1.(1{4
i Y Uy Uy
1 1 1 1
(A—w)x, = X, + X, =—=X, +—=x, . (3.19)
N T AN TR R
i iy M
For the vertices u; € R, and ve N (u), it follows
1 1 1
(I-p)x, =—F=——x, +—= X, +——=1,
o \/d,d, g \/d,d, s ld, d
iy iy Uy Uy Uiy (3 . 20)

1 1 1
=—X, +—=X, +————1x,.
J6 i e Bk+nd, "

In view of the formulas (3.18)-(3.19), one can see that X, =X, with

i=1,2m; [=1,2,k. o
Combining (3.17)-(3.20), we can get
B> —6u+2) 1
(- )@’ —6u+x, = X, + x,, (3.21)
% 3(k+1)d, 3(k+1)d,
1 B> —6u+2)
(1-p)Gu’ —6u+x, = x, + X,. (3.22)
4 J3k+1d, Sk+1)d,
According to (3.21) and (3.22), we have
xu1=x2="':xk,x1 =X, ==X
i u U Uiy Uiy Uiy
3446
forany u#1, 3
Substituting (3.21) into (3.16), then we have
[(1- )’ Bu® —6u+D)x,
2 — 2 3.23
:k(3y 6y+2))C +k+3(1 W@ —6u+1) z 1 . (3.23)

3+ " 3(k+1) venow~Jd,d, "

If k+3(1-u)3u’ —6u+1)=0, then
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Bk+1)(1-p)* Bu’ —6u+1)—k(3u’ —6u+2)]x, =0. The eigenvector X can
3:46
= @

be completely decided by x, =(x,),.,, when u#1, nd

3(k+1)(1=pu) Gut —6p+1)—k(Bu* —61+2)#0.
Let k+3(1- )3’ —6u+1)=0 and
3(k+1)(1- ) Bu’ —6u+1)—k(3u* —6u+2) =0, which implies that
3u° —Tu+3
-1

k= =3(u-1)3u’ —6u+1). (3.24)

Then we have (9’ —364° +45u—17)=0. Since & is a integer (k>2),
combining (3.24), we can know that the above equation does not hold. Hence
k+3(1—,u)(3,u2 —6u+1)=0.

Then

3_ 2 _
{1_3y[3(k+1),u 3(12k+29),u +(15k+7)u (6k+l)]}XM: 5 1 .. (325)
O =27 +21u—(k+3) veNg () Jd,d,
346
for ,u;tl,T.

3u[3(k + 1)’ —(12k +9) p* + (15k + 7) pt — (6k +1)]

So, 3 2
Ow =27 +21u—(k+3)

is an eigenvalue of

L(G) and X, =(x, );eo is one of the corresponding eigenvectors. Hence,

3u[3(k + 1)’ —(12k +9) > + (15k + T) e — (6k +1)]
Pee 9% =271 + 21— (k +3)

2 Pt oy (B

If the inequality is strictly established, then there exists an eigenvector Xy0
3u[3(k + 1)’ —(12k +9) p* + (15k + 7) pt — (6k +1)]

with respect to 3 >
O =27 +21u—(k+3)

without a

corresponding eigenvector in L(R*(G)). Combining (3.5)-(3.8), it is easy to
know that

3u[3(k + 1) —(12k +9)p” + 15k + 7 — (6k +1)]
o 90 =271 + 21— (k +3)

= LRF(GY) (/u)
This completes the proofs.

4. Proofs of Theorems 2.1 and 2.2
4.1. Proof of Theorem 2.1

4 5+/13

Proof. (i)-(iii) Let o be an eigenvalue of L(F*(G)) with Gig, S

According to Lemma 3.6, one can see that

_ ol18(k + )0 —(72k + 54)0” +(94k +46)c — (40k +8)]

A
180° — 5407 + (46 + 2k)o — (3k +8)

(4.1)

is an eigenvalue of L£(G) with the same multiplicity as that of & . Then we

have
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18(k + )0 — (72k +182 +54)5° + (94k + 54 + 46)c>

(4.2)
—(40k + 462 + 2k A +8)c + (3k +8) A = 0.

