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Abstract 
We have obtained approximate bound state solutions of Schrödinger wave 
equation with modified quadratic Yukawa plus q-deformed Eckart potential 
Using Parametric Nikiforov-Uvarov (NU) method. However, we obtained 
numerical energy eigenvalues and un-normalized wave function using con-
fluent hypergeometric function (Jacobi polynomial). With some modifica-
tions, our potential reduces to a well-known potential such as Poschl-Teller 
and exponential inversely quadratic potential. Numerical bound state ener-
gies were carried out using a well-designed Matlab algorithm while the plots 
were obtained using origin software. The result obtained is in agreement with 
that of the existing literature. 
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1. Introduction 

Researchers have put on their interest over the years with the aim of investigat-
ing the bound state solutions of relativistic and nonrelativistic wave equations 
for different potentials. A few of these potentials have been solved exactly [1], 
while others can only be solved approximately [2] [3], with the use of different 
approximation schemes [4] [5]. Subsequently, various methods have been ap-
plied to obtain the solutions of the nonrelativistic wave equations with a chosen 
potential model. Methods include the factorization method [6], functional anal-
ysis approach [7] [8] [9], supersymmetry quantum mechanics (SUSYQM) [10], 
Nikiforov-Uvarov method (NU) [11] [12] and others. 
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The Eckart potential is one of the most important exponential-type potentials 
in the literature and it has been widely used in physics and chemical physics [13] 
[14] [15]. Recently, [16] has employed the asymptotic iteration method to calcu-
late any ℓ-state solutions of the Schrödinger equation with the Eckart potential 
by proper approximation of the centrifugal term. Energy eigenvalues and cor-
responding eigen functions are obtained explicitly. The energy eigenvalues are 
calculated numerically for some values of ℓ and n. 

The Yukawa potential, which is also known as the screened Coulomb poten-
tial, is greatly important with applications cutting across nuclear physics and 
condensed matter physics [17] [18]. The screened Coulomb potential is used 
mostly in short-range interactions [19] [20]. The Yukawa potential is known to 
be the potential of a charged particle in a weakly non-ideal plasma. It also de-
scribes the charged particle effects in a sea of conduction electrons in solid-state 
physics. 

With approximate analytical solution of the Yukawa potential with arbitrary 
momenta using the Nikiforov-Uvarov method, they obtained approximate ana-
lytical solutions of the radial Schrödinger equation for the Yukawa potential, and 
the energy eigenvalues and the corresponding eigen functions are calculated in 
closed forms [21]. Some numerical results are presented and show that these re-
sults are in good agreement with those obtained previously by other methods. As 
the screening parameter tends to zero, the energy levels of Yukawa potential are 
equivalent to that of the familiar pure Coulomb potential. Eckart potential is one 
of the most important exponential type potentials for the study of nuclear forces 
[22] [23]. Basically, many properties of nuclear forces are explained using Yu-
kawa potential and to predict the existence of pi-meson. This is the main reason 
why the study of the combination of the two potential models is very significant 
and highly essential. However, after the above mentioned studies on these dif-
ferent potentials and their lofty importance, we seek to investigate the bound 
state solutions of the Schrodinger equation with the modified quadratic Yukawa 
plus q-deformed Eckart potential of the form: 

( )
( )

2 2 2

1 2 22 2 2

e 1 e 4e
1 e 1 e

r r r
o

r r

vV r v v
r q q

α α α

α α

− − −

− −

  +  = + +   −  − 

,        (1) 

where 1 2, ,ov v v  are the potential depth, q is the deformation parameter, r is the 
inter-nuclear distance and α  is the screening parameter. It can be deduced 
that when 1 2 10,ov v v v= = = −  and 1q = − , the above combined potential re-
duces to the Poschl-Teller potential. When 1 2 0v v= = , the potential reduces to 
Exponential inversely quadratic potential. Using the parametric NU method, we 
derive the energy bound state solutions and their wave functions of the Schro-
dinger equation for the modified quadratic Yukawa plus q-deformed Eckart po-
tential, analytically and numerically. The rest of the manuscript is organized as 
follows: In Section 2, a review of Nikiforov-Uvarov method is presented. The 
radial solutions of Schrodinger equation are presented in Section 3. The numer-
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ical solutions are presented in Section 4 while discussion and conclusion are 
presented in Sections 5 and 6 respectively.  

