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Abstract 

Given a simple connected graph G, we consider two iterated constructions 
associated with G: ( )kF G  and ( )kR G . In this paper, we completely obtain 

the normalized Laplacian spectrum of ( )kF G  and ( )kR G , with 2k ≥ , re-
spectively. As applications, we derive the closed-formula of the multiplicative 
degree-Kirchhoff index, the Kemeny’s constant, and the number of spanning 

trees of ( )kF G , ( )kR G , r-iterative graph ( )k
rF G , and r-iterative graph 

( )k
rR G , where 2k ≥  and 1r ≥ . Our results extend those main results pro-

posed by Pan et al. (2018), and we provide a method to characterize the nor-
malized Laplacian spectrum of iteratively constructed complex graphs. 
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1. Introduction 

Graph matrices, such as adjacency, incident, Laplacian and normalized Lapla-
cian matrices, can well describe the structure and complex dynamic informa-
tions of complex networks. The eigenvalues and eigenvectors of these matrices 
represent some significant physical or chemical properties of networks. Recently, 
the normalized Laplacian has been a research hotpot, due to the consistency of 
eigenvalues in spectral geometry and random processes. Moreover, iteratively 
constructed graphs are very common in complex networks. Therefore, how to 
characterize the normalized Laplacian spectrum of such graphs is still a question 
worthy of study. 
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Let ( ( ), ( ))G V G E G=  be a simple connected graph. ( )V G  and ( )E G  are 
called the order and the size of G, respectively. The adjacency matrix of G, denoted 
by ( )A G , is an n n×  matrix with the ( , )i j -entry equals to 1 if vertices iv  
and jv  are adjacent ( i jv v ) and 0 otherwise. Let 1 2( ) ( , , )nD G diag d d d=   
be the diagonal matrix of vertex degrees, where 

ivd  is the degree of ( )iv V G∈  
for 1 i n≤ ≤ . The matrix ( ) ( ) ( )L G D G A G= −  is called the (combinational) 
Laplacian matrix of G. Recent research on Laplace spectrum one can refer to [1] 
[2]. 

In 2007, Chen and Zhang [3] introduced a new resistance distance-based pa-
rameter, named the multiplicative degree-Kirchhoff index, defined as  

( )
i jv v ij

i j
Kf G d d r

<

= ∑ . The multiplicative degree-Kirchhoff index is closely related 
to the normalized Laplacian matrix ( )G , which is defined as  

1 1
2 2( ) ( ) ( ) ( )G D G L G D G

−
=  (If the degree of iv  in graph G is equal to 0, then 

1
2( ) 0

ivd
−

=  [4]. It’s easy to know that 

1, if
1( ) , if and .

0, otherwise
i j

i j
v v

i j

G i j v v
d d

 =


= − ≠




              (1.1) 

Let 1 2( ) { , , }nS G λ λ λ=   be the spectrum of ( )G  with 1 2 nλ λ λ≤ ≤ ≤ . 
Let ( ) ( )G ip λ  be the multiplicity of eigenvalue iλ  of ( )G . If G is a con-
nected graph, it is easy to conclude that 1 0λ =  and 0iλ >  for 2 i n≤ ≤ , and 
the explicit formula of multiplicative degree-Kirchhoff index of G can be written 
by [3] 

*

2

1( ) 2 | ( ) |
n

i i

Kf G E G
λ=

= ∑                    (1.2) 

Hunter (2014) [5] studied the Kemeny’s constant of G, which is denoted by 
( )Ke G . The Kemmeny’s constant provides an interesting quantity for finite er-

godic Markov chains and can be given by 

* ( ) 2 | ( ) | ( )Kf G E G Ke G=                   (1.3) 

In recent years, more and more researchers have been devoted to studying the 
normalized Laplacian spectra. Relevant research results on normalized Laplacian 
and multiplicative degree-Kirchhoff index one may refer to [6]-[11]. 

Now we consider two iterated constructions associated with G: ( )kF G  append 
k 3-cycles 

1 2 3 1

l l l l l
i i i i iT u u u u=  ( 1,2, ,l k=  ) parallel with each edge 

i ii e ee u v=  of 
G, and then adding in edges 

1i

l
e iu u  an 

4i

l
e iv u , while ( )kR G  appends k 4-cycles 

1 2 3 4 1

l l l l l l
i i i i i iQ u u u u u=  ( 1,2, ,l k=  ) parallel with each edge 

i ii e ee u v= , and then 
adding in edges 

1i

l
e iu u  and 

4i

l
e iv u . Two iterative graphs are shown in Figure 1. 

Motivated by [7] [10], in this paper, we completely obtain the normalized 
Laplacian spectrum of ( )kF G  and ( )kR G , respectively, where 2k ≥ . As ap-
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plications, we derive the closed-formula of the multiplicative degree-Kirchhoff 
index, the Kemeny’s constant, and the number of spanning trees of ( )kF G , 

( )kR G , r-iterative graph ( )k
rF G , and r-iterative graph ( )k

rR G , where 2k ≥  
and 1r ≥ . 

2. Main Results 

In this section, we will give the main conclusions of this paper. 
Theorem 2.1. Let G be a simple connected graph with n vertices and m edges. 

Then the normalized Laplacian eigenvalues of ( )kF G  ( 2k ≥ ) can be obtained 
as following: 

(i) If λ  is an eigenvalue of ( )G  such that 0,2λ ≠ , then 1 2 3, ,σ σ σ  and 

4σ  are the eigenvalues of ( ( ))kF G  with  

1 2 3 4 ( )( ( )) ( ( )) ( ( )) ( ( ))
( ) ( ) ( ) ( ) ( )k k k k GF G F G F G F G

p p p p pσ σ σ σ λ= = = =    
, where 

1σ , 2σ , 3σ  and 4σ  are roots of 
4 3 218( 1) (72 18 54) (94 54 46)

(40 46 2 8) (3 8) 0.
k k k

k k k
σ λ σ λ σ

λ λ σ λ
+ − + + + + +

− + + + + + =  

(ii) 0, 
28 4 8 13 5

6( 1)
k k k

k
+ + + +

+
 and 

28 4 8 13 5
6( 1)

k k k
k

− + + +
+

 are the eigen-

values of ( ( ))kF G  with multiplicity 1. 

(iii) 
27 13 8 4 10

6( 1)
k k k

k
+ + + +

+
 and 

27 13 8 4 10
6( 1)

k k k
k

− + + +
+

 are the eigen-

values of ( ( ))kF G  with multiplicity 1 if G is bipartite and 0 otherwise. 

(iv) If G is non-bipartite, then ( ( ))kF G  has eigenvalues 5 13
6

+  with 

multiplicity km n− , 5 13
6

−  with multiplicity km n−  and 
4
3

 with multip-

licity 1km n− + . 

(v) If G is bipartite, then ( ( ))kF G  has eigenvalues 5 13
6

+  with multiplicity  

 

 
Figure 1. Graph 3( )kF P  and 3( )kR P . 
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1km n− + , 5 13
6

−  with multiplicity 1km n− +  and 4
3

 with multiplicity 

1km n− + . 
Theorem 2.2. Let G be a simple connected graph with n vertices and m edges. 

Then the normalized Laplacian eigenvalues of ( )kR G  ( 2k ≥ ) can be obtained 
as following: 

(i) If λ  is an eigenvalue of ( )G  such that 0,2λ ≠ , then 1µ , 2µ , 3µ  
and 4µ  are the eigenvalues of ( ( ))kR G  with  

1 2 3 4 ( )( ( )) ( ( )) ( ( )) ( ( ))
( ) ( ) ( ) ( ) ( )k k k k GR G R G R G R G

p p p p pµ µ µ µ λ= = = =    
, where 

1µ , 2µ , 3µ  and 4µ  are roots of 
4 3 29( 1) (36 9 27) (45 27 21)

(18 21 3) ( 3) 0
k k k

k k
µ λ µ λ µ

λ µ λ
+ − + + + + +

− + + + + =
. 