Note that 4 =0 is an eigenvalue of £(G), then we substitute A=0 into

8k +\4k> +8k +13 +5

4
(4.2) yields o0 =0,— and . If G is bipartite, substitut-
3 6(k+1)

5413 Tk +13k> +8k+4 +10

ing A=2 into (42)yields o ==="=, 6(k+1)

Combining Lemma 3.3, this completes proofs of (i) to (iii).

(iv) Substituting o = S into (3.8) yields

(4.3)

1 1
ﬁxu = —ﬁxv.

Since the connected simple graph G'is non-bipartite, G contains an odd cycle,
written by C,. By (4.3), we have T« — (_1)‘V(C0>|x_” — Y Then we can
d

u u u

obtain x, =x, =0 for u~v.Itis clear that x, =0 for all u €V(G). Com-

bining (3.4)-(3.7), then we can get

X, =X, Vufl eFll,Vu,.l3 eF,

i Uy
o IB6

uiz 6 u'l 2 (4'4)
x, =0, YuelV
Z": 1

—X, = 0, VueV

=1l e J3k+Dd,

Let x, =x, =y, with i=1,2,---,m and [=1,2,---,k, then we have
u. u.
1 3

J78 -6
, =—— ;. Let
""2 6
Y= (s Vasr s VsV s Vo s Vo Vi
k 1
Note that Z — x, =0, Yuel .Let

p Z; J3k+1d,
W(G)=[1(G),1(G), --,1(G)],,,, » then we have

W(G)y = 0. (4.5)

nxkm

According to Lemma 3.1, one can see that »(W(G))=r(I(G))=n. System
(4.5) has exactly km—n+1 linearly independent solutions. It is easy to know

that p (u) =km—n . Similarly, substituting o= S+v13 into
ity g 6
5++13 4
(3.8), we can get pL(F,((G»( 5 )=km—n. Hence Pty (E) =km-n+1

by counting the number of the eigenvalues of F “(G).
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This completes the proofs of (iv).
4
(v) Substituting o = 3 into (3.8) yields that

X

X,
w N (4.6)
NN
Assume v - O _ . Combining with (3.6), we have
d, Jd,
6
x, =——(x, +x,). (4.7)
i 2 g Yy
In view of (3.5) and (4.7), then
X, +x, = £~t (4.8)

ui] ui} k + 1

According to (3.4),

L k+4
X, =———= 41 (4.9)
;L%%“é Blk+1)

Combining (4.8) and (4.9), then

YY Yk, =Y Y (o 4x )=t s (410)

wel 1=t ] e i U2l eeE(G) i wer AJ3(k+1) !
12 2(k+4
Combining (4.8) and (4.10), we have k,|——mt =~ ( ) mt . Since kis a

k+1 m
integer, it is easy to obtain that f=0. Therefore, x, =0 for all u €V . By

(3.5) to (3.7), one can see X, =-x, and x, =0. The eigenvector
i Uiy iy

4
X =(X,%, X, 30 )t associated with o = 5 can be completely determined by

the following equation system:

X, ==X, ‘v’uil1 € Fl’,Vué eF,
i ur3
x, =0, Vui[z €F,
i
x,=0, YuelV (4.11)

x, =0, VueV

S Bk +Dd,

Let x, =—x, =y with i=12,---,m and [=1,2,---,k.Suppose
i Uiy

yz(yll,J’;,a)’La,Y{ca)g,7)’,/;);{,,,

K
Note that Y ! x, =0, Yuel . Let

1= <R A [3(k+Dd, “a

W(G) = [Y(G)j(G), e j(G)]nka , then we have

W(G)y =0. (4.12)
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By Lemma 3.1, we know that F(W(G))ZF(Y(G))ZH—I, system (4.12) has

exactly km—n+1 linearly independent solutions. Thus

5-+13
aF,((G»(3) km—n+1. Suppose Pty p )=a and
pE(Fk(G»(S—h/_) b.In view of Lemma 3.3, we have
o(F*(G))
—n+ a b
T ] 368, | 3he8 Sk _(4)”” Y(5-\13) (54413
=t L= 98k +1) T | 3(k+1) 3(k+1) 3 6 6
2| E(FY(G))|
b-a
=3km—n+l—a.23km—3n+3_(3k+8)n—1 . 5+\/B T(G)
6

Since 7(F"(G)) and 7(G) are positive integers, it is obvious that a=b.

