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Abstract 
In this paper we analytically and numerically consider the dynamical beha-
vior of a certain predator-prey system with Holling type II functional re-
sponse, including local and global stability analysis, existence of limit cycles, 
transcritical and Hopf bifurcations. Mathematical theory derivation mainly 
focuses on the existence and stability of equilibrium point as well as threshold 
conditions for transcritical and Hopf bifurcation, which can in turn provide a 
theoretical support for numerical simulation. Numerical analysis indicates 
that theoretical derivation results are correct and feasible. In addition, it is 
successful to show that the dynamical behavior of this predator-prey system 
mainly depends on some critical parameters and mathematical relationships. 
All these results are expected to be meaningful in the study of the dynamic 
complexity of predatory ecosystem. 
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1. Introduction 

In 1965, C.S. Holling proposed three kinds of functional responses for different 
kinds of species to model the phenomena of predation, which made the tradi-
tional non-autonomous Lotka-Volterra predator-prey system more realistic [1] 
[2] [3] [4]. These functional responses describe how predators transform the 
harvested prey into the growth of itself and were discussed by numbers of re-
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searchers, including the stability of equilibrium points, existence of Hopf bifur-
cation, limit cycles, homoclinic loops, and even catastrophe [5]. 

For the Rosenzweig-MacArthur Model (R-M model) or the predator-prey 
model with Holling type II functional response, [6] studied stability of the R-M 
model by using graphical method, [7] studied global stability of the R-M model. 
In [8], conditions for an interior equilibrium are given, and the stability of this 
equilibrium is analyzed. Certain critical cases, some of which cannot occur in the 
usual model are also discussed. (If m = 1, q(y) = 0, the above system reduces to 
the “usual” system.) [9] investigated a predator-prey system for the global stabil-
ity and existence of limit cycles; they proved that there exist at least two limit 
cycles by using qualitative analysis and the idea of Poincare-Bendixson theory. 

In recent years, for a more complicated system with Holling type II functional 
response, Liu et al. [10] investigated a predator-prey model with Holling type II 
functional response incorporating a constant prey refuge. The authors studied 
the instability and global stability properties of the equilibrium points and the 
existence and uniqueness of limit cycle. Lv et al. [11] considered a model to de-
scribe the harvesting for the phytoplankton and zooplankton based on plausible 
toxic-phytoplankton-zooplankton systems. Shanbing Li et al. [12] studied a spa-
tially heterogeneous predator-prey model where the interaction is governed by 
Holling II functional response. They showed that the degeneracy for the prey 
and predator has distinctly different effects on the coexistence states of the two 
species when intrinsic growth rate of the prey is above a certain critical value. P. 
D. N. Srinivasu et al. [13] considered a prey-predator model with Holling type II 
of predation and independent harvesting in either species. Their study showed 
that using the harvesting efforts as controls can break the cyclic behavior of the 
system and drive it to a required state. By introducing impulsive control strategy, 
Yongzhen Pei et al. [2] investigated the dynamics behaviors of one-prey mul-
ti-predator model with Holling type II functional response with the help of Flo-
quet theorem and small amplitude perturbation method. They showed that mul-
ti-predator impulsive control strategy is more effective than the classical and 
single one. 

Motivated by the above works, especially the references [8] and [9], we inves-
tigate a certain predator-prey system with density-dependent predator specific 
death rate and predator mutual interference incorporating a square term, which 
is described by the following nonlinear ordinary differential equations 

1 1
1

1 ,x xyx r x m x
K a x

α 
= − − −  + 
                      (1a) 

2
2

exyy m y dy
a x
α

= − −
+

                         (1b) 

subject to initial conditions ( ) ( )0 , 0 0x y > . Here, x and y are the prey and pre-
dator densities at time t, respectively. All the above positive constants have bio-
logical considerations. Parameter 1r  denotes the intrinsic growth rate of the 
prey; 1K  represents the carrying capacity of the environment; a is the 

https://doi.org/10.4236/jamp.2020.83042


S. T. Wang et al. 
 

 
DOI: 10.4236/jamp.2020.83042 529 Journal of Applied Mathematics and Physics 
 

half-saturation constant; α  is the search efficiency of predator for prey; 1m  
and 2m  are the mortality rate of the prey and predator species, respectively; e is  
the biomass conversion; d is the intra-specific competition coefficient. The term 

xy
a x
α
+

 named Holling type II functional response describes the functional re-

sponse of the predator. The specific growth term 1
1

1 xr x
K

 
− 

 
 governs the increase  

of the prey in the lack of predator. The square term 2dy  denotes intrinsic de-
crease of the predator. Such ordinary differential system of predator-prey popu-
lations is familiar to the Lotka-Volterra system in which populations have the 
addition of damping terms (or self inhabit) [9]. 