(ii) 0, 
29 3 3 8 8 6

6( 1)
k k k

k
+ + + +

+
 and 

29 3 3 8 8 6
6( 1)

k k k
k

− + + +
+

 are the ei-

genvalues of ( ( ))kR G  with multiplicity 1. 

(iii) 
26 3 4 4 3 9

6( 1)
k k k

k
+ + + +

+
 and 

26 3 4 4 3 9
6( 1)

k k k
k

− + + +
+

 are the eigen-

values of ( ( ))kR G  with multiplicity 1 if G is bipartite and 0 otherwise. 

(iv) If G is non-bipartite, then ( ( ))kR G  has eigenvalues 3 6
3
+  with mul-

tiplicity km n− , 3 6
3
−  with multiplicity km n−  and 1 with multiplicity 

2 1km n− + . 

(v) If G is bipartite, then ( ( ))kR G  has eigenvalues 3 6
3
+  with multiplic-

ity 1km n− + , 3 6
3
−  with multiplicity 1km n− +  and 1 with multiplicity 

2 1km n− + . 

3. Preliminaries 

Before you begin to format your paper, first write and save the content as a sep-
arate text file. Let G be a connected graph with n vertices and m edges, the order 
of ( )kF G  is 3n km+  and its size is (5 1)k m+ . Similarly, the order of ( )kR G  
is 4n km+  and its size is (6 1)k m+ . Let 

1 2

1 2 3

1 2 4

0 ,
0 ,
0 .

n

n km

n km

λ λ λ
σ σ σ
µ µ µ

+

+

= < ≤ ≤

= < ≤ ≤

= < ≤ ≤





  
be all the normalized Laplacian eigenvalues of G, ( )kF G  and ( )kR G , respec-
tively. 

The incident matrix ( )I G  of G is an n m×  matrix ( )ijb  with the ( , )i j -entry 
equals to 1 if the vertex iv  and the edge je  are incident in G and 0 otherwise, 
The rank of incident matrix ( )I G  is written by ( ( ))r I G . Then we have the 
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following lemma. 
Lemma 3.1. [12] Let G be a simple connected graph with n vertices, then 

1, if is bipartite,
( ( ))

, otherwise.
n G

r I G
n
−

= 
  

If G is a connected oriented graph, the directed incident matrix of G, called 
( )I G


, is an n m×  matrix. The rank of the directed incident matrix ( )I G


 satis-
fies the following lemma. 

Lemma 3.2. [13] Let G be a simple connected graph with n vertices. Then 

( ( )) 1.r I G n= −


 

The following lemmas provide the calculation formula of the multiplicative 
degree-Kirhhoff index, the Kemeny’s constant and the number of spanning trees 
of graph G, based on the normalized Laplacian spectrum. 

Lemma 3.3. [4] Let G be a graph with n vertices and m edges. 

(i) 2
1 n

n
n

λ≤ ≤
−

 with 2nλ =  if and only if G is bipartite. 

(ii) G is bipartite if and only if the eigenvalues of ( )G  are symmetric with 
respect to 1. 

(iii) 
1 2 2 ( )n n

i ki kd m Gλ τ
= =

=∏ ∏ , where ( )Gτ  is the number of spanning trees 
of G. 

Lemma 3.4. [3] If G is a n-vertices graph of size m. Then 

*
2

1( ) 2 n
i

i

Kf G m
λ=

= ∑ . 

Lemma 3.5. [14] Let G be a simple connected graph with n vertices and m 
edges, then we have 

*
2( ) (1 / ), ( ) 2 ( ).iiKe G Kf G mKe Gλ

=
= =∑  

Lemma 3.6. Let σ  be an eigenvalue of ( ( ))kF G  such that 4 5 13,
3 6

σ ±
≠ . 

Then 

3 2

3 2

[18( 1) (72 54) (94 46) (40 8)]
18 54 (46 2 ) (3 8)

k k k k
k k

σ σ σ σ
σ σ σ

+ − + + + − +
− + + − +

       (3.1) 

is an eigenvalue of ( )G  with the same multiplicity as that of σ . 
Proof. Let 1 2( ) { , , , }mE G e e e=   and ( ( ))kV F G V F=  , where V is a set of 

common vertices of G and ( )kF G  (i.e. ( ) ( ( ))kV V G V F G=  ), and F is the 
rest vertices of ( ( ))kV F G . For each edge ( )ie uv E G= ∈ , k 3-cycles are added 
between the vertices u, v. Denote these 3-cycles by 

1 2 3 1

l l l l l
i i i i iT u u u u= . Let 

1 2{ , , , }
j j j

l l l l
j mF u u u= 

 ( 1,2,3; 1,2, ,j l k= =  ). We have 
3

1 1

k
l
j

l j
F F

= =

=


 

Denote the degree of vertex w in ( )kF G  by '
wd , then 
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'
1 3

2

( 1) ,
3,
2,

w

w

k d w V
d w F F

w F

+ ∈
= ∈
 ∈


                 (3.2) 

Let 1 2 3( , , , )t
n kmx x x += x  be an eigenvector with respect to the eigenvalue 

σ  of ( ( ))kF G . According to the characteristic equation ( ( ))kF G σ= x x , 
we can obtain that 

' '

1(1 ) w v
v w v w

x x
d d

σ− = ∑


                    (3.3) 

for any vertex ( ( ))kw V F G∈ . 
For any vertex u V∈ , let ( )GN u  be the set of the neighbour of vertex u in-

herited from G. According to the construction of ( )kF G  from G and (3.2) and 
(3.3), we can get 

1
11

1

1
11

' ' ' '1 ( )( )

1 ( )( )

1 1(1 )

1 1 .
3( 1) ( 1)

l
il l Gli

i

l
il l Gi

k

u vu
l v N uu F u u u vu

k

vu
l v N uu F u u u v

x x x
d d d d

x x
k d k d d

σ
= ∈∈

= ∈∈

− = +

= +
+ +

∑ ∑ ∑

∑ ∑ ∑
     (3.4) 

Similarly, for any 
1 1
l l
iu F∈ , 

1 2 3

1 2 1 3 1

1 3

' ' ' ' ' '

1 1 1(1 )

1 1 1 .
36 3( 1)

l l l
i i i

l l l l l
i i i i i

l l
i i

uu u u
uu u u u u

uu u
u

x x x x
d d d d d d

x x x
k d

σ− = + +

= + +
+

        (3.5) 

Analogously, for the vertex 
2 2
l l
iu F∈ , 

2 1 3 1 3

1 2 2 3

' ' ' '

1 1 1 1(1 ) = .
6 6

l l l l l
i i i i i

l l l l
i i i i

u u u u u

u u u u

x x x x x
d d d d

σ− = + +       (3.6) 

For the vertex 
3

l
iu  which is adjacent to 

1

l
iu , 

3
( )l l

i iu V T∈  and ( )Gv N u∈ , 

3 1 2

1 3 2 3 3

2 3

' ' ' ' ' '

1 1 1(1 ) +

1 1 1 .
36 3( 1)

l l l
i i i

l l l l l
i i i i i

l l
i i

vu u u
vu u u u u

vu u
v

x x x x
d d d d d d

x x x
k d

σ− = +

= + +
+

        (3.7) 

Combining (3.5)-(3.7), we can have 

1 3

2 1 1 3 2[(1 ) ] ,
6 63( 1)

l l
i i

uu u
u

x x x
k d
σ σσ − −

− − = +
+  

3 1

2 1 3 2 1[(1 ) ] .
6 63( 1)

l l
i i

uu u
u

x x x
k d

σ σσ − −
− − = +

+  
Then 

1

2
2 3(6 12 5) 3(3 2 )2(4 3 )(3 5 1) ,

3( 1) 3( 1)
l
i

u vu
u v

x x x
k d k d

σ σ σσ σ σ − + −
− − + = +

+ +
   (3.8) 
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Similarly, 

3

2
2 3(3 2 ) 3(6 12 5)2(4 3 )(3 5 1) .

3( 1) 3( 1)
l
i

u vu
u v

x x x
k d k d

σ σ σσ σ σ − − +
− − + = +

+ +
   (3.9) 

According to (3.8), (3.9), we can get that 

1 2 1 2
1 1 1 3 3 3

, .k k
i i i i i iu u u u u u

x x x x x x= = = = = = 

 

for any 4 5 13,
3 6

σ ±
≠ . 

