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Abstract 
In this paper, for the fast computation of the coordinates under the basis of 
the eigenfunctions of Helmholtz operator, we derive the conjugate operator 
with the radiation boundary condition. Further, we prove the cross orthogo-
nality between the linearly-independent eigenfunctions of the Helmholtz op-
erator and the linearly-independent eigenfunctions of the conjugate operator. 
The numerical simulations demonstrate the effectiveness of our treatment. 
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1. Introduction 

It is known that the computation of the wave propagation plays a particularly 
prominent role in ocean acoustics or optical waveguides [1] [2] [3]. Because of 
the inhomogeneity of the ocean medium, the sound velocity forms the under-
water channel with the regular change of the ocean, and the remote acoustic 
propagation of hundreds of or even thousands of kilometers can be carried out 
by using the underwater channel. The study of acoustic wave propagation in the 
ocean is of great significance to such things as underwater positioning, commu-
nication and ranging [4]. 

The propagation of sound waves in the medium is mathematically formulated 
as a well-known Helmholtz equation [5]. When the propagation area or the so-
lution region is bounded, the linearly-independent eigenfunctions of the Helm-
holtz operator are weighted orthogonal, so one can use the marching algorithm 
to solve the Helmholtz equation quickly [1], and a good numerical solution has 
been obtained. However, in reality, it is extremely difficult to deal with such a 
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problem when considering the propagation region is unbounded in the trans-
verse direction, such as the infinite depth of the ocean (including the submarine 
rock layer) or open light region in the upper or lower direction [6]. For the con-
venience of calculation, we need to truncate the unbounded waveguide area into 
a bounded waveguide area. It is common practice to add some artificial boun-
dary conditions to the outside of the truncation area [7]. In order for the acous-
tic propagation of the truncated area to be consistent with that before trunca-
tion, special processing needs to be added to the artificial boundary so that the 
sound waves do not have obvious reflection when they leave the area, and the 
sound waves can be absorbed effectively. 

For the addition of artificial boundary conditions, we use the radiation boun-
dary condition (RBC) [8] to truncate the unbounded waveguide. However, the 
orthogonality of between the linearly-independent eigenfunctions of the Helm-
holtz operator is lost, so it is difficult to fast compute the coordinate coefficients 
under the local eigenfunctions’ bases when the Helmholtz equation with the 
RBC is solved by some numerical marching method, such as the Operator 
Marching Method and the One-way Method [9]. 

For this reason, the conjugate operator of the Helmholtz operator with the 
RBC is constructed in this paper. Further, it is proved that there is the cross-
ly-orthogonal property between the linearly-independent eigenfunctions of the 
Helmholtz operator and their linearly-independent conjugate eigenfunctions. 
Furthermore, a simple and convenient formula is given to the coordinate trans-
formation under two different eigenfunction bases. Finally, the numerical expe-
riment results verify the correctness of this treatment. 

2. Mathematical Treatment 
2.1. Eigenfunctions of the Helmholtz Operator 

For simplicity, we consider the wave propagation in the Pekeris waveguide. The 
mathematical model is as follows: 
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Where z is the depth axis pointing downward with the ocean surface at 0z = , 
and x  is the range variable in horizontal direction. One layer with density 1ρ  
is located in 0 z G< < , the other with density 2ρ  is located in z G> ; and 
their interface is flat at z G= . Here, 1κ  and 2κ  are represented as the wave-
numbers in two different subregions, respectively. 

https://doi.org/10.4236/jamp.2020.85060


J. X. Zhu, H. B. Chen 
 

 
DOI: 10.4236/jamp.2020.85060 782 Journal of Applied Mathematics and Physics 
 

We introduce the RBC for truncation at z G> , that is 2
u u
z

γ∂
= ⋅

∂
i  at 

z H≥ , where H G> , 1= −i , 2
2 2γ κ λ= − , and λ  is the eigenvalue of the 

Helmholtz operator P . Here ( )
2

2
2

d
d

z
z

κ= +P , where ( )zκ  is 1κ  as 

0 z G< <  and is 2κ  as z G> . Then Equation (1) is approximately trans-
formed into a complex partial differential equation in the bounded region as 
follows: 
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For the coordinate transformation between two different bases, it is necessary 
to quickly calculate the coordinate coefficients of any given function under a ba-
sis. Here the basis is formed by the linearly-independent eigenfunctions of the 
Helmholtz operator P . If we assume the solution of Equation (2) to be 

( ) ( )expu z xφ λ= ⋅ ⋅i , then the eigenvalue problem of the Equation (2) is de-
rived as follows: 
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Where ( )zφ  is the eigenfunction corresponding to the eigenvalue λ  for the 
eigenvalue problem of Equation (2). 