2. Nikiforov-Uvarov Method: Parametric Method 

The parametric form is simply using parameters to obtain explicitly energy ei-
genvalues and it is based on the solutions of a generalized second order linear 
differential equation with special orthogonal functions [2]. The hypergeometric 
NU method has shown high utility in calculating the exact energy levels of all 
bound states for some solvable quantum systems.  

Given a second order differential equation of the form 

( ) ( ) ( ) ( )
( ) ( )2 0
s

s s s
s s

στψ ψ ψ
σ σ

′′ ′+ + =                   (2) 

where σ  and σ  are polynomials at most degree and τ  is first degree poly-
nomials. The parametric generalization of the N-U method is given by the gene-
ralized hypergeometric-type equation 

( ) ( ) ( )
( )21 2

1 2 322
3 3

1 0
1 1

c c ss s s s
s c s s c s

ψ ψ χ χ χ ψ−′′ ′  + + − + − = − −
     (3) 

Thus Equation (2) can be solved by comparing it with Equation (3) and the 
following polynomials are obtained 

( ) ( ) ( ) ( ) ( ) 2
1 2 3 1 2 3, 1 ,s c c s s s c s s s sτ σ σ χ χ χ= − = − = − + −  

The parameters obtainable from Equation (3) serve as an important tool for 
finding the energy eigenvalue and eigenfunctions. 

Where 1 2,c c  and 3c  are parametric constants, other parametric constants 
are given below 
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                (4) 

The energy equation is given as  

( ) ( ) ( )2 5 9 3 8 3 7 3 8 8 92 1 2 1 1 2 2 0c n n c n c c c n n c c c c c c − + + + + + + + + + =  (5) 

The total wave function is given by 
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( ) ( ) ( ) ( ) [ ] ( )13 10 1112 ,
3 31 1 2c c cc

n ns s s N s c s P c sψ φ χ= = − −         (6) 

3. The Radial Solutions of Schrödinger Equation of the  
Proposed Potential 

The Schrödinger equation is given by 

( ) ( ) ( )
2

2 2 2

1d 2 0
d nl

l lR E V r R r
r r

µ + 
+ − − =   
 

              (7) 

where µ  is the reduced mass, nlE  is the rotational vibrational energy spectra 
of the diatomic molecules,   is the reduced Planck’s constant, n and l are the 
radial and orbital angular momentum quantum numbers, respectively [7] [14]. 

Substituting Equation (1) into (7) gives 
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(8) 

Let’s define suitable approximation to the centrifugal term as 
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Substituting Equation (9) into (8) gives 
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  (10) 

In order to present Equation (10) in a form that is conformable to Equation (3) 
then, there is a need for the transformation 

2 2
2 2 2 4 2 2

2 2
d d de 4 e 4 e
d d d

r r rR R Rs q q q
r s s

α α αα α− − −= = = +  and 2e r s
q

α− =    (11) 

Substituting (11) into (10) and simplifying gives 
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where  
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Comparing with parametric NU 
2 2 2 2 2 2 2 2 2 2
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(15) 

3.1. Energy of the Proposed Potential 

The energy can be calculated by substituting Equation (14) and Equation (15) 
into (5) with simple mathematical algebraic simplification. Hence, the energy 
eigen equation become 
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Factorizing and rearranging Equation (16) 
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3.2. Deductions from the Energy Equation  

Case 1: 
If we replace parameter 1 2 10,ov v v v= = = −  and 1q = − , then the potential 

function reduces to Poschl-Teller potential which is written as: 

( )
( )
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22

4 e

1 e
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−

−

−
=

+
                          (19) 

The energy equation for Poschl-Teller potential becomes: 
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Case 2: 
If we also replace parameter 1 2 0v v= =  we obtain exponential inversely qu-

adratic potential which is expressed as 

( )
2
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e rvV r
r

α−

=                           (21) 

Also, the energy equation becomes: 
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(22) 

3.3. The Wave Function of the Proposed Potential 

The wave function for the proposed potential can be calculated using equation 
(6), expressed in terms of Jacobi polynomial and substituting the necessary pa-
rameters. Thus, 
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       ( )1 2s
 
 
   −

(21) 

where nN  is the normalization constant. 