Substituting (3.8) into (3.5) yields 
2

2 2

( )

2(1 )(4 3 )(3 5 1)

(6 12 5) (3 2 ) 2(4 3 )(3 5 1) 1 .
( 1) 1 G

u

u v
v N u u v

x

k kx x
k k d d

σ σ σ σ

σ σ σ σ σ σ
∈

− − − +

− + − + − − +
= +

+ + ∑
 (3.10) 

If 2(3 2 ) 2(4 3 )(3 5 1) 0k σ σ σ σ− + − − + = , then 
2 2[2( 1)(1 )(4 3 )(3 5 1) (6 12 5)] 0uk k xσ σ σ σ σ σ+ − − − + − − + = . 

The eigenvector x  can be completely decided by 0 ( )t
u u Vx ∈=x , when 

4 5 13,
3 6

σ ±
≠  and 

2 2[2( 1)(1 )(4 3 )(3 5 1) (6 12 5)] 0uk k xσ σ σ σ σ σ+ − − − + − − + ≠ . 

Let 2(3 2 ) 2(4 3 )(3 5 1) 0k σ σ σ σ− + − − + =  and 
2 2[2( 1)(1 )(4 3 )(3 5 1) (6 12 5)] 0uk k xσ σ σ σ σ σ+ − − − + − − + = , 

then we have 
2 22(4 )(3 5 1) 8 17 8 .

3 2 (3 2 )(1 )
k σ σ σ σ σ

σ σ σ
− − + − +

= − = −
− − −

         (3.11) 

Then we have 3 2(18 17 92 37) 0σ σ σ σ− + − = . Since k is a integer ( 2k ≥ ), 
combining with (3.11), it is easy to conclude that the above equation does not 
hold. Thus, 

2(3 2 ) 2(4 3 )(3 5 1) 0.k σ σ σ σ− + − − + ≠  

Then we can obtain that 
3 2

3 2

( )

[18( 1) (72 54) (94 46) (40 8)]1
18 54 (46 2 ) (3 8)

1

G

u

v
v N u u v

k k k k x
k k

x
d d

σ σ σ σ
σ σ σ

∈

 + − + + + − +
− 

− + + − + 

= ∑
   (3.12) 

for 4 5 13,
3 6

σ ±
≠ . 

So, 
3 2

3 2

[18( 1) (72 54) (94 46) (40 8)]
18 54 (46 2 ) (3 8)

k k k k
k k

σ σ σ σ
σ σ σ

+ − + + + − +
− + + − +

 is an eigenvalue 

of ( )G  and 0 ( )t
u u Vx ∈=x  is one of the corresponding eigenvectors. Hence, 
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3 2

( ) 3 2 ( ( ))

[18( 1) (72 54) (94 46) (40 8)] ( ).
18 54 (46 2 ) (3 8) kG F G

k k k kp p
k k

σ σ σ σ σ
σ σ σ

 + − + + + − +
≥ − + + − + 

 

 
If 

3 2

( ) 3 2 ( ( ))

[18( 1) (72 54) (94 46) (40 8)] ( ),
18 54 (46 2 ) (3 8) kG F G

k k k kp p
k k

σ σ σ σ σ
σ σ σ

 + − + + + − +
> − + + − + 

 

 
then there exists an eigenvector '

0x  with respect to 
3 2

3 2
[18( 1) (72 54) (94 46) (40 8)]

18 54 (46 2 ) (3 8)
k k k k

k k
σ σ σ σ

σ σ σ
+ − + + + − +

− + + − +  
without a corresponding eigenvector in ( ( ))kF G . Combining the (3.5) and 
(3.8), we can get 

3 2

( ) 3 2 ( ( ))

[18( 1) (72 54) (94 46) (40 8)] ( ).
18 54 (46 2 ) (3 8) kG F G

k k k kp p
k k

σ σ σ σ σ
σ σ σ

 + − + + + − +
= − + + − + 

 

 
This completes the proofs. 

Lemma 3.7. Let µ  be an eigenvalue of ( ( ))kR G  such that 3 61,
3

µ ±
≠ . 

Then 
3 2

3 2

3 [3( 1) (12 9) (15 7) (6 1)]
9 27 21 ( 3)

k k k k
k

µ µ µ µ
µ µ µ

+ − + + + − +
− + − +

        (3.13) 

is an eigenvalue of ( )G  with the same multiplicity as that of µ . 
Proof. Let 1 2( ) { , , , }mE G e e e=   and ( ( ))kV R G O R=  , where O is a set of 

all the vertices of inherited from G, and R is the rest vertices of ( ( ))kV R G . For 
each edge ( )ie uv E G= ∈ , k 4-cycles are added between the vertices ,u v . De-
note these 4-cycles by 

1 2 3 4 1

l l l l l l
i i i i i iQ u u u u u= . 

Then we let 1 2{ , , , }
j j j

l l l l
j mR u u u= 

 ( 1,2,3,4; 1,2, ,j l k= =  ). Then we have 
4

1 1
.

k
l
j

l j
R R

= =

=


 
The degree of vertex u in ( )kR G  is denoted by '

ud , then 

'
1 4

2

( 1) ,
3, .
2,

u

u

k d u O
d u R R

u R

+ ∈
= ∈
 ∈


                (3.14) 

Suppose 0 1 2 4( , , , )t
n mx x x += x  is an eigenvector with respect to the eigen-

value µ  of ( ( ))kR G . Based on the characteristic equation ( ( ))kR G µ=x x , 
we can obtain 

' '

1(1 ) u v
v u v u

x x
d d

µ− = ∑


                   (3.15) 

for any vertex ( ( ))ku V R G∈ . 
For any vertex u O∈ , let ( )GN u  be the set of the neighbour of vertex u in-

herited from G. According to the structural of ( )kR G  from G, (3.14) and 
(3.15), we can get 
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1
11

1

1
11

' ' ' '1 ( )

1 ( )

1 1(1 )

1 1 .
3( 1) ( 1)

l
il l Gli

i

l
il l Gi

k

vu
l v N uu R u u vu

k

vu
l v N uu R u u v

x x
d d d d

x x
k d k d d

µ
= ∈∈

= ∈∈

− = +

= +
+ +

∑ ∑ ∑

∑ ∑ ∑
         (3.16) 

Similarly, for any 
1 1
l l
iu R∈ , we have 

1 2 3

1 2 1 3 1

1 3

' ' ' ' ' '

1 1 1(1 )

1 1 1 .
6 6 3( 1)

l l l
i i i

l l l l l
i i i i i

l l
i i

uu u u
uu u u u u

uu u
u

x x x x
d d d d d d

x x x
k d

µ− = + +

= + +
+

       (3.17) 

Analogously, for the vertex 
2 2
l l
iu R∈  and 

3 3
l l
iu R∈ , 

2 1 4 1 4

1 2 4 2

' ' ' '

1 1 1 1(1 ) ,
6 6

l l l l l
i i i i i

l l l l
i i i i

u u u u u

u u u u

x x x x x
d d d d

µ− = + = +     (3.18) 

3 1 4 1 4

1 3 4 3

' ' ' '

1 1 1 1(1 ) .
6 6

l l l l l
i i i i i

l l l l
i i i i

u u u u u

u u u u

x x x x x
d d d d

µ− = + = +     (3.19) 

For the vertices 
4 4
l l
iu R∈  and ( )Gv N u∈ , it follows 

4 2 3

4 2 4 3 4

1 3

' ' ' ' ' '

1 1 1(1 )

1 1 1 .
6 6 3( 1)

l l l
i i i

l l l l l
i i i i i

l l
i i

vu u u
vu u u u u

vu u
v

x x x x
d d d d d d

x x x
k d

µ− = + +

= + +
+

       (3.20) 

In view of the formulas (3.18)-(3.19), one can see that 
2 3
l l
i iu u

x x= , with 
1,2, ,i m=  ; 1,2, ,l k=  . 