The main purpose and conclusions of this paper are to analyze equilibrium 
stability and bifurcations of the above system by using qualitative analysis and 
bifurcation theories. This paper is organized as follows. Preliminaries, such as 
non-negativity, boundness, permanence and invariant sets are given in Section 2. 
In Section 3, we give existence and sufficient conditions for the stability analysis 
of equilibrium points. In critical cases of interior equilibrium, we describe suffi-
cient criteria to illustrate focus-center problem and problem of higher-order 
equilibrium. Existence and non-existence conditions of limit cycle(s) are also 
presented in this section. In Section 4, analyses of transcritical and Hopf bifurca-
tions are presented. Here we choose d as a Hopf bifurcation parameter to con-
sider limit cycle(s) further and point out that the control parameter d how to af-
fect the complexity of this system. In Section 5, we carry out numerical simula-
tions and conclusions of our system. 

2. Preliminaries 
2.1. Invariant Sets 

Denotes the first quadrant as 2R+ , and its closure is 2 2R R+
+ = . For practical bi-

ological consideration, system (1) is defined on the domain 2R+  and all the 
solutions are positive. It is easy to prove lemma 1. Thus, any trajectory starting 
from 2R+  cannot cross the coordinate axes. 

Lemma 1. All the solutions of system (1) are non-negative with the 
non-negative initial value ( ) ( )( )0 0,x t y t , i.e. 2R+  is an invariant set. 

We will give some cases about invariant sets for system (1) in supplementary 
to lemma 1. 

Remark. a) If { } 1
2 2 1

1

max ,0 , : 1 mA x x K
r

 
≥ = − 

 
 and 2max ,0e mB

d
α − ≥  
 

, 

domain [ ] [ ]0, 0,A B×  is an invariant set; b) Domain [ ] [ ]1 2, 0,A A × +∞  and 

[ ] [ ]1 20, ,B B+∞ ×  is not an invariant set, if 1 1, 0A B > ; c) If 1 1r m≤  or 2e mα ≤ , 

domain [ ] [ ]1 2 1 2, ,A A B B×  ( 1 1, 0A B > ) is not an invariant set. 

2.2. Boundness 

Theorem 1 All the solutions of system (1) are bounded with non-negative ini-
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tial conditions ( ) ( )( )0 0,x t y t . 
Proof. From the equation (1a) we have inequality ( )1 1 1x x r r x K≤ − . With the 

help of [14], this implies that ( ) ( ){ }0 1max ,x t x t K≤ . We denote the positive 
upper bound as 1M . A similar argument, from the Equation (1b) we have in-
equality 

1

1

.ex eMy y dy y dy
a x a M
α α  ≤ − ≤ −  + +   

                   (2) 

Similarly, this implies that ( ) ( ) 1
0 2

1

max , :eMy t y t M
a M
α 

≤ = + 
. This completes 

the proof and the system under consideration is dissipative. 
Lemma 2. All the solutions of system (1) satisfy 

( ) ( )1 1 1 1

1

limsup , limsup .
4 4t t

r K r Kx t y t
e→∞ →∞

≤ ≤                  (3) 

Proof. Taking an auxiliary function z ex y= + , it is obvious to see that 

( )1 1 1 11 4 ,z er x x K mz er K mz≤ − − ≤ −                  (4) 

where { }1 2min ,m m m= . By applying the theory of differential inequality [15], 
we obtain 

( ) ( )( ) ( ) ( )0 01 1
01 e e ,

4
m t t m t ter Kz t z t− − − −≤ − +                 (5) 

which, upon letting t →∞ , yields ( ) 1 1limsup 4
t

z t er K
→∞

≤ . This completes the 
proof. 

Remark. It is clear to see that all the solutions of system (0) are uniformly 
bounded. 

Theorem 2. If 1 1r m≤ , then the system (1) is Lagrange stable. 
Proof. Taking the positive definite Lyapunov function ( ),V x y ex y= +  with 

infinitesimally small upper and large lower bounds, computing its Dini deriva-
tive along the trajectories of Equations (1), we have 

2
21

2
1

.er xD V m y dy
K

+ ≤ − − −                      (6) 

Thus D V+  is negative definite. This completes the proof. 

2.3. Permanence 

Theorem 3. If parameters of system (1) satisfy 

1 2
1 1 1

1

: 0,K Mr m
r a

αω  = − − > 
 

                     (7a) 

( )
( )

1
2 2

1

1
: 0,

1
e

m d
a e
α λ ω

ω
λ ω

 −
= − > + − 

                  (7b) 

where ( )0,1λ ∈ , then system (1) is permanent. 
Proof. By theorem (2) we have a positive upper bound 1ξ  such that 

( ) ( ){ } 1max limsup ,limsup .
t t

x t y t ξ
→∞ →∞

≤                  (8) 
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From Equation (1a) we have 

( )1 1 2 1 1 ,x x r m M a r x Kα≥ − − −  

here 2M  is defined in theorem 2. With the help of [14], this implies that 
( ) 1liminf

t
x t ω

→∞
≥ . For 0 1ε λω= , there must exit T, such that for any t T≥  we 

have ( ) ( ) 11x t λ ω≥ − , thus 

( )
( )

1 2
2

1

1
.