Given ( ) ( ) ( )1, m
j jju x z c x zφ

=
≈ ∑  [10], if the solution functions ( )j zφ , 

( )1,2, ,j m= 
 of Equation (3) are crossly orthogonal to their conjugate func-

tions ( )i zϕ , ( )1,2, ,i m= 
 with the weight 

( )
1
zρ

, that is,  

( ) ( ) ( )
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1 d 0
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j iz z z
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⋅ =∫  as i j≠ , then we have  
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, where each eigenfunction ( )j zφ  corres-

ponds to each eigenvalue jλ , respectively, ( )1,2, ,j m= 
; and the overline 

represents the conjugate operation. 
The following processes focus on constructing the conjugate eigenfunctions 
( )i zϕ , ( )1,2, ,i m= 

 corresponding to the eigenfunctions ( )j zφ ,  
( )1,2, ,j m= 

, and further prove their cross orthogonality. 
For Equation (3), we have the general solutions as follows: 
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and 2
1 1γ κ λ= − . 

By the RBC at z H= , namely ( )2
d
d z H

H
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= ⋅i , we can obtain the fol-

lowing equation of the eigenvalue λ : 
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2.2. The Construction of the Conjugate Operator 

Let the operator P  be with the RBC at =z H  and the interface conditions at 
=z G , we have 
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Let φ  and ϕ  be the eigenfunction and the corresponding conjugate eigen-
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Consider 
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Applying the interface and the boundary conditions: 
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For simplicity, the interface and the boundary conditions are given to the 
conjugate eigenfunction ϕ  as follows: 
let 

1 2

1 d 1 d 0,
d dz G z G

z z
φ φϕ ϕ

ρ ρ− += =

 
− = 
 

                (16) 

it is equivalent to 

( ) ( ) ( ) ( )or ;G G G Gϕ ϕ ϕ ϕ− + − += =              (17) 

let 

2 1

1 d 1 d 0,
d dz G z G
z z
ϕ ϕφ φ

ρ ρ+ −= =

 
⋅ − ⋅ = 

 
               (18) 

it is equivalent to 

( ) ( ) ( ) ( )
1 2 1 2

1 1 1 1or ;z z z zG G G Gϕ ϕ ϕ ϕ
ρ ρ ρ ρ

− + − += =        (19) 

and let 

2 2

1 d 1 d 0,
d dz H z H
z z
φ ϕϕ φ

ρ ρ
= =

 
− ⋅ = 
 

               (20) 

it is equivalent to 
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Thus, by the interface and the boundary conditions of the function ϕ  as 
above, then we have 
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Finally, we have 

, , .φ ϕ φ ϕ=P Q                       (24) 

In fact, there is the following relation between the operators P and Q: 
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Obviously, ϕ  is the conjugate function of φ , that is also called the conju-
gate eigenfunction of the eigenfunction φ . In this paper, we assume that ( )zρ  
is a piecewise constant function. Under above assumptions, ϕ  should satisfy 
the following ordinary differential equation: 
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We have the similar solution form of Equation (27) as Equation (3): 
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where the parameters 1,C C  and 2C  are to be determined. 
In general, we choose 1C = , then we can write down the solution as 
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Making ( ) ( )2z H Hϕ γ ϕ= i , we can get the same nonlinear equation of the 
eigenvalue λ  as Equation (6). As a result, we give Theorem 1 as follows. 

Theorem 1: For the above-mentioned Helmholtz operator P, then its conju-
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gate operator is Q. 
Remark 1: Although the two operators P and Q have the same representation, 

their RBCs are different. 

2.3. Proof of the Cross Orthogonality between the Eigenfunctions 
and Their Conjugate Eigenfunctions 

In this section, we prove the cross orthogonality of the linearly-independent ei-
genfunctions ( )j zφ  and their linearly-independent conjugate eigenfunctions 

( )i zϕ , ( ), 1, 2, , ;i j m i j= ≠
. 

Consider the eigenvalues and eigenfunctions of both ( )j zφ  and ( )i zϕ , 
which satisfy 
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At last, we also have the following conclusion. 
Theorem 2: For the linearly-independent eigenfunctions ( )j zφ  and their 

linearly-independent conjugate eigenfunctions ( )i zϕ , ( ), 1, 2, , ;i j m i j= ≠
, 

as mentioned above, then there is the cross orthogonality, that is,  

0

1 d 0
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i j zϕ φ
ρ
⋅ ⋅ =∫ , ( ), 1, 2, , ;i j m i j= ≠

. 
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3. Numerical Examples 

In this section, we will verify the method presented in the previous sections. 
Considering a Pekeris waveguide, we let  

1 2 1 216, 0.7 16, 1, 1.7, 1, 2.5G Hκ κ ρ ρ= = × = = = = . These parameters are taken 
from reference [1]. By the nonlinear Equation (6), we define 

( ) ( ) ( )2 1
1

1 2

tan and AE .f G fρ γ
λ γ λ

ρ γ
= ⋅ + ⋅ ⋅ =i

 
We find out the roots of the equation ( ) 0f λ =  by Newton’s iteration me-

thod and perform ten iterations for each root, where the initial values for the 
leaky modes are used by the asymptotic solutions, and initial values for the 
propagating modes are chosen by some appropriate values within the interval 

( ) ( )2 2 2 2
1 2 1 2min , , max ,κ κ κ κ 

  . The details of choosing initial values are listed in 
the reference [3]. As a result, we obtain the eigenvalues’ distributions of the op-
erators P  and Q , which are shown in Figure 1. And these distributions really 
fit the physical meaning. 