Combining (3.17)-(3.20), we can get 

1

2
2 (3 6 2) 1(1 )(3 6 1) ,

3( 1) 3( 1)
l
i

u vu
u v

x x x
k d k d

µ µµ µ µ − +
− − + = +

+ +
    (3.21) 

4

2
2 1 (3 6 2)(1 )(3 6 1) .

3( 1) 3( 1)
l
i

u vu
u v

x x x
k d k d

µ µµ µ µ − +
− − + = +

+ +
    (3.22) 

According to (3.21) and (3.22), we have 

1 2 1 2
1 1 1 4 4 4

, .k k
i i i i i iu u u u u u

x x x x x x= = = = = = 

 

for any 3 61,
3

µ ±
≠ . 

Substituting (3.21) into (3.16), then we have 
2 2

2 2

( )

[(1 ) (3 6 1)]

(3 6 2) 3(1 )(3 6 1) 1 .
3( 1) 3( 1) G

u

u v
v N u u v

x

k kx x
k k d d

µ µ µ

µ µ µ µ µ
∈

− − +

− + + − − +
= +

+ + ∑
   (3.23) 

If 23(1 )(3 6 1) 0k µ µ µ+ − − + = , then  
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2 2 2[3( 1)(1 ) (3 6 1) (3 6 2)] 0uk k xµ µ µ µ µ+ − − + − − + = . The eigenvector x  can 

be completely decided by 0 ( )t
u u Ox ∈=x , when 3 61,

3
µ ±
≠  and  

2 2 23( 1)(1 ) (3 6 1) (3 6 2) 0k kµ µ µ µ µ+ − − + − − + ≠ . 

Let 23(1 )(3 6 1) 0k µ µ µ+ − − + =  and  
2 2 23( 1)(1 ) (3 6 1) (3 6 2) 0k kµ µ µ µ µ+ − − + − − + = , which implies that 

2
23 7 3 3( 1)(3 6 1).

1
k µ µ µ µ µ

µ
− +

= = − − +
−

            (3.24) 

Then we have 3 2(9 36 45 17) 0µ µ µ µ− + − = . Since k is a integer ( 2k ≥ ), 
combining (3.24), we can know that the above equation does not hold. Hence 

23(1 )(3 6 1) 0k µ µ µ+ − − + ≠ . 
Then 

3 2

3 2
( )

3 [3( 1) (12 9) (15 7) (6 1)] 11
9 27 21 ( 3) G

u v
v N u u v

k k k k x x
k d d

µ µ µ µ
µ µ µ ∈

 + − + + + − +
− = 

− + − + 
∑ . (3.25) 

for 3 61,
3

µ ±
≠ . 

So, 
3 2

3 2

3 [3( 1) (12 9) (15 7) (6 1)]
9 27 21 ( 3)

k k k k
k

µ µ µ µ
µ µ µ

+ − + + + − +
− + − +

 is an eigenvalue of 

( )G  and 0 ( )t
u u Ox ∈=x  is one of the corresponding eigenvectors. Hence, 

3 2

( ) 3 2 ( ( ))

3 [3( 1) (12 9) (15 7) (6 1)] ( ).
9 27 21 ( 3) kG R G

k k k kp p
k

µ µ µ µ µ
µ µ µ

 + − + + + − +
≥ − + − + 

 
 

If the inequality is strictly established, then there exists an eigenvector '
0x  

with respect to 
3 2

3 2

3 [3( 1) (12 9) (15 7) (6 1)]
9 27 21 ( 3)

k k k k
k

µ µ µ µ
µ µ µ

+ − + + + − +
− + − +

 without a 

corresponding eigenvector in ( ( ))kR G . Combining (3.5)-(3.8), it is easy to 
know that 

3 2

( ) 3 2 ( ( ))

3 [3( 1) (12 9) (15 7) (6 1)] ( ).
9 27 21 ( 3) kG R G

k k k kp p
k

µ µ µ µ µ
µ µ µ

 + − + + + − +
= − + − + 

 

 
This completes the proofs. 

4. Proofs of Theorems 2.1 and 2.2 

4.1. Proof of Theorem 2.1 

Proof. (i)-(iii) Let σ  be an eigenvalue of ( ( ))kF G  with 4 5 13,
3 6

σ ±
≠ . 

According to Lemma 3.6, one can see that 
3 2

3 2

[18( 1) (72 54) (94 46) (40 8)]
18 54 (46 2 ) (3 8)

k k k k
k k

σ σ σ σλ
σ σ σ

+ − + + + − +
=

− + + − +
     (4.1) 

is an eigenvalue of ( )G  with the same multiplicity as that of σ . Then we 
have 
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4 3 218( 1) (72 18 54) (94 54 46)
(40 46 2 8) (3 8) 0.
k k k

k k k
σ λ σ λ σ

λ λ σ λ
+ − + + + + +

− + + + + + =
        (4.2) 

Note that 1 0λ =  is an eigenvalue of ( )G , then we substitute 0λ =  into 

(4.2) yields 
40,
3

σ =  and 
28 4 8 13 5

6( 1)
k k k

k
± + + +

+
. If G is bipartite, substitut-

ing 2λ =  into (4.2) yields 
25 13 7 13 8 4 10, .

6 6( 1)
k k k

k
σ ± + + + +
=

+
 

Combining Lemma 3.3, this completes proofs of (i) to (iii). 

(iv) Substituting 5 13
6

σ −
=  into (3.8) yields 

1 1 .u v
u v

x x
d d

= −                      (4.3) 

Since the connected simple graph G is non-bipartite, G contains an odd cycle, 

written by 0C . By (4.3), we have 0| ( )|( 1)V Cu u u

u u u

x x x
d d d

= − = − . Then we can 

obtain 0u vx x= =  for u v . It is clear that 0ux =  for all ( )u V G∈ . Com-
bining (3.4)-(3.7), then we can get 

1 3
1 3

2
2 1

1
11

1 3

2

1

, ,

78 6 ,
6

0,
1 0,

3( 1)

l l
i i

l l
i i

l
il u

i

l l l l
i iu u

l l
iu u

u
k

u
l u F u

x x u F u F

x x u F

x u V

x u V
k d= ∈

 = ∀ ∈ ∀ ∈

 − = ∀ ∈



= ∀ ∈

 = ∀ ∈
 +
∑ ∑

         (4.4) 

Let 
1 3
l l
i i

l
iu u

x x y= = , with 1,2, ,i m=   and 1,2, ,l k=  , then we have 

2

78 6
6l

i

l
iu

x y−
= . Let 

1 1 1
1 2 1 2( , , , , , , , , )k k k t

m m kmy y y y y y=   y . 

Note that 
1

11
1

1 0
3( 1)

l
il u

i

k

u
l u F u

x
k d= ∈

=
+

∑ ∑ , u V∀ ∈ . Let  

( ) [ ( ), ( ), , ( )]n kmW G I G I G I G ×=  , then we have 

( ) 0.W G =y                         (4.5) 

According to Lemma 3.1, one can see that ( ( )) ( ( ))r W G r I G n= = . System 
(4.5) has exactly 1km n− +  linearly independent solutions. It is easy to know 

that 
( ( ))

5 13( )
6kF G

p km n−
= −


. Similarly, substituting 5 13

6
σ +
=  into 

(3.8), we can get 
( ( ))

5 13( )
6kF G

p km n+
= −


. Hence 

( ( ))

4( ) 1
3kF G

p km n= − +


 

by counting the number of the eigenvalues of ( )kF G . 
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This completes the proofs of (iv). 