1
e

y m y dy
a e
α λ ω

λ ω
 −

≥ − − + − 
  

Similarly, this implies that ( ) 2liminf
t

y t ω
→∞

≥ . This completes the proof and we 
get the permanence of the system. 

3. Equilibria 

In this section we will discuss equilibria of the system (1) with their sufficient 
existence conditions and stability analysis. 

It is obvious to see that our system has following trivial equilibria: ( )0 0,0E = , 
( )1 10,E y= , ( )2 2 ,0E x= , where 1 2y m d= − . For practical or biological con-

siderations, we omit the singular point 1E . The point 2E  is a desired equili-
brium only if 1 1r m> . When 1 1r m= , the critical point 2E  becomes 0E . 

Then we make a special effort to derive the existence conditions of an interior 
equilibrium denoted by ( ),E x y∗ ∗ ∗= , where it can be given from the following 
algebraic equations 

( ) 1 1
1

, : 1 0,x yf x y r m
K a x

α 
= − − − =  + 

                  (9a) 

( ) 2, : 0.exg x y m dy
a x
α

= − − =
+

                     (9b) 

From Equation (9a) we know ( )1 1y a r m α→ −  as 0x → ; 2x x→  as 0y → ; 
from Equation (9b) we know 2y m d→ −  as 0x → ; 0x x→  as 0y → , 

( )0 2 2x am e mα= − . Thus, if the following conditions 1 1m r< , 0 20 x x< <  sa-
tisfy, an interior equilibrium *E  exists and meanwhile we have 

0 2x x x∗< < , 0 y y∗< < , where ( )21
2

14
ry a x
aK

= + . 

3.1. Equilibria Type 

Here we will use the Routh-Hurwitz criteria and the Perron’s theorems to ana-
lyze local stability and type of these equilibria by the nature of eigenvalues of Ja-
cobian matrices around them, respectively. We observed that the Jacobian ma-
trix of the system (1) is 

( )

( )

1
1 12

1

22

2

.
2

r x ay xr m
K a xa x

J
eay ex m dy

a xa x

α α

α α

 − − − − ++ =  
− − 

++  

              (10) 
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For zero point 0E , from its Jacobian matrix ( )0J E  we have: a) If 1 1r m< , 

0E  is an asymptotically stable node; b) If 1 1r m> , 0E  is a saddle. 
For the critical value 1 1r m= , 0E  is a higher order singular point. According 

to Frommer’s method, by using its Jacobian matrix and polar-coordinate- 
transformation: cos , sinx yρ θ ρ θ= = , we derive ( ) 2

2 sinR mθ θ= −  and 
characteristic equation ( ) 2 sin cosmθ θ θΘ = − . For the first simple real root 

1 = 0θ  of the characteristic equation, from the calculation ( )1 0R θ = , 
( )1 0R θ′ = , ( )1 0θΘ ≠  and 1k = , we know that 1θ θ=  is a characteristic di-

rection. While for the second simple root 2 2θ = π , it is clear to see an expan-
sion ( ) ( )2 2mθ θ θΘ = − + , i.e. 1p =  (odd number) and ( ) ( )1

2 2C m=  has the 
opposite sign as ( )2R θ . Thus 2θ θ=  is also a characteristic direction. By the 
sign of ( ) ( ) 2

2 2 sin cosR mθ θ θ θΘ = , we know that there is only one orbit tend-
ing to the critical point 0E  along the direction 2θ  in the normal regions of 
second type. 

Taking the transformation 
2

t
m
τ−

= , we have following normal form (retain 

the symbol “ ⋅ ” for simplicity) 

( ) ( ), , , ,x x x y y x y= +Φ = Ψ                       (11) 

where ( ),x yΦ , ( ) ( ), ,x y o x yΨ =  in the right hand side are analytical func-
tions, with terms starting from second order. From center manifold ( )x h y= ,  

the series of function ( ) ( )( ) 21

2 1

, ry h y y y
m K

ψ = Ψ = +  with respect to y, and  

2m =  (even number), the critical point 0E  is a saddle node and the parabolic 
sector is on the right half (x,y)-plane. 

For point 2E , from its Jacobian matrix ( )2J E  and existence condition we 

have: a) If 2
2

2

ex m
a x
α

<
+

, 2E  is an asymptotically stable node; b) If 2
2

2

ex m
a x
α

>
+

, 

2E  is a saddle. 