To numerically verify the cross orthogonality, we list some eigenvalues of the 
operator P in detail as follows: 

1 248.4729239386205,λ =  
2 225.4329511872122,λ =  

3 298.5970311054733 26.80248573108962 ,λ = − + i  

4 160.3961093395291 21.76064335348847 ,λ = − + i  

5 132.0985417466585,λ =  
6 186.1806848042874,λ =  

 

 
Figure 1. The original eigenvalues of the operator P  represented by “o” and the eigen-
values of the operator Q  represented by “+”. 
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7 41.927161372191101 16.370663337533994 ,λ = − + i  

8 56.807916692538242 10.204330264562326 ,λ = + i  

where their error estimations about AE are listed in Table 1. 
Then we choose the adaptive Gauss integral (AGI) method and numerical 

computation to verify the orthogonality of the eigenfunctions’ set  
( ){ }| 1, 2, ,8j z jφ =   and its conjugate set ( ){ }| 1, 2, ,8i z iϕ =  , that is, we 

may find the appropriate integration method to let 
0

1 d
H

i j zϕ φ
ρ
⋅ ⋅∫  be close to 0  

when i j≠ . And the numerical results shown in Table 2 verify the cross ortho-
gonality. The real and the imaginary components of the original and the conjugate 
eigenfunctions from the above modes are shown in Figures 2-5, respectively. 

From Figures 2-5, we can see that the eigenfunctions of the propagating 
modes change relatively stable than the ones of the leaky modes. Furthermore, 
for leaky modes, the larger the absolute values of the eigenvalues are, the more 
drastic the change of the eigenfunctions are. And these changes are in accor-
dance with the physical significance. Thus, if there is an eigenfunction corres-
ponding to a leaky mode, it leads to verification difficulty of the cross orthogo-
nality between the eigenfunction ( )zφ  and its conjugate one ( )zϕ , since 
there is the numerical computation difficulty of the integration for the violent 
oscillation eigenfunctions. 

4. Conclusion 

In this paper, firstly, the conjugate operator Q of the Helmholtz operator P with 
the RBC is constructed. Secondly, it is theoretically proved that there is the cross 
orthogonality between the linearly-independent eigenfunctions of the operator P  

 
Table 1. Approximate errors of the equation ( ) 0f λ = . 

Eigenvalue AE Eigenvalue AE 

1λ  
143.585 10−×  5λ  

152.181 10−×  

2λ  
146.145 10−×  6λ  

143.955 10−×  

3λ  
141.099 10−×  7λ  

166.515 10−×  

4λ  
144.546 10−×  8λ  

151.780 10−×  

 
Table 2. The orthogonality between different modes. 

AGI 5λ  6λ  7λ  8λ  

1λ  
112.8 10−×  

145.2 10−×  
92.5 10−×  

92.4 10−×  

2λ  
103.2 10−×  

145.7 10−×  
81.5 10−×  

81.9 10−×  

3λ  
41.1 10−×  

73.9 10−×  0.038 0.044 

4λ  0.0013 74.6 10−×  −0.043 0.0498 
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Figure 2. The real and the imaginary components of original eigenfunctions for propagating modes, where the left and the right 
figures are represented as the real and the imaginary components of the original eigenfunctions for propagating modes (corres-
ponding to 1 2 5, ,λ λ λ  and 6λ ), respectively. 
 

 
Figure 3. The real and the imaginary components of original eigenfunctions for leaky modes, where the left and the right figures 
are represented as the real and the imaginary components of the original eigenfunctions for leaky modes (corresponding to 

3 4 7, ,λ λ λ  and 8λ ), respectively. 
 

and the linearly-independent eigenfunctions of the operator Q. Finally, Numer-
ical simulation results demonstrate that the cross orthogonality has been almost 
founded when the RBC is used to truncate the unbounded domain. Namely, it is 
possible that the high-precision computation of the coordinate transformation 
under two different local bases is helpful for obtaining more actual propagation 
behavior. However, we also see that the AGI method has great influence on the  
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Figure 4. The real and the imaginary components of conjugate eigenfunctions for propagating modes, where the left and the right 
figures are represented as the real and the imaginary components of the conjugate eigenfunctions for propagating modes (corres-
ponding to 1 2 5, ,λ λ λ  and 6λ ), respectively. 
 

 
Figure 5. The real and the imaginary components of conjugate eigenfunctions for leaky modes, where the left and the right figures 
are represented as the real and the imaginary components of the conjugate eigenfunctions for leaky modes (corresponding to 

3 4 7, ,λ λ λ  and 8λ ), respectively. 
 

accuracy of results, especially for the oscillation eigenfunctions corresponding to 
the leaky modes with the large absolute values of the eigenvalues. Furthermore, the 

accuracy of 
0

1 d
H

zϕ φ
ρ
⋅ ⋅∫  is largely dependent on the precision of eigenfunctions. 

Therefore, the higher-precision integral method is needed to study in the fu-
ture. 
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