5-413. 5+J_

ﬁ(Fk(G»( 6 )—pE(F/:(G))(

Then we have p )=km—n+1 by counting

the number of the eigenvalues of F' “(G).
This completes the proofs of Theorem 2.1.

4.2. Proof of Theorem 2.2
3+4/6

Proof. (i)-(iii) Let 4 be an eigenvalue of L(R*(G)) with ,uil,_T. By

Lemma 3.7, we have

3ul3k + D) —(12k +9) g + 15k + )t — (6k +1)]

A= 3 2
048 — 27487 + 21— (k+3)

(4.13)

is an eigenvalue of L£(G) with the same multiplicity as that of £/ . Then we

have

9k + D' —(B6k+9A+27) 1 +(45k + 274+ 21 i
—(18k+21+3)u+(B+k)A=0.

(4.14)

Since 0 is an eigenvalue of £(G) with multiplicity 1, we substitute A4 =0

Ok +/3/3k> +8k +8 + 6

into (4.14) vyields =0,1 and . By Lemma 3.3,
(4.14) y u 6(k+1) y

A, =2 is an eigenvalue of L£(G) with multiplicity 1 if G is bipartite. Substi-

3+[ 6k+«/_\/4k2+4k+3+9

tuting A =2 into (4.14) yields u=

6(k+1)
This completes the proofs of (i)-(iii).
(iv) Substituting u = 3- into (3.21) yields that
Lxu =—Lx ) (4.15)
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Since the connected simple graph G'is non-bipartite, G contains an odd cycle,

LIt is

written as C,. In view of (4.15), we have il = (- Y

Ji T
easy to conclude that x, =x, =0 for ¥~V .Note that Gis connected, we have
x,=0 for all ueV(G). Combining with (3.16) to (3.20), we have

1
x,=x, =x, =x, and

k
u u u u Z Z xll/ =
i n i is =Ll erl AJ3(k+1)d, M

i

. t . .
Therefore, the eigenvector X =(X;,X,,***,X,,,;,) associated with u =

3-+/6

3
can be completely decided by the following equation system:
X, =X, =X, =X, VuéeRf,ufzeRé,uéeRé,ulieRj
i iy i iy
x =0, YueO (4.16)

k
——x, =0, YueO

Suppose x, =x, =x, =X =z, with i=12,--,m and [=1,2,---,k .
i i i3 iy

Let
1 | kok I
Z:(ZI’ZZ,--nzm Py Zl 722’-~-Z )km
k
Note that > > , =0, YueO.Let

=1l <] \/W
W(G)=[1(G),I1(G),-++,1(G)],..,, - Then we have

wW(G)z=0. (4.17)

By Lemma 3.1, we know that r(W(G))=r(I(G))=n. System (4.17) has

3-/6

aR,[(G))( ) =km—n . Simi-

+6 3446

into (3.21), we can get pE(Rk(G))( Y=km—-n.

nxkm

km—n linearly independent solutions. Thus p

larly, substitute u = 3

Hence p

RY(G).
This completes the proofs of (iv).
(v) Substituting x =1 into (3.20) yields that

LR G () =2km—n+1 by counting the number of the elgenvalues of

1 1
——X, =——X, (4.18)
NN
Suppose Lxu =va =¢.By (3.17) and (3.20), we have
VRN
2
X, +x, =—,|—-1. 4.19
ot k+1 *19)
In view of (3.18), we have that
X, +x, =0. (4.20)

11 14
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By (3.16), it is obvious that

4 [3
X, = ——d,t. 4.21
;u%{ u’{l k+1 ( )