(v) Substituting 
4
3

σ =  into (3.8) yields that 

.u v

u v

x x
d d

=                         (4.6) 

Assume u v

u v

x x
t

d d
= = . Combining with (3.6), we have 

2 1 3

6 ( ).
2l l l

i i iu u u
x x x= − +                     (4.7) 

In view of (3.5) and (4.7), then 

1 3

12
1l l

i iu u
x x t

k
+ = ⋅

+
                     (4.8) 

According to (3.4), 

1
11

1

4 .
3( 1)

l
il l

i

k

uu
l u F

kx d t
k= ∈

+
= −

+
∑ ∑                   (4.9) 

Combining (4.8) and (4.9), then 

1 1 3
11

1 1 ( )

4( ) .
3( 1)

l l l
i i il l ii

k k

uu u u
u V l l e E G u Vu F

kx x x d t
k∈ = = ∈ ∈∈

+
= + = −

+
∑∑ ∑ ∑ ∑ ∑       (4.10) 

Combining (4.8) and (4.10), we have 
12 2( 4)

1 3( 1)
kk mt mt

k k
+

= −
+ +

. Since k is a 

integer, it is easy to obtain that 0t = . Therefore, 0ux =  for all u V∈ . By 
(3.5) to (3.7), one can see 

1 3
l l
i iu u

x x= −  and 
2

0l
iu

x = . The eigenvector  

1 2 3( , , , )t
n kmx x x += x  associated with 

4
3

σ =  can be completely determined by 

the following equation system: 

1 3
1 3

2
2

1
11

1 3

2

1

, ,

0,

0,
1 0,

3( 1)

l l
i i

l
i

l
il u

i

l l l l
i iu u

l l
iu

u
k

u
l u F u

x x u F u F

x u F

x u V

x u V
k d= ∈

 = − ∀ ∈ ∀ ∈

 = ∀ ∈
 = ∀ ∈


= ∀ ∈
+

∑ ∑

        (4.11) 

Let 
1 3
l l
i i

l
iu u

x x y= − =  with 1,2, ,i m=   and 1,2, ,l k=  . Suppose 

1 1 1
1 2 1 2( , , , , , , , , )k k k t

m m kmy y y y y y=   y  

Note that 
1

11
1

1 0
3( 1)

l
il u

i

k

u
l u F u

x
k d= ∈

=
+

∑ ∑ , u V∀ ∈ . Let  

( ) [ ( ), ( ), , ( )]n kmW G I G I G I G ×=
   

 , then we have 

( ) 0.W G y =


                       (4.12) 
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By Lemma 3.1, we know that ( ( )) ( ( )) 1r W G r I G n= = −
 

, system (4.12) has 
exactly 1km n− +  linearly independent solutions. Thus  

( ( ))

4( ) 1
3kF G

p km n= − +


. Suppose 
( ( ))

5 13( )
6kF G

p a−
=


 and  

( ( ))

5 13( )
6kF G

p b+
=


. In view of Lemma 3.3, we have 

1
3 1'

1 2

1 3 3 3 1

( ( ))

3 8 3 8 5 1 4 5 13 5 13
18( 1) 3( 1) 3( 1) 3 6 6

2 | ( ( )) |

5 133 2 (3 8) ( ).
6

k

a bkm n
n km n

i ii i

k

b a

km n a km n n

F G

k k kd
k k k

E F G

k G

τ

λ

τ

− +
+ −

= =

−

− + − − + −

    + + + − + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅         + + +       =

 +
= ⋅ ⋅ + ⋅ ⋅  

 

∏ ∏
 

Since ( ( ))kF Gτ  and ( )Gτ  are positive integers, it is obvious that a b= . 

Then we have 
( ( )) ( ( ))

5 13 5 13( ) ( ) 1
6 6k kF G F G

p p km n− +
= = − +

 
 by counting 

the number of the eigenvalues of ( )kF G . 

This completes the proofs of Theorem 2.1. 

4.2. Proof of Theorem 2.2 

Proof. (i)-(iii) Let µ  be an eigenvalue of ( ( ))kR G  with 3 61,
3

µ ±
≠ . By 

Lemma 3.7, we have 
3 2

3 2

3 [3( 1) (12 9) (15 7) (6 1)]
9 27 21 ( 3)

k k k k
k

µ µ µ µλ
µ µ µ

+ − + + + − +
=

− + − +
      (4.13) 

is an eigenvalue of ( )G  with the same multiplicity as that of µ . Then we 
have 

4 3 29( 1) (36 9 27) (45 27 21)
(18 21 3) (3 ) 0.
k k k

k k
µ λ µ λ µ

µ λ
+ − + + + + +

− + + + + =
       (4.14) 

Since 0 is an eigenvalue of ( )G  with multiplicity 1, we substitute 0λ =  

into (4.14) yields 0,1µ =  and 
29 3 3 8 8 6

6( 1)
k k k

k
± + + +

+
. By Lemma 3.3, 

2nλ =  is an eigenvalue of ( )G  with multiplicity 1 if G is bipartite. Substi-

tuting 2λ =  into (4.14) yields 3 6
3

µ ±
= , 

26 3 4 4 3 9
6( 1)

k k k
k

± + + +
+

. 

This completes the proofs of (i)-(iii). 

(iv) Substituting 3 6
3

µ −
=  into (3.21) yields that 

1 1 .u v
u v

x x
d d

= −                     (4.15) 
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Since the connected simple graph G is non-bipartite, G contains an odd cycle, 

written as 1C . In view of (4.15), we have 1| ( )|( 1)V Cu u u

u u u

x x x
d d d

= − = − . It is 

easy to conclude that 0u vx x= =  for u v . Note that G is connected, we have 
0ux =  for all ( )u V G∈ . Combining with (3.16) to (3.20), we have 

1 2 3 4
l l l l
i i i iu u u u

x x x x= = =  and 
1

11
1

1 0
3( 1)

l
il l

i

k

u
l u R u

x
k d= ∈

=
+

∑ ∑ . 

Therefore, the eigenvector 1 2 4( , , , )t
n kmx x x += x  associated with 3 6

3
µ −
=  

can be completely decided by the following equation system: 

1 2 3 4
1 2 3 4

1
11

1 2 3 4

1

, , , ,

0,
1 0,

3( 1)

l l l l
i i i i

l
il l

i

l l l l l l l l
i i i iu u u u

u
k

u
l u R u

x x x x u R u R u R u R

x u O

x u O
k d= ∈


 = = = ∀ ∈ ∈ ∈ ∈

 = ∀ ∈

 = ∀ ∈
 +
∑ ∑

 (4.16) 

Suppose 
1 2 3 4
l l l l
i i i i

l
iu u u u

x x x x z= = = = , with 1,2, ,i m=   and 1,2, ,l k=  . 

Let 
1 1 1
1 2 1 2( , , , , , , ) .k k k t

m m kmz z z z z z=   z  

Note that 
1

11
1

1 0
3( 1)

l
il l

i

k

u
l u R u

x
k d= ∈

=
+

∑ ∑ , u O∀ ∈ . Let  

( ) [ ( ), ( ), , ( )]n kmW G I G I G I G ×=  . Then we have 

( ) 0.W G =z                        (4.17) 

By Lemma 3.1, we know that ( ( )) ( ( ))r W G r I G n= = . System (4.17) has 

km n−  linearly independent solutions. Thus 
( ( ))

3 6( )
3kR G

p km n−
= −


. Simi-

larly, substitute 3 6
3

µ +
=  into (3.21), we can get 

( ( ))

3 6( )
3kR G

p km n+
= −


. 

Hence 
( ( ))

(1) 2 1kR G
p km n= − +


 by counting the number of the eigenvalues of 

( )kR G . 