4. The Numerical Computation for Energy Equation of the  
Proposed Potential Using Schrödinger Equation 

The numerical computation was carried out using MATLAB 8.0 software while 
graphical plot was carried out using origin software. The computation parame-
ters have been incorporated in the numerical table. The energy equation for the 
proposed potential is given in Equation (18). The computation was carried for 
various range of values of the screening i.e. for large and small values of α . 
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5. Discussion  

The results of the numerical computation that were carried out for the screening 
parameter α = (0.1 to 0.5) with the potential depths V0 = 0.3, V1 = 0.1, V2 = 0.2. 
Tables 1-5 show that for α = (0.1 to 0.5), the numerical bound state energy de-
creases with an increase in quantum state. It is also observed that the energy in-
creases with a decrease in screening parameter α. However, the energy spectral 
diagram as shown in Figures 1-5 shows unique quantization of different energy 
levels with respect to the quantum state. The numerical bound state energies ob-
tained for the various values of α are predominantly negative which the suffi-
cient and necessary condition for bound state solutions. Also the negative bound 
state eigenvalues obtained show that the potential is suitable for describing par-
ticle state and their bound state properties. 

6. Conclusion 

We used the Nikiforov-Uvarov method to compute bound state solution of 
non-relativistic wave equation. We developed a new potential model which is the  
 
Table 1. Numerical computation for 0 1 20.3, 1.0, 1.0, 0.1, 0.2, 1.0v v v qµ= = = = = = . 

n ( )0.1 , 0nlE lα = =  ( )0.1 , 1nlE lα = =  ( )0.1 , 2nlE lα = =  ( )0.1 , 3nlE lα = =  

0 −0.358723860422 −0.373451796993 −0.402514181567 −0.445267610477 

1 −0.475369012878 −0.491714416155 −0.523889432048 −0.571048112966 

2 −0.600647379426 −0.618682417516 −0.654093357336 −0.705803142808 

3 −0.734864206154 −0.754635641966 −0.793364191204 −0.849724805080 

4 −0.878257368475 −0.899795273869 −0.941895045046 −1.002973867370 

5 −1.031005151520 −1.054328978440 −1.099835318390 −1.165677990550 

6 −1.193240706270 −1.218363132520 −1.267299510740 −1.337937137990 

7 −1.365064290600 −1.391993618710 −1.444375701660 −1.519829600630 

8 −1.546552317100 −1.575293981950 −1.631132241580 −1.711417064680 

 
Table 2. Numerical computation for 0 1 20.3, 1.0, 1.0, 0.1, 0.2, 1.0v v v qµ= = = = = = . 

n ( )0.2 , 0nlE lα = =  ( )0.2 , 1nlE lα = =  ( )0.2 , 2nlE lα = =  ( )0.2 , 3nlE lα = =  

0 −0.433780559429 −0.494363866152 −0.610559494829 −0.776706656632 

1 −0.681533081008 −0.755505128052 −0.894725310230 −1.089765618020 

2 −0.965541546776 −1.053407891020 −1.216334999480 −1.440874970160 

3 −1.287362985910 −1.389313601350 −1.576247051710 −1.830596392810 

4 −1.647812113560 −1.763917890310 −1.974991302070 −2.259310793850 

5 −2.047347843110 −2.177631633140 −2.412903173260 −2.727276909810 

6 −2.486246379460 −2.630710863480 −2.890202843360 −3.234674069180 

7 −2.964683306910 −3.123322720630 −3.407039979430 −3.781629551740 

8 −3.482775365680 −3.655580683110 −3.963519540590 −4.368235808860 
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Table 3. Numerical computation for 0 1 20.3, 1.0, 1.0, 0.1, 0.2, 1.0v v v qµ= = = = = = . 