According to (4.20) and (4.21), we know that

k k 3
22X = > (xx )= - /—dut. (4.22)
ue0 I=1 ul{l ekl 1 I=leeE(G) A W oo Vk+1
Combining (4.20) and (4.22), we have —2m /%t =0. Since kis a integer, it
+

is easy to know that /=0, thus, x, =0 for all u€Q. By (3.17) to (3.20), we
have X, ==X, and X, +x, =0 . The eigenvector X=(X,X,, ", X )

> ¥n+dkm
i iy i i3

associated with g =1 can be completely determined by the following equation

system
I 1o !
X, =X, Vu, €R,u;, €R,
il ig
! 1o I
X, ==X, Vuiz eRz,ui3 eR;
(7] 3
(4.23)
x, =0, YueO
k 1
> > ——x, =0, YueO
=1 crl A3k +1)d, i
1
Suppose x, =-x, =z, and x, =—x, =z, , with i=12,---,m and
u. u. u. u.
i i s A
[=1,2,---,k.Let
R B B 1 Kok _k ok ko_k oyt
2=(211,2105 2015 2005 > Zto Z> 5 2110 2125 2ot 200" s Znto Zod e (4:24)
Ls 1
Note that » > ———x, =0,forall u€O.Let
171, crl A3k +1)d, i
i

W(G)=[I(G),1(G),-+,1(G)],.,,, . Then we have

W(G)z =0.

In view of Lemma 3.1, we know that F(W(G)) = r(?(G)) =n—1, system (4.24)
has exactly 2km—n+1 linearly independent solutions. Thus

ﬂ):a and p ﬁ)

)=2km—n+1. Let pL(Rk(G»( 3 L(R/‘(G))( 3

Prri oy =b.

By Lemma 3.3, we have

(R (G))

wadv'nnl[ 3+k /1} 2k+6  6k+1 .lmnﬂ'(3_\/g]a{3+\/g]b
i=1 i i=2

9k +1) 7| 3k +1) 3(k+1) 3 3
2| E(R*(G))|

b—a
— 32km—2n+2—a . 22km—1 . (2k + 6) . (k + 3);1—2 (3 +3\/g] . T(G)
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Note that 7(R“(G)) and 7(G) are positive integers, we have a=b. There-

3-Vo 34V

E(Rk(G))( 3 )= pE(Rk(G))( 3 )=km—n+1 by counting the number

fore, p

of the eigenvalues of R*(G).
This completes the proofs of Theorem 2.2.

5. Application

5.1. The Normalized Laplacian, Multiplicative Degree-Kirchhoff
Index, Kemeny’s Constant and Spanning Trees of Fr" (G)

Note that Fy (G)=G, F(G)=F"(G), F'(G)=F'(F',(G)). Let &' and
¢* be the size and order of F'(G), respectively, where k>2 and r>1.

Then the following equations system can be obtained.
& =m,

Sy =1,
e =Gk+)et,, r21

k_

§r =6y +3kel,, r21

Thus, we can get the general formula of €f and ¢ f ,

& =(Sk+1ym, gf=n+wm. (5.1)
4 3 2
The toots of 18E+DT* —(12k+182+54)07 + Ok +542+46)0>

— (40K + 461 + 2k A +8)o + 3k +8)A =0
noted by %, (4), with i=1,2,3,4. Let Abe a multiset of real numbers, we have
h(H) = |J{m )}y (H) = {h (0}, b (H) = | {A ()},

xeH xeH xeH

h,(H) = {h, ()},

xeH

where h,h,,h,h, are defined as above. Then the following theorem directly
follows by Theorem 2.1 and the construction of F,k (G).
Theorem 5.1. Let Gbe a simple connected graph of order n and size m. Then

8k +~/4k> + 8k +13 +5 7ki\/13k2+8k+4+10}

>

thl. [S(F @G)\{0,2} U {0,

6(k+1) 6(k+1)
+ +
U 5_\/5’.”,5_\/3 U i,m,i , if r=1and G is bipartite
6 6 3 3
i km—n+1 km—n+1
SE@= 8k £4k> + 8k 11345
h| S(EF(G)\{0} {U10,—=
Un [ s @n o} { i }
+ +
U 5_\/5’...’5_\/3 U i’...’i y Otherwise
6 6 3 3
keb_y—cf 41 keb_i—ck 41
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Theorem 5.2. Let Gbe a simple connected graph of order n and size m. Then