This completes the proofs of (iv). 
(v) Substituting 1µ =  into (3.20) yields that 

1 1 .u v
u v

x x
d d

=                      (4.18) 

Suppose 1 1
u v

u v

x x t
d d

= = . By (3.17) and (3.20), we have 

2 3

2 .
1l l

i iu u
x x t

k
+ = − ⋅

+
                   (4.19) 

In view of (3.18), we have that 

1 4

0.l l
i iu u

x x+ =                        (4.20) 
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By (3.16), it is obvious that 

1
11

1

3 .
1l

il l
i

k

uu
l u R

x d t
k= ∈

= −
+∑ ∑                   (4.21) 

According to (4.20) and (4.21), we know that 

1 1 4
11

1 1 ( )

3( ) .
1l l l

i i il l ii

k k

uu u u
u O l l e E G u Ou R

x x x d t
k∈ = = ∈ ∈∈

= + = −
+∑∑ ∑ ∑ ∑ ∑        (4.22) 

Combining (4.20) and (4.22), we have 32 0
1

m t
k

− =
+

. Since k is a integer, it 

is easy to know that 0t = , thus, 0ux =  for all u O∈ . By (3.17) to (3.20), we 

have 
1 4
l l
i iu u

x x= −  and 
2 3

0l l
i iu u

x x+ = . The eigenvector 1 2 4( , , , )t
n kmx x x += x  

associated with 1µ =  can be completely determined by the following equation 
system 

1 4
1 4

2 3
2 3

1
11

1 4

2 3

1

, ,

, ,

0,
1 0,

3( 1)

l l
i i

l l
i i

l
il l

i

l l l l
i iu u

l l l l
i iu u

u
k

u
l u R u

x x u R u R

x x u R u R

x u O

x u O
k d= ∈

 = − ∀ ∈ ∈

 = − ∀ ∈ ∈
 = ∀ ∈


= ∀ ∈
+

∑ ∑

         (4.23) 

Suppose 
1 4

1l l
i i

l
iu u

x x z= − =  and 
2 3

2l l
i i

l
iu u

x x z= − = , with 1,2, ,i m=   and 

1,2, ,l k=  . Let 

1 1 1 1 1 1
11 12 21 22 1 2 11 12 21 22 1 2 2( , , , , , , , , , , , , , , ) .k k k k k k t

m m m m kmz z z z z z z z z z z z=   z    (4.24) 

Note that 
1

11
1

1 0
3( 1)

l
il l

i

k

u
l u R u

x
k d= ∈

=
+

∑ ∑ , for all u O∈ . Let  

2( ) [ ( ), ( ), , ( )]n kmW G I G I G I G ×=
   

 . Then we have 

( ) 0.W G =z


 

In view of Lemma 3.1, we know that ( ( )) ( ( )) 1r W G r I G n= = −
 

, system (4.24) 
has exactly 2 1km n− +  linearly independent solutions. Thus  

( ( ))
(1) 2 1kR G

p km n= − +


. Let 
( ( ))

3 6( )
3kR G

p a−
=


 and 

( ( ))

3 6( )
3kR G

p b+
=


. 

By Lemma 3.3, we have 

4 1' 2 1
1 2

2 2 2 2 1 2

( ( ))

3 2 6 6 1 3 6 3 61
9( 1) 3( 1) 3( 1) 3 3

2 | ( ( )) |

3 63 2 (2 6) ( 3) ( ).
3

k

a b
n km n km n

i ii i

k

b a

km n a km n

R G

k k kd
k k k

E R G

k k G

τ

λ

τ

+ − − +
= =

−

− + − − −

    + + + − +
⋅ ⋅ ⋅ ⋅ ⋅ ⋅        + + +     =

 +
= ⋅ ⋅ + ⋅ + ⋅ ⋅  

 

∏ ∏
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Note that ( ( ))kR Gτ  and ( )Gτ  are positive integers, we have a b= . There-

fore, 
( ( )) ( ( ))

3 6 3 6( ) ( ) 1
3 3k kR G R G

p p km n− +
= = − +

 
 by counting the number 

of the eigenvalues of ( )kR G . 

This completes the proofs of Theorem 2.2. 

5. Application 

5.1. The Normalized Laplacian, Multiplicative Degree-Kirchhoff 
Index, Kemeny’s Constant and Spanning Trees of ( )k

rF G  

Note that 0 ( )kF G G= , 1 ( ) ( )k kF G F G= , 1( ) ( ( ))k k k
r rF G F F G−= . Let k

rε  and 
k
rς  be the size and order of ( )k

rF G , respectively, where 2k ≥  and 1r ≥ . 
Then the following equations system can be obtained. 

0

0

1

1 1

,

,

(5 1) , 1

3 , 1

k

k

k k
r r
k k k
r r r

m

n

k r

k r

ε

ς

ε ε

ς ς ε
−

− −

 =


=


= + ≥
 = + ≥

. 

Thus, we can get the general formula of k
rε  and k

rς , 

(5 1)k r
r k mε = + , 3[(5 1) 1]

5

r
k
r

kn mς + −
= + .           (5.1) 

The roots of 
4 3 218( 1) (72 18 54) (94 54 46)

(40 46 2 8) (3 8) 0
k k k

k k k
σ λ σ λ σ

λ λ σ λ
+ − + + + + +

− + + + + + =
 are de-

noted by ( )ih λ , with 1,2,3,4i = . Let H be a multiset of real numbers, we have 

{ } { } { }

{ }

1 1 2 2 3 3

4 4

( ) ( ) , ( ) ( ) , ( ) ( ) ,

( ) ( ) ,
x H x H x H

x H

h H h x h H h x h H h x

h H h x
∈ ∈ ∈

∈

= = =

=

  



 
where 1 2 3 4, , ,h h h h  are defined as above. Then the following theorem directly 
follows by Theorem 2.1 and the construction of ( )k

rF G . 
Theorem 5.1. Let G be a simple connected graph of order n and size m. Then 

{ }

{ }

2 24

1

1 1

8 4 8 13 5 7 13 8 4 10( ( )) \ 0,2 0, ,
6( 1) 6( 1)

5 13 5 13 4 4, , , , , if 1 and is bipartite
6 6 3 3

( ( ))
8( ( )) \ 0 0,

k
i

i

km n km n
k

r
k

i r

k k k k k kh S F G
k k

r G

S F G
kh S F G

=

− + − +

 ± + + + ± + + +      + +  
   

± ±    =   
   
   

=
±  



   

 





1 1 1 1

24

1

1 1

4 8 13 5
6( 1)

5 13 5 13 4 4, , , , , otherwise
6 6 3 3

k k k k
r r r r

i

k k

k k
k

ε ς ε ς− − − −

=

− + − +










  + + +    +  
    
    ± ±                  
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Theorem 5.2. Let G be a simple connected graph of order n and size m. Then 
(i) 

2
* *

2 1 1 1
2

1

1

8(5 1)( ( )) ( )
(3 8)

(5 1) [(12765 27269)(15 43 8) 26720(40 8) 549(3 8) ]
1110(3 8)

61(5 1) [(40 8) (3 8) ]
74(3 8)

(101 483)(5 1) [(40 8) (3 8) ]
7

r
k

r

r r r r

r

r r r

r

r r r

kKf F G Kf G
k

k k k k k k m
k

k k k mn
k

k k k k

− − −

−

−

 +
=  + 

+ + + + − + − +
+

+

+ + − +
−

+

− + + − +
+ .

4(3 8)r m
k +  

(ii) 
2

2 1 1 1

1

8(5 1)( ( )) ( )
(3 8)

(12765 27269)(15 43 8) 26720(40 8) 549(3 8)
2220(3 8)

61[(40 8) (3 8) ] (101 483)[(40 8) (3 8) ].
148(3 8) 148(5 1)(3 8)

r
k

r

r r r

r

r r r r

r r

kKe F G Ke G
k

k k k k k m
k

k k k k kn
k k k

− − −

−

 +
=  + 
+ + + − + − +

+
+

+ − + − + − +
− +

+ + +  
(iii) 

3 3[(5 1) 1] 3 [(5 3)(5 1) 15 5 3]( 1) 3 35 25 25( ( )) (3 8) 2 ( ).

r rr k m k k kr kn r m r nrkk k
rF G k Gτ τ

 + −  − + + − +− − −  + −  = + ⋅ ⋅  
Proof. (i) According to Theorem 2.1 (i), one can see that the four roots of 

4 3 218( 1) (72 18 54) (94 54 46)
(40 46 2 8) (3 8) 0,

k k k
k k k

σ λ σ λ σ
λ λ σ λ

+ − + + + + +
− + + + + + =

 denoted by  

1 2 3 4( ), ( ), ( ), ( )i i i iσ λ σ λ σ λ σ λ , are the four corresponding eigenvalues of 

( ( ))kF G , when 0λ ≠ . 