n ( )0.3 , 0nlE lα = =  ( )0.3 , 1nlE lα = =  ( )0.3 , 2nlE lα = =  ( )0.3 , 3nlE lα = =  

0 −0.523052525651 −0.661370123967 −0.919655127988 −1.28258956659 

1 −0.913253413467 −1.097274964830 −1.423624712520 −1.86403452990 

2 −1.388776992580 −1.619048677850 −2.014441440220 −2.53317685538 

3 −1.952153981160 −2.228660567050 −2.693363583100 −3.29078021582 

4 −2.604372373890 −2.927007369790 −3.461069410510 −4.13731637556 

5 −3.345895349130 −3.714551928370 −4.317951065080 −5.07308614428 

6 −4.176968473750 −4.591556423970 −5.264249578690 −6.09828854546 

7 −5.097733958340 −5.558180233760 −6.300120794220 −7.21305986496 

8 −6.108279821150 −6.614525733030 −7.425669769950 −8.41749630564 

 
Table 4. Numerical computation for 0 1 20.3, 1.0, 1.0, 0.1, 0.2, 1.0v v v qµ= = = = = = . 

n ( )0.4 , 0nlE lα = =  ( )0.4 , 1nlE lα = =  ( )0.4 , 2nlE lα = =  ( )0.4 , 3nlE lα = =  

0 −0.627591541101 −0.874606577279 −1.32739264725 −1.95796715215 

1 −1.167338531860 −1.522463516870 −2.11456444317 −2.89392389718 

2 −1.865350921070 −2.326614313680 −3.05852731571 −3.98749113984 

3 −2.722717879280 −3.289031117730 −4.16067450669 −5.23951982221 

4 −3.739774576790 −4.410499607300 −5.42170064184 −6.65050810572 

5 −4.916658364750 −5.691393534650 −6.84198775364 −8.22076276659 

6 −6.253435948480 −7.131913188680 −8.42176256885 −9.95048181780 

7 −7.750143631940 −8.732175506250 −10.1611679045 −11.8397983528 

8 −9.406802865400 −10.49225332580 −12.0602981088 −13.8888049619 

 

 
Figure 1. Energy spectral diagram with Schrödinger equation for 0.1α = . 
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Table 5. Numerical computation for 0 1 20.3, 1.0, 1.0, 0.1, 0.2, 1.0v v v qµ= = = = = = . 

n ( )0.5 , 0nlE lα = =  ( )0.5 , 1nlE lα = =  ( )0.5 , 2nlE lα = =  ( )0.5 , 3nlE lα = =  

0 −0.749317899709 −1.13386318743 −1.83234253525 −2.80079527677 

1 −1.439799855380 −2.03415440794 −2.96841426538 −4.17870059279 

2 −2.388456731380 −3.18228093061 −4.35154186289 −5.80426205934 

3 −3.589627738370 −4.57947155574 −5.98306986743 −7.67835319798 

4 −5.041897269490 −6.22617321021 −7.86363513976 −9.80146692921 

5 −6.744744343520 −8.12258737350 −9.99357686299 −12.1738997806 

6 −8.697932398990 −10.2688182127 −12.3730919053 −14.7958400397 

7 −10.90133853290 −12.6649249983 −15.0023022605 −17.6674127310 

8 −13.35489256650 −15.3109439381 −17.8812875111 −20.7887040137 

 

 
Figure 2. Energy spectral diagram with Schrödinger equation for 0.2α = . 

 

 
Figure 3. Energy spectral diagram with Schrödinger equation for 0.3α = . 
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Figure 4. Energy spectral diagram with Schrödinger equation for 0.4α = . 

 

 
Figure 5. Energy spectral diagram with Schrödinger equation for 0.5α = . 

 
modified quadratic Yukawa plus q-deformed Eckart potential. This potential 
reduces to a well-known potential called the Poschl-Teller potential and the ex-
ponential inversely quadratic potential. We also implement some algorithms to 
carry out numerical computation for the resulting energy equations for various 
values of screening parameters. Our analytic and computational results for the 
proposed potential are in agreement with the existing literature.  
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