For the critical value 2
2

2

ex m
a x
α

=
+

, 2E  is a higher order singular point. By  

using its Jacobian matrix and polar-coordinate-transformation, we derive 
( ) ( )cosR θ θχ θ=  and characteristic equation ( ) ( )sinθ θχ θΘ = − , where 

( ) ( ) 2
1 1 cos sin .mm r

e
χ θ θ θ= − −  

The real simple root 1 0θ =  is in [ ]0, 2π , it is clear to see an expansion 
( ) ( )1 1m rθ θΘ = − − +  and ( )1 0R θ ≠ , i.e. 1p =  (odd number) and 
( ) ( )1
1 1 1C r m= −  has contrary sign with ( )1R θ . Thus 1θ θ=  is indeed a charac-

teristic direction. While ( ) ( ) ( ) ( )1 1 1 sinR r mθ θ χ θ θΘ = −  changes its sign in 
the small neighbourhood of 1θ , thus we know that there is only one orbit tend-
ing to the critical point 2E  along the direction 1θ  in the normal regions of 
second type. Another real simple root 2θ  is in ( )2,π π , it is clear to see that 
( )2 0R θ =  and 
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( ) ( ) ( )2 2
1 1 2

2 1 1 22
2

1 cos 0,
m r e

m r
m

θ θ
 −

′Θ = − + < 
  

 

i.e. 1k = , thus 1θ θ=  is also a characteristic direction. 

Taking transformations 2x x x→ + ; 2

2

xx u v
a x
α

= +
+

, ( )1 1y m r v= −  and 

1 1

t
m r
τ

=
−

, we have likewise real Jordan normal form 

( ) ( ), , , ,u u u v v u v= +Φ = Ψ                      (12) 

in here ( ),u vΦ , ( ) ( ), ,u v o u vΨ =  in the right hand side are analytical func-
tions, with terms starting from second order. From the center manifold 

( )u h v= , the series of function ( ) ( )( ) 2
2,v h v v a vψ = Ψ = +  with respect to v 

is derived, where 

( ) ( )
( )

2
2 1 1 2

2 1 1 3
2

0,
m r aex

a m r d
a x

α−
= − − + <

+
              (13) 

Combining with 2m =  (even number), the critical point *E  is a saddle 
node and the parabolic sector is on the left half (u, v)-plane. 

For the interior equilibrium *E , from its Jacobian matrix ( )*J E  and exis-
tence conditions, denoting discriminant 2

1 24A A∆ = −  with notations 

( )
( )

* * 1 *
1 * *2

1*

: ,x y r xA trJ E dy
Ka x

α
= = − −

+
                 (14a) 

( )
( )

( )
2

* *
2 * * 1 *3

*

: det ,eax yA J E dy A dy
a x
α

= = − +
+

              (14b) 

we have: 
(a) If 1 0A <  and 
(a1) 2 0A > , then *E  is an asymptotically stable node; (a2) 2 0A < , then 

*E  is a saddle; 
(b) If 1 0A =  and 
(b1) 2 0A > , then *E  is a center or a focus; (b2) 2 0A < , then *E  is a sad-

dle; 
(c) If 1 0A > , then *E  is unstable and 
(c1) 0∆ = , then *E  is a node; (c2) 0∆ < , then *E  is a focus; (c3) 0∆ >  

and 2 0A > , then *E  is a node; (c4) 0∆ >  and 2 0A < , then *E  is a saddle. 
Remark. If 1 * 0A dy+ < , *E  is asymptotically stable. 

3.2. The Special Case: ,1 20 0A A= >  

If the interior equilibrium *E  exists and 1 2= 0, > 0A A , i.e. the Jacobian ma-
trix ( )*J E  has a pair of purely imaginary eigenvalues 1,2 iλ β= ± , in here 

2Aβ = , or *E  is a center of local linear approximation of system (1). We 
consider this critical case or the center and focus problem by the H. Poincare’s 
formal series method. With the application of linear transforms 
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* *,x x x y y y→ + → +  and 
( )

*
* 2

*

, eayx dy u v y u
a x
α

β= + =
+

 (or  

( )
*

* 2
*

, eayx u dy v y v
a x
α

β= − + =
+

), the above system (1) transforms into following 

normal form 

( ) ( ), , , ,u v P u v v u Q u vβ β= + = − +                    (15) 

where higher order terms ( ),P u v  and ( ),Q u v  in the right hand side of the 
above system are all real analytical functions of u and v, with terms starting from 
second order. 