By Vieta theorem, we obtain the following equation: 

1 2 3 4

1 1 1 1 2 46 40 8 ,
( ) ( ) ( ) ( ) 3 8 (3 8)i i i i i

k k
k kσ λ σ λ σ λ σ λ λ
+ +

+ + + = +
+ +  

1 2 3 4
3 8( ) ( ) ( ) ( ) .

18( 1)i i i i i
k
k

σ λ σ λ σ λ σ λ λ+
=

+
             (5.2) 

Based on Theorem 2.1, Lemma 3.4, (5.1) and (5.2), we have 
*

1
2

2
2

2

2
*

( ( ))

2 46 40 8 8 5 3 6 62 ( 1) ( )
3 8 (3 8) 5 1 4 5 13 5 13

16(5 1) 1 23 (5 1) 61 (5 1) (101 483)
3 8 2 2(3 8) 2(3 8)

8(5 1) 23( )
3 8

k

n
k

i i

n

i i

Kf F G

k k k km n km n
k k k

k m k k k k k km mn m
k k k

k Kf G
k

ε
λ

λ

=

=

  + + +   = + + + − + + + −    + + + − +    
+ + + −

= + − +
+ + +

+
= +

+

∑

∑

2(5 1) 61 (5 1) (101 483) .
2 2(3 8) 2(3 8)

k k k k k km mn m
k k

+ + −
− +

+ +  
Based on the above equation and the construction of ( )k

rF G  ( 2, 1k r≥ ≥ ), 
we have 
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2
* * 2

1 1

1 1 1

12 21
* 2

0

8(5 1) 23 (5 1)( ( )) ( ( )) ( )
3 8 2
61 (5 1) (101 483)
2(3 8) 2(3 8)

8(5 1) 23 (5 1) 8(5 1)( ) ( )
3 8 2 3 8

61 (5 1) 8(5
2(3 8)

k k k
r r r

k k k
r r r

r r ir
k
i

i

k k kKf F G Kf F G
k

k k k k
k k

k k k kKf G
k k

k k
k

ε

ε ς ε

ε

− −

− − −

− −
−

=

+ +
= +

+

+ −
− +

+ +

   + + +
= +   + +   

+
−

+

∑

121

0

121

0

1)
3 8

(101 483) 8(5 1)
2(3 8) 3 8

r ir
k k
i i

i

r ir
k
i

i

k
k

k k k
k k

ε ς

ε

− −
−

=

− −
−

=

 +
 + 

 − +
+  + + 

∑

∑

 

By simple calculation, the conclusion can be easily drawn. 
(ii) In view of Lemma 3.5, Theorem 5.2 (i) and (5.1), we can obtain that 

*

1

2
* 2

1( ( )) ( ( ))
2

1 8(5 1) 23 (5 1) 61 (5 1) (101 483)( )
2(5 1) 3 8 2 2(3 8) 2(3 8)
8(5 1) 23 61 (101 483)( ) .

3 8 4 4(3 8) 4(5 1)(3 8)

k k
kKe F G Kf F G

k k k k k k kKf G m mn m
k m k k k
k k k kKe G km n

k k k k

ε
=

 + + + −
= + − + + + + + 

+ −
= + − +

+ + + +  

Based on the above equation and the construction of ( )k
rF G  ( 2, 1k r≥ ≥ ), 

we have 

11

0

11

0

( ( ))
8(5 1) 23 61 (101 483)( )

3 8 4 4(3 8) 4(5 1)(3 8)

8(5 1) 23 8(5 1)( )
3 8 4 3 8

61 8(5 1) (101 483) 8
4(3 8) 3 8 4(5 1)(3 8)

k
r

r r ir
k
i

i

r ir
k
i

i

Ke F G
k k k kKe G km n

k k k k

k kKe G k
k k

k k k k
k k k k

ε

ς

− −−

=

− −−

=

+ −
= + − +

+ + + +

+ +   = +   + +   

+ − − + + + + + 

∑

∑
1

0

(5 1)
3 8

ir

i

k
k

−

=

+ 
 + 

∑
 

By simple calculation, the conclusion can be easily drawn. 
(iii) According to Theorem 2.1, Lemma 3.2, and (5.1), one can see 

1
1

'
1 2

1

1 3 3 3
1 2

1 3 3 3

( ( ))

3 8 5 13 5 13 4 5 1
18( 1) 6 6 3 3( 1)

2

(3 8) 2
2

(3 8) 2 ( ).

k

k

km n km n km n
n

i ii i

k

n nn km n
i ii i

n km n

F G

k kd
k k

k d
m

k G

ς

τ

λ

ε

λ

τ

− − − +

= =

− − +
= =

− − +

    + − + + ⋅ ⋅ ⋅ ⋅ ⋅          + +      =

+ ⋅ ⋅ ⋅
=

= + ⋅ ⋅

∏ ∏

∏ ∏

 

From the above equation and the construction of ( )k
rF G  ( 2, 1k r≥ ≥ ), we 

have 
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1 1 1

1 1
0 0

1 3 3 3
1

(3 3 ) 3

3 3[(5 1) 1] 3 [(5 3)(5 1) 15 5 3]( 1) 3 35 25 25

( ( )) (3 8) 2 ( ( ))

(3 8) 2 ( )

(3 8) 2 ( )

k k k
r r r

k k kr r
i i ii i

r r

kk k
r r

r k r

r k m k k kr kn r m r nrk k

F G k F G

k G

k G

ς ε ς

ς ε ς

τ τ

τ

τ

− − −

− −
= =

− − +
−

− − +

 + −  − + + − +− − −  + −  

∑ ∑

= + ⋅ ⋅

= + ⋅ ⋅

= + ⋅ ⋅  
This completes the proofs of Theorem 5.2. 

5.2. The Normalized Laplacian, Multiplicative Degree-Kirchhoff 
Index, Kemeny’s Constant and Spanning Trees of ( )k

rR G  

Note that 0 ( )kR G G= , 1 ( ) ( )k kR G R G= , 1( ) ( ( ))k k k
r rR G R R G−= . Let k

rε  and 
k
rς  be the size and order of ( )k

rR G , respectively, where 2k ≥  and 1r ≥ . The 
following equations can be obtained. 

0

0

1

1 1

,

,

(6 1) , 1

4 , 1

k

k

k k
r r
k k k
r r r

m

n

k r

k r

ε

ς

ε ε

ς ς ε
−

− −

 =


=


= + ≥
 = + ≥  

It follows that 

(6 1)k r
r k mε = + , 2[(6 1) 1]

3

r
k
r

kn mς + −
= + .           (5.3) 

The four roots of 
4 3 29( 1) (36 9 27) (45 27 21)

(18 21 3) (3 ) 0
k k k

k k
µ λ µ λ µ

µ λ
+ − + + + + +

− + + + + =
 are 

denoted by 1 2 3( ), ( ), ( )f f fλ λ λ  and 4 ( )f λ , respectively. For a multiset H of for 
real numbers, we may define four new multiset: 

{ } { }

{ } { }

1 1 2 2

3 3 4 4

( ) ( ) , ( ) ( ) ,

( ) ( ) , ( ) ( ) ,
x H x H

x H x H

f H f x f H f x

f H f x f H f x
∈ ∈

∈ ∈

= =

= =

 

 

 
Similarly, the following results on the spectrum of ( )k

rR G  ( 2, 1k r≥ ≥ ) fol-
lows immediately by Theorem 2.2 and the construction of ( )k

rR G  from G. 
Theorem 5.3. Let G be a simple connected graph of order n and size m. Then 

{ }



{ }

2 24

1

2 1
1

2

9 3 3 8 8 6 6 3 4 4 3 9( ( )) \ 0,2 0, ,
6( 1) 6( 1)

3 6 3 61, ,1 , , , if 1 and is bipartite
3 3

( ( ))
9 3 3 8 8( ( )) \ 0 0,

k
i

i

km n
km n

k
r

k
i r

k k k k k kf S R G
k k

r G

S R G
k k kf S R G

=

− +
− +

 ± + + + ± + + +      + +  
 

  ± ±    =   
    

 
=

± + +  



   









1 1
1 1

4

1

2 1
1

6
6( 1)