(1)
k| 8GE+D ]
Kf (F(G)) = {—(3 i) } K1 (G)
| (5k+1)'[(12765k + 27269)(15k* + 43k +8)" ™' —26720(40k +8) ' —549(3k +8)""'] 2
11103k +8)""
_ OISk +1)'[(40k +8) —(k+8)']
74(3k +8)"
| (101k — 483)(Sk + 1) '[(40k +8)" — (3k +8)"] .
743k +8)" ’
(ii)
o [ 8Gk+D? ]
Ke(F; (G)) = {—(3 K18) } Ke(G)
| (12765k + 27269)(15k* + 43k +8)" ™' —26720(40k +8)" ™' — 549(3k +8)"™! .
222003k +8)""
_ OM(40k +8) —(3k +8)']  (101k —483)[(40k +8)" —(3k +8)']
148(3k +8)" 148(5k + 1)(3k +8)" '

(iii)

(,,_1),_”1{3;_M} 3m[(5k—3)(5k-+1) +15kr—5k+3]
-2

25k +3r=3nr

5k -7(G).

7(F!(G)) = (3k +8)
Proof. (i) According to Theorem 2.1 (i), one can see that the four roots of
18(k +1)c* —(72k + 184 +54)c” + (94k + 541 + 46)0”
—(40k +46A1+2kA+8)c+ 3k +8)A =0,
o,(4),0,(4),05(4),0,(4) , are the four corresponding -eigenvalues of
L(F*(G)), when A#0.

By Vieta theorem, we obtain the following equation:

denoted by

1 N 1 N 1 N 1 —2k+46+ 40k +8
o (%) o, (A) oyk) o (h) 3k+8 (Gk+8)%’
3k+8
o (ﬂi)GZ(ii)o-3(ﬂi)U4(/1i)=18(lc—+l) i (5.2)

Based on Theorem 2.1, Lemma 3.4, (5.1) and (5.2), we have
Kf*(F*(G))
st Z 2k+46+ 40k +8 +8k+5+§(km—n+l)+ 6 . 6 (e — 1)
3k+8  (3k+8)4 | Sk+1 4 5-J13 54413

i=2
2 n _
_16(5k+1)’m Zi+ 23k(Sk+1) . 6lk(Sk+D) - k(101k-483)

= 2 23k +8) 23k +8)
2 —_
_BGKAD e KGR ED) o OISk +D) K01 483)
3% +8 2 23k +8) 23k +8)

Based on the above equation and the construction of F,k (G) (k=z2,r=1),

we have
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8(5k +1) .
Y —————Kf " (F,(G)+

61k(Sk +1 k(101k — 483
GWOKAD v o AUOIZ38Y)
2(3k +8) 2(3k +8)

23k(5k+1) 8sk+1 | L,
Z{ } (&)
3k+8

23k(5k +1
—(2 ) (5f—1 )2

Kf'(F(G)) =

86k | .
{ 3k+8 }Kf @)+

i=0

_6lk(Sk+1) [ 85k +1)° r'l"'gk .
203k +8) S| 3k+38 ne

| k(101k - 483)2 8sk+12 |,
23k+8) | 3k+8

By simple calculation, the conclusion can be easily drawn.
(ii) In view of Lemma 3.5, Theorem 5.2 (i) and (5.1), we can obtain that

Ke(F*(G)) = ﬁKf*(F" )

1

23k(Sk+1) , 6lk(Sk+D)  k(10lk-483)

2
_ 1 8GKAD )+
2S5k +1ym| 3k+8 2 23k +8) 23k +8)
_BGKAD gy s B O, K(OIE—483)
3k +8 4 43k +8)  4(5k+1)(3k+8)