Suppose that the above system has a first integral in the form of  
( ) ( ) ( )2 2

3 4, , ,F u v u v F u v F u v= + + + + , where ( ),kF u v  is a homogeneous 
polynomial with order k ( 3,4,k = 

). Computing its derivative along the above 
system, we have its total derivative 

( )( ) ( )( )3 2 3 2
d 2 2 ,
d u v
F u F v P v F u Q
t

β β= + + + + + + + − + +       (16) 

where ( ),kP u v  and ( ),kQ u v  are homogeneous polynomials in u, v of degree 
k ( 2,3,k = 

). In order to get Fourier series for further analysis, we firstly take 
the polar-coordinate-transformation cos , sinu r v rθ θ= =  and assume  

( )k
k kF r θ= Φ  ( 3,4,k = 

), then following recurrence relations are derived by 
comparing coefficients: 

( ) ( ) ( )

( ) ( ) ( )

3
3 3 2 23

4
4 4 3 2 3 3 2 34

d 2, : ,
d

d 1, : 2 2 ,
d u v

uP vQ
r

uP P F vQ Q F
r

φ θ φ θ
θ β

φ θ φ θ
θ β

Φ
= = +

Φ
= = + + +



 

From a complicated expression of function ( )3φ θ  or the integral  

( )2
30

d 0φ θ θ
π

=∫ , we know that ( )3φ θ  is precisely a periodic function of period 

2π . Thus the focus value ( )1
0c  of *E  reads 

( ) ( )
2 2

4 3 8 3 7 2 2 3 2 61 2
0 1 1 1 1 1 1 1 1 1 2 13 11 3

1

2 2 5
1 1 1 2 1 1

2 2 3 2 2 2 4 3 4
1 1 2 1 1 1 1 2 1 1

3 2 2 4 2
1 1 1 2 1 1

6 15
2

1 920
4 40

1 10 8 15
2

5 1 76
3 12 6

e s asc r s ar s a eK r a r K r s s
K a

a ae K a r K s r s

ae K r s a e K r a K r s a r s

ar a e K r eas K a r

α
α α

β

α α

α α α

α α

= − + + + −
 + + − 
 

 + − + − + 
 

+ − + − 2 2 2 2 3
1 1 2 1 2 1

1
6

a K r s K s sα α + 
 

 

2 2 2 4 2 3 3 2 3 2
1 1 2 1 1 1 2 1 1 2

2 2 2 5 3 2 3 5 2 2 2 2
1 1 2 1 1 1 1 1 2 1 1 2

4 2 2 2 2 2 3 5 2 2
1 2 1 1 2 1 2 1 1 1 2

3 15 3
2 2

5 12
2 2

1 1 ,
2 2

a a e K r s a e K r eK s a K r s

a K r s a r s a K a e K r s a er ae K s

a r s a K r s K s s a eK r s

α α α α

α α α α

α α α

+ + + −


 + + + + + 


− + − +  

 (17) 
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where *:a a x= + , 1 *:s x=  and 2 *:s y=  for later convenience. When ( )4
0 0c ≠ , 

the point *E  is a fine focus of order 1. If ( )4
0 0c > , *E  is an unstable fine focus; 

If ( )4
0 0c < , *E  is a stable fine focus. When ( )4

0 0c = , continuing this procedure 
to obtain (6)

0c . 

3.3. The Special Case: ,2 10 0A A= ≠  

In this section, we consider a critical case: 2 10, 0A A= ≠ , i.e. *E  is a critical 
point of higher order and its Jacobian matrix with zero eigenvalue can be re-
written as 

( )
* *

* **

* *

,
x x

a x a xJ E
dy dy

αλ α

λ

 − + +=  
 − 

                     (18) 

where positive parameter 
( )*

: ea
d a x
αλ =
+

. By using its Jacobian matrix and the 

polar-coordinate-transformation, we derive function 

( ) ( )*
*

*

cos sin cos sinxR dy
a x
α

θ θ θ λ θ θ
 

= + − + 
             (19) 

and its characteristic equation 

( ) ( )*
*

*

cos sin cos sin 0.xdy
a x
αθ θ θ λ θ θ

 
Θ = − − = + 

            (20) 

It is clear to see that the real roots 1,2θ  in ( ) ( )0, 2 , 2π π 3π  respectively 
satisfy 

( )* *
1 2

*

tan , tan .
dy a x

x
θ θ λ

α
+

= =  

Case I: 1θ θ=  
In this case, for 1θ θ= , ( )1 0R θ ≠  if and only if 1tanθ λ≠ . With some cal-

culation, we derive ( ) ( )1
1 1R cθ = −  and series of function ( )θΘ  at 1θ : 

( ) ( ) ( )1
1 1cθ θ θΘ = − + , where 

( ) ( ) ( ) ( )
( )

2 22 2 2 2
* * * * * * * 11

1 3 2 2
* *

sin
,

d y a x x ady x dx y
c

a x d y

α αλ θ + + − + =
+

      (21) 

i.e. 1p =  (odd number), ( )1R θ  and ( )1
1c  have opposite sign. Thus 1θ θ=  is 

a characteristic direction. While ( ) ( )1R θ θΘ  changes its sign in the small 
neighbourhood of 1θ , thus we know that there is only one orbit tending to the 
critical point 2E  along the direction 1θ  in the normal regions of second type. 