3 6 3 61, ,1 , , , otherwise
3 3k k

r r k k
r r

i

k
k

k

ε ς
ε ς

− −
− −

=

− +
− +










  +    +  
  
    ± ±               

   





 

https://doi.org/10.4236/jamp.2020.85066


C. Liu et al. 
 

 

DOI: 10.4236/jamp.2020.85066 857 Journal of Applied Mathematics and Physics 

 

Theorem 5.4. Let G be a simple connected graph of order n and size m. Then 
(i) 

2
* *

1 1 1 1
2

1

1

3(6 1)( ( )) ( )
( 3)

(6 1) [1944(18 3) 28( 3) (1972 816 )(6 1) ( 3) ]
51( 3)

14(6 1) [(18 3) ( 3) ]
17( 3)

2(6 1) (15 74)[(18 3) ( 3) ] .
17( 3)

r
k
r

r r r r r

r

r r r

r

r r r

r

kKf R G Kf G
k

k k k k k k m
k

k k k mn
k

k k k k m
k

− − − −

−

−

 +
=  + 

+ + + + − + + +
−

+

+ + − +
−

+

+ − + − +
+

+  

(ii) 
2

1 1 1 1

1

3(6 1)( ( )) ( )
( 3)

972(18 3) 14( 3) (986 408 )(6 1) ( 3)
51( 3)

7[(18 3) ( 3) ] (15 74)[(18 3) ( 3) ].
17( 3) 17(6 1)( 3)

r
k
r

r r r r

r

r r r r

r r

kKe R G Ke G
k

k k k k k m
k

k k k k kn
k k k

− − − −

−

 +
=  + 
+ + + − + + +

−
+

+ − + − + − +
− +

+ + +  
(iii) 

6 (6 1) 1 [12 3 (3 2)(6 1) 2] [(6 1) 1]( 1) ( )9 18 3

( ( ))

( 3) 3 2 ( ).

r r r

k
r

kr k m kr r k k m kn r m r nrk k

R G

k G

τ

τ
 − + +  − + − + + + −− −   − +  = + ⋅ ⋅ ⋅  

Proof. (i) By Theorem 2.2, the four corresponding eigenvalues  

1 2 3 4( ), ( ), ( ), ( )i i i iµ λ µ λ µ λ µ λ  of ( ( ))kR G  are roots of  
4 3 29( 1) (36 9 27) (45 27 21)

(18 21 3) (3 ) 0
k k k

k k
µ λ µ λ µ

µ λ
+ − + + + + +

− + + + + =  
Thus 1 2 3 4( ), ( ), ( ), ( )i i i iµ λ µ λ µ λ µ λ  satisfy the following equation: 

1 2 3 4

1 1 1 1 21 18 3 ,
( ) ( ) ( ) ( ) 3 ( 3)i i i i i

k
k kµ λ µ λ µ λ µ λ λ

+
+ + + = +

+ +  

1 2 3 4
3( ) ( ) ( ) ( ) .

9( 1)i i i i i
k
k

µ λ µ λ µ λ µ λ λ+
=

+
              (5.4) 

In view of Theorem 2.2, Lemma 3.3, (5.3) and (5.4), one can see 
*

1
2

2
2

2

2
* 2

( ( ))

21 18 3 9 6 3 32 (2 1) ( )
3 ( 3) 6 1 3 6 3 6

6(6 1) 1 14 (6 1) 2 (15 74)16 (6 1)
3 3 3

3(6 1) 14 (6 1)( ) 16 (6 1)
3

k

n
k

i i

n

i i

Kf R G

k k km n km n
k k k

k m k k k kk k m mn m
k k k

k k kKf G k k m
k k

ε
λ

λ

=

=

  + +   = + + + − + + + −    + + + − +    
+ + −

= + + − +
+ + +

+ +
= + + −

+ +

∑

∑

2 (15 74) .
3 3

k kmn m
k

−
+

+  

Based on the above equation and the construction of ( )kR G  ( 2, 1k r≥ ≥ ), 
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we have 
2

* * 2
1 1

1 1 1

12 21
* 2

0

12

3(6 1)( ( )) ( ( )) 16 (6 1)( )
3

14 (6 1) 2 (15 74)
3 3

3(6 1) 3(6 1)( ) 16 (6 1) ( )
3 3

14 (6 1) 3(6 1)
3 3

k k k
r r r

k k k
r r r

r r ir
k
i

i

r

kKf R G Kf R G k k
k

k k k k
k k

k kKf G k k
k k

k k k
k k

ε

ε ς ε

ε

− −

− − −

− −
−

=

− −

+
= + +

+
+ −

− +
+ +

   + +
= + +   + +   

 + +
−  + + 

∑

1

0

121

0

2 (15 74) 3(6 1) .
3 3

ir
k k
i i

i

r ir
k
i

i

k k k
k k

ε ς

ε

−

=

− −
−

=

 − +
+  + + 

∑

∑
 

By simple calculation, the conclusion can be easily drawn. 
(ii) In view of Lemma 3.5, Theorem 5.4 (i) and (5.4), we obtain that 

*

1

2
* 2

1( ( )) ( ( ))
2

1 3(6 1) 14 (6 1) 2 (15 74)( ) 16 (6 1)
2(6 1) 3 3 3
3(6 1) 7 (15 74)( ) 8 .

3 3 (6 1)( 3)

k k
kKe R G Kf R G

k k k k kKf G k k m mn m
k m k k k
k k k kKe G km n

k k k k

ε
=

 + + −
= + + − + + + + + 

+ −
= + − +

+ + + +  

Based on the above equation and the construction of ( )kR G  ( 2, 1k r≥ ≥ ) 
that 

11

0

11 1

0 0

( ( ))
3(6 1) 7 (15 74)( ) 8

3 3 (6 1)( 3)

3(6 1) 3(6 1)( ) 8
3 3

7 3(6 1) (15 74) 3(6 1) .
3 3 (6 1)( 3) 3

k
r

r r ir
k
i

i

r i ir r
k
i

i i

Ke R G
k k k kKe G km n

k k k k

k kKe G k
k k

k k k k k
k k k k k

ε

ς

− −−

=

− −− −

= =

+ −
= + − +

+ + + +

+ +   = +   + +   

+ − +   − +   + + + + +   

∑

∑ ∑
 

By simple calculation, the conclusion can be easily drawn. 
(iii) According to Theorem 2.2, Lemma 3.2, (5.3) and (5.4), we can obtain 

1 ' 1
1 2

1

1 2 1
1 2

1 2 1

( ( ))

3 3 6 3 6 6 11
9( 1) 3 3 3( 1)

2

( 3) 2 3
2

( 3) 2 3 ( ).

k

k

km n km n
n km n

i ii i

k

n nn km km n
i ii i

n km km n

F G

k kd
k k

k d
m

k G

ς

τ

λ

ε

λ

τ

− −

− +
= =

− − +
= =

− − +

    + − + +
⋅ ⋅ ⋅ ⋅ ⋅        + +     =

+ ⋅ ⋅ ⋅ ⋅
=

= + ⋅ ⋅ ⋅

∏ ∏

∏ ∏

 
Based on the above equation and the construction of ( )kR G  ( 2, 1k r≥ ≥ ), 

we have 
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1 1 1 1

1 1 1
0 0 0

1 3 1
1

2 ( ) ( )

6 (6 1) 1 [12 3 (3 2)(6 1) 2] [( 1) ( )9 18

( ( ))

( 3) 2 3 ( ( ))

( 3) 2 3 ( )

( 3) 3 2

k k k k
r r r r

k k k kr r r
i i i ii i i

r r

k
r

k k k
r

r k k r

kr k m kr r k k mn r m r nrk k

R G

k R G

k G

k

ς ε ε ς

ς ε ε ς

τ

τ

τ

− − − −

− − −
= = =

− − +
−

− − +

 − + +  − + − + +− −   − +  

∑ ∑ ∑

= + ⋅ ⋅ ⋅

= + ⋅ ⋅ ⋅

= + ⋅ ⋅
(6 1) 1]

3 ( ).
rk

Gτ
+ −

⋅  
This completes the proofs of Theorem 5.4. 
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