Based on the above equation and the construction of F,k (G) (k=z2,r=1),

we have
Ke(F!(G))
_SOEAD gy B oSk, k(101 —483)
3k +8 47 4Gk+8)  4(5k+1)(3k+8)
r —1 r=1-i
_ [8(5k+ 1)} Ke(@)+ 2 k2[8(5k+ 1)} y
3k+8 3k+8
=1 r—1-i
6l 2{8(5“1)} Oy k(101k — 483) Z[S(Sk“)}
4Bk +8) 5| 3k+8 A5k +1)(3k +8) 5| 3k +8

By simple calculation, the conclusion can be easily drawn.
(iii) According to Theorem 2.1, Lemma 3.2, and (5.1), one can see

7(F*(G))
& [ 3k+8 3" (543" (4" sk
H d H Al . J2 .
18k 4+ 1) 6 6 3 3(k+1)
- 2¢f
_ (3k + 8);171 . 23km73n+3 .H;’:I di ‘H:':z ﬂ’[

2m
— (3k +8)n71 . 23km73n+3 A T(G).

From the above equation and the construction of F,k (G) (k=22,r=1), we

have
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T(F(G) = Bk +8)7 - 2% (L (G))
_ (3k + S)Zf;(l)gik - 22;;6(3&{‘—3.;{‘ )+3r T(G)

+3r=3nr

25k -7(G)

(,,,l)r,m{ﬁ,-“’[“’”');‘1]} 3ml(Sk=3)(5k+1) +15kr=5k+3]
5 25k )

=3k +8)

This completes the proofs of Theorem 5.2.

5.2. The Normalized Laplacian, Multiplicative Degree-Kirchhoff
Index, Kemeny’s Constant and Spanning Trees of Rr" (G)

Note that R, (G)=G, R'(G)=RY(G), R'(G)=R'(R*,(G)). Let & and
¢ be the size and order of R*(G), respectively, where k>2 and r21. The
following equations can be obtained.

& =m,

S0 =n,

e =(6k+1)e,, r=1

§f =gy takel,, r21

It follows that

g = (6k+1ym, ¢ =n+wm. (53)
9k + D)t —(B36k+9A+27) 1> +(45k + 274+ 21)1”
—(18k+21+3)u+B+k)A =0

denoted by f,(1), f,(4), /;(4) and f,(4), respectively. For a multiset /A of for

real numbers, we may define four new multiset:

SH) = U A LE) = U (L)

The four roots of are

fHHE) = {A@L LE) = {0},

Similarly, the following results on the spectrum of R'(G) (k>2,r>1) fol-
lows immediately by Theorem 2.2 and the construction of R'(G) from G.
Theorem 5.3. Let Gbe a simple connected graph of order n and size m. Then

Of,-[S(Rk(G))\{O,Z}JU{0’9/‘J—’\/§M+6,6ki\/§\/M+9}
=l 6(k +1) 6(k + 1)

+ +
U{l,-.-,l}U 3—3\/6,...’3—3\/8 , if ¥=1and G is bipartite

2km—n+1

km—n+1

S(RI(G) =1, Ok +~/3\3k> +8k +8 +6
N e

i=1

> >

3

kef_1—p_y+1

+ +
U{ 1,---,1 }U 3_\/6,--- 36 otherwise
— 3

2kef_y—chi+1
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Theorem 5.4. Let Gbe a simple connected graph of order n and size m. Then

@)
ke | 36k
Kf (R (G)) = {—( k13) } K7 (G)
(6k+1)[1944(18k +3)"" +28(k +3)" —(1972+816k)(6k + 1) (k +3)"'] ?
510k +3)"
140k + 1) [(A8k+3) —(k+3)]
17(k +3)
L 26k + 1) 15k = 74)[(18k +3)" — (k +3)"] "
17(k +3)" ’
(ii)
foen | 36k 1]
Ke(R, (G)) = {—( K3) } Ke(G)
_972(18k +3)"! +14(k +3)"" — (986 +408k)(6k + 1) (k+3)"" "
51(k+3)""
_TMA8k+3) —(k+3)']  (15k =748k +3)" —(k+3)']
17(k +3)" 17(6k +1)(k +3)" ’
(iii)
7(RY(G))
(n=tyr—m] SRr= (64D +1 s P23 GR-2)(6k 1) +2]  m(6k+1)" 1]
= (k+3) S } o 154 2 3 7(0).