If 1tanθ λ= , then ( ) ( )1
1 1 0R cθ = = , while 

( ) ( ) ( )
( )

22 2 2 2 2 2 2 2 2
* * * * * * * * 1

1 3 2 2
* *

2 sin
( ) 0.

d y x ad x y a d y d y x dy a
R

a x d y

α λ α λ θ
θ

 + + + + +   ′ = − <
+

 

Thus 1θ θ=  is also a characteristic direction. 
Case II: 2θ θ=  
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In this case, for 2θ θ= , we have ( )2 0R θ = , 

( ) ( ) ( ) ( )
( )

22
* * * 2

1 2
*

1 sin
0

ax dy a x
R

a x
λ λ θ

θ
λ

+ + +  ′ = − <
+

 

and expression of function ( )θΘ  at 2θ : ( ) ( ) ( )1
2 2cθ θ θΘ = − + , where 

( ) ( )( ) ( )
( )

22
* * * * 21

2 2
*

1 sin
.

ady x dx y
c

a x
λ αλ θ

λ

+ − +
= −

+
              (22) 

If 1tanθ λ≠ , then ( )1
2 0c ≠  and 1θ θ=  is not a special direction; If 1tanθ λ= , 

then 1θ θ=  is a characteristic direction. 
From now on, making a change of variables *x x x→ + , *y y y→ + , and 

taking transformations *

*

x ux v
a x
α

= +
+

, *y dy u vλ= +  and 
1

t
A
τ

= . Substituting 

them into the system (1), we have following normal form 

( ) ( ), , , ,u u u v v u v= +Φ = Ψ                       (23) 

where ( ),u vΦ , ( ) ( ), ,u v o u vΨ =  in the right hand side are analytical func-
tions, with terms starting from second order. From center manifold ( )u h v=  
and series of function ( ) ( )( ) 2 3

2 3,v h v v a v a vψ = Ψ = + +  with respect to v, 
where 

( )( )
( )

4 2 2
* 1 1 * 1

2 2 3 2
1 * * 1

2
,

dy r da a K e dy a ea K
a

aK d a y a ex A

α α α

α

− + +
= −

−
           (24) 

one can judge the type of critical point *E  in this special case. When 2 0a ≠ , i.e. 
( )4 2 2

1 1 1 *2r da ea K a K e dy aα α α+ ≠ + , combining with 2m =  (even number), 
the critical point *E  is a saddle node. Furthermore, if the coefficient 2 0a >  
(or < 0), then the parabolic sector is on the right (or left) half (u,v)-plane. If 

2 0a = , continuing the above series to obtain 

( )
( )

( )( ) ( )(
) ( )( )(

( )( ) ( )( )

4 4 2 2 6 2 3 3 5
3 1 1 1 1 222 2 6 2 2 3

1 1 1 2

2 2 3 2 2
1 1 1 2 1 1 1 1 1 2

2 2 4 2 3 4 3
2 1 2 1 1 2 1 1 1

2 2
2 1 1 1 2 1 2 1

4 3

2

5 2 2 7

4 3 5 3 2 2

aa a e K s dK as s a a a e
dK A a s ae d s a

dK a s a rea ds A K ra ea K aeA ds a

as dK e d s K a rea ds A K ra ea

ds A K ra aea a ds A e ds K aa

α α α
α

α

= + −
− +

− − + + + − +

+ + − + + +

− + + + + +

 

) ( )( )( )
( ) ( )( ) ( ))

( ) ( )(
( ))

2 2 3 3 5 3 2
2 1 2 1 1 2 1 1 1 1 2

2 2
1 2 1 2 1 2 1 1 2 1 2 2 1

3 7 2 3 2 2
2 1 1 1 2 1 1 2 1 1 1

2 3 5 8 2
2 1 2 1 2 1 1

2 ( 4

2 4 3

2 2 2 3

2 .

a s dK ae d s K a a r ea ds A K r a e r s a

aK ds A e ds A s K r s a a K s a ds A e

d s a r a dK r s ar a dK s r a A K a

as dK ds A e s d a A K

α

α

α

− − + − − − +

+ + + − − − + +

− − + + − −

+ − −   

(25) 

If 3 0a > , *E  is an unstable node; If 3 0a < , *E  is a saddle. When 3 0a = , 
continuing the above procedure to obtain 4a  and using the same criteria of 2a . 
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3.4. The Special Case: 1 2 = 0A A=  

In this section, we consider a critical case: 1 2 0A A= = , i.e. *E  is a critical 
point of higher order and its Jacobian matrix with two zero eigenvalues can be 
rewritten as 

( )* *

11
.

1
J E dy λ

λ

 − =
 

−  

                       (26) 

From the above section we know that its characteristic equation is  
( ) cos sin 0θ λ θ θΘ = − = , and function 

( ) ( )*
1 cos sin cos sin .R dyθ θ θ λ θ θ
λ

 = + − 
 

 

Similarly, 1θ θ=  is a special direction, where 1tanθ λ= . 
Making a change of variables and taking transformations ,x u v y uλ= + = ;

*

t
dy
τ

= , we have following normal form 

( ) ( ), , , .u v u v v u v= +Φ = Ψ                     (27) 

From center manifold ( )v h u= , we have series of function  
( ) ( )( ),v u h uψ = Ψ : ( ) 2 3

2 3v a u a uψ = + +  and series of following function: 

( ) ( )
( )

2
1 2, , .u v v h u

u v u v b u b u
=

Φ +Ψ = + +     

where coefficients 

( ) ( )

( )
( )

1 2

2 4
1 2

3
2 1 1

1 3
1 2

32
2 ,

2 2
,

a e a s s
a

a s ds

a ea a s K a r
b

K a ds

α λ λ

λ

α λ

 + + −  =
+

− − + −
= −



              (28) 

If 2 1, 0a b ≠ , i.e. 2k =  (even number), 1n m= = , or 2 10, 0a b≠ = , then *E  
is a degenerate singular point. If 2 10, 0a b= ≠ , but  

( ) 2
1 1

3 2
1

6
0,

2
e aK a r

a
e aa K
λ α
α

− + −
= <                 (29) 

i.e. 3k =  (odd number), 1n m= = , and combining a discriminant  
2

1 38 0b aµ = + ≥ , where 

( ) ( )( ) ( )( )(
) ( )( )( )( )

2 2 2 2 2
6 2 2 2

1

2 4 2 2 2 2 4 2
1 1 1 1

1 25 e 22 25 1 25 68 11 17
4

  36 72 11 6 1 11 36

e a a d e a
a K d

d a K a e a a d r K a r

µ λ λ α λ λ α
λ

λ λ α λ

= + + − +

+ + − + + + 

 

 (30) 

then *E  is a complicated singular point and its neighbourhood ( )* ,U E δ  con-
sists of one hyperbolic sector and one elliptic sector, if 0µ <  and 1 0b ≠ , or 
just 1 0b = , then *E  is a center or a focus. 
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3.5. Global Stability 

In this section, we will give following theorems to illustrate the global stability by 
constructing proper Lyapunov functions. 

Theorem 4. If 1 1r m≤ , then the zero point 0E  is globally asymptotical sta-
ble. 

Proof. Taking an unbounded positive definite Lyapunov function in lemma 2, 
we know that D V+  is negative definite, similarly. This completes the proof. 

Remark. Taking an unbounded positive definite Lyapunov function 

( ) ( )2 21,
2

V x y ux y= + , where positive constant ( )2
2

4
m e

u
a d
α
α
−

> , and compu-

ting its Dini derivative along orbits of Equations (1), we have 

( ) ( ) ( )
( )

3 3
1 1 1 1 1

1

,
,

K g x y ur x a x uK m r x
D V

K a x
+ + + + −

= −
+

            (31) 

where auxiliary function 

( ) ( ) ( )2 3 2 2 2
1 1 2 2, .g x y ua m r x dxy am y u x m e xy ady yα α   = − + + + + − +     

On account of the discriminant ( )2
2 4 0m e u adα α∆ = − − <  of a quadratic 

function, it is obvious that ( ), 0g x y ≥  or D V+  is negative definite. This also 
completes the proof. 

Theorem 5. Assume that the equilibrium 2E  exists and 2
2

ex m
a

α
≤ , then 

2E  is globally asymptotical stable. 

Proof. Taking an unbounded positive definite Lyapunov function 

( ) ( )2 2 2, ln ,V x y x x x x x y e= − − +                  (32) 

and computing its Dini derivative along orbits of Equations (1), we have 

( )2 21 2
2 2

1

r exy dD V x x m y
K e a e

α+  ≤ − − + − − 
 

            (33) 

This completes the proof. 
Theorem 6. Assume that the equilibrium 2E  exists and 2 2, 2e m x aα ≤ > , 

then 2E  is globally asymptotical stable. 
Proof. Taking an unbounded positive definite Lyapunov function 

( ) ( )2 2
2

1,
2

V x y u x x y = − +   with positive constant 

( )2 1 2
2

2 1

4 2
,

am r x a
u

x Kα
−

≤                        (34) 

and computing its Dini derivative along orbits of Equations (1), we have 
( )
( )1

,g x y
D V

K a x
+ =

+
, ( ) ( ) ( ) ( )1 2 3, , ,g x y g x g x y g x y= + + , where auxiliary func-

tions 

( ) ( )
( ) ( )
( ) ( )

3
1 1 2

2 2
2 2 1 2 2 1 1 2

3 2 2 3 2
3 1 1 2 2 1 1 1

2 ,

, 2 ,

, .

g x ur x x x a

g x y ux r a x x u x K xy aK m y

g x y dK xy K e m xy uax r x adK y u K x y

α

α α

= − − −  
= − + −

= − + − − − −
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Conditions in this theorem imply that discriminant of a quadratic function in 
( )2 ,g x y  is 

( ) ( )2
2 2 1 2 2 1 24 2 0,u x K ux a x aK mα∆ = + − ≤  

thus ( )2 , 0g x y ≤ , i.e. ( ), 0g x y ≤ . By using the Krasovskii’s theorem, the 
proof is completed. 