Proof. (i) By Theorem 2.2, the four corresponding eigenvalues
1 (A5 1y (A)s 15 (A), 14 (4) Of L(R*(G)) are roots of
9k + D' —(36k +9A+27) 0’ +(45k + 274+ 21)°
—(18k+21+3)u+(3+k)A=0

Thus 24 (4), 1, (4), 1,(A), 11, (4;) satisty the following equation:

1 1 1 1 21 18k +3
+ + + = + ,
(4 m(A)  m(A)  w(A) k+3 (k+3)4

k+3

9k+1) " G4

1 () g () s (A 1 (A;) =

In view of Theorem 2.2, Lemma 3.3, (5.3) and (5.4), one can see

Kf* (RN (G))

o[ 21 18k+3 | 9k+6 3 3
=2¢! + + +Qkm—-n+1)+| ———=+—r |(km—
1{;{1”3 (k+3)/1,} okl ¢ nth) [3—% 3+\/Ej( n)}

2 n _
_ 6(6k +1) mZL+16k(6k+1)m2 _ 14k(6k +1) - 2k(15k 74)m
k+3 54 k+3 k+3

2 p—
:3(6k+1) Kf*(G)+16k(6k+l)m2 _14k(6k+1) mn+2k(15k 74) .
k+3 k+3 k+3

Based on the above equation and the construction of RY(G) (k=2,r>1),
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we have

3(6k + 1)

Kf"(RH(G) = =————Kf (R, (G)) +16k(6k +1)(¢),)’

~ 14k(6k D i 2K(5k=T4) 4

k+3 P! k+3 !
_{ 3 }Kf(G)+16k(6k+1)§{ 3 } G

14k(6k+1) [ 3(6k +1)° ”Hgk .
k+3 = k+3 ne

| 2k(15k =74 &1 3(6k + 17 o
k+3 pary k+3

By simple calculation, the conclusion can be easily drawn.
(ii) In view of Lemma 3.5, Theorem 5.4 (i) and (5.4), we obtain that

Ke(R' (G»:Z%Kf*(RWG))

&

2 —
_ 1 3(6k+1) Kf*(G)+16k(6k+l)m2—14k(6k+1)mn+2k(15k 74)m
26k +D)m| k+3 k+3 k+3
:3(6k+1)Ke(G)+8km— Tk 0t k(15k —74) .
k+3 k+3  (6k+1)(k+3)

Based on the above equation and the construction of RF (G) (k=2,r=1)
that

Ke(R!(G))
_ 36K+ oy gt — 1Ky KASE=T4)
k+3 k+3  (6k+1)(k+3)
_[3(6k+1)} [3(6k+1)] . ’g
k+3 k+3 !
Tk ”[3(6k+1)]_]_i o _Kk(5k=74) r1[3(6k+1)]
k+35| k+3 Gk D)k+3)SL k+3 ]

Ke(G) + SkZ

i=0

By simple calculation, the conclusion can be easily drawn.
(iii) According to Theorem 2.2, Lemma 3.2, (5.3) and (5.4), we can obtain

7(F*(G))
km—n km—n
H H k+3 3—\/6 . 3‘|‘\/g .1km—n+1. 6k +1
i=1 i i=2 9(k+1) 3 3 3(k+1)
2¢f
— (k +3)n_l Ll 'H:lzl di 'H:;zﬁi

2m
— (k+3)nfl .22km .3km7n+l T(G)

Based on the above equation and the construction of R* (G) (k=2,r=1),

we have
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(R} (G))
— (k + 3)9’571-1 . 23/(6‘54 . 3k€f71-§54+1 . T(R,k,l (G))
=(k + 3)2;;ol§ik‘f _221«21.’:’&(5,-’“) .3254;6(7‘5;( —shy+r -7(G)

m{12kr=3r+(3k-2)(6k+1)" +2]  m[(6k+1) 1]
9% nr)+

ik 2 (G

6kr—(6k+1)" +1
Okr=(bk+1) +1 (r—nr)

(nfl)rfm{
= (k+3)

This completes the proofs of Theorem 5.4.
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