Theorem 7. Assume that the equilibrium *E  exists and  

( )
* 1

* 1

: 0y r
a a x K
αη = − ≤
+

, then *E  is globally asymptotical stable. 

Proof. Taking an unbounded positive definite Lyapunov function 

( ) ( ) ( )( ) *
* * * 2 * *, ln ln , 0,a xV x y x x x x x u y y y y y u

ea
+

= − − + − − = ≤   (35) 

and computing its Dini derivative along orbits of Equations (1), we have 

( )( ) ( ) ( )

( ) ( )

2 2* 1
* *

* 1

2 2
* * .

y rD V x x ud y y
a x a x K

x x ud y y

α

η

+  
= − − − − + + 

≤ − − −

          (36) 

From the condition we know that D V+  is negative definite. By using the 
Krasovskii’s theorem, the proof is completed.  

3.6. Closed Orbits and Limit Cycles 

As we see, if 1 1r m≤ , i.e. the point *E  does not exist, there are no closed orbits in 
2R+ . The trace of Jacobian matrix ( )*J E  is non-positive if 1 1 2r m m eα− ≤ −  

whether the existence condition 1 1 0r m− ≤  holds or not. By using the Bendix-
son criteria, there are no closed orbits in 2R+ . Such closed orbits and limit 
cycles surrounding the existed point *E  cannot cross the x and y coordinate 
axes and are confined in an invariant domain [ ] [ ]0, 0,A B× , where the upper 
bounds A, B are all sufficiently large. The point *E  is not a saddle point for in-
dex ( )* 1j E =  on this occasion. In this section, we will construct proper Dulac 
functions to further illustrate the existence problem of closed orbits and limit 
cycles. 

Theorem 8. If 2x a<  or 1 1r m≤ , then for system (1), there are no closed 
orbits in 2R+ . 

Proof. Taking the diffeomorphism ( ): , ,d du x v y t a xϕ τ= = = +  which 
preserving the orientation of time, the system (1) is topologically equivalent to 
following system [16] [17] 

( ) ( )

( ) ( )( )

1
1 1

1

2

, : ,

, : ,

r xx P x y x a x r m y
K

y Q x y y eax a x m dy

α

α

   
= = + − − −   

   
 = = − + +   





              (37) 

For notation simplicity, we still retain the symbols x, y, t. Define a Dulac func-
tion ( ) 1 1,B x y x y− −= , along the above system, we have 
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( ) ( ) ( )
,

BP BQ g x
x y y

∂ ∂
+ ≤

∂ ∂
 

where the numerator 

( ) ( )1 1 1
1 1 2

1 1 1

2 .ar r x rg x r m x a
K K K

 
= − − − ≤ − 
 

 

By using the Bendixson-Dulac criteria, the proof is completed. 

Remark. (a) If 2x a< , taking Dulac function ( ) ( )
1, , 0B x y c

x c y
= ≥

+
, then 

there are no closed orbits; (b) If 22x a≤ , taking Dulac function  

( ), a xB x y
xy
+

= , then there are also no closed orbits. 

Theorem 9. If 1 1 1 1 24 ,K am r m m≤ − ≤ , and ( )1 1 1 1 22 2ar K r m e mα> − + −   , 
then for system (1), there are no closed orbits in 2R+ . 

Proof. We can take another type of Dulac function e , 0ux u >  for our discus-
sion. Obviously, along system (37), we have 

( ) ( ) 3

01

1 ,i j
ij

i j

BP BQ
a x y

x y K + =

∂ ∂
+ =

∂ ∂ ∑                     (38) 

where these coefficients 30 20 10, , ,a a a   in the summation are 

( )
( ) ( ) ( )

( )

30 1

20 1 1 1 1 1 1

10 1 1 1 2 1 1 1 1 1

00 1 1 2 1

,
: 3 ,

: 2 2 ,

,

a ur
a ar K m K r u r

a aK r m u e m K ar r m K

a K a m m r

α

= −

= − − + −

= − + − − + −

= − + −



 

For a quadratic function 3 2
30 1 1 1 1a x K r ux aK um x+ −  of variable x, its discri-

minant implies that it is non-positive. Since other coefficients preserved are all 
non-positive, this completes the proof. 

Remark. For the system (0) and the above form Dulac function e , 0ux u > , if 
following conditions hold: 1 1 1 22 ,K a r m m≤ − ≤ , and  

( )1 1 1 1 24ar K r m e mα> − + −   , then there are no closed orbits. This procedure 
can also derive our theorem while it is uncomplicated but tedious. 

Corollary 1. If *E  is asymptotically stable, then combining with conditions 
in theorem 8 or 9, *E  is globally asymptotical stable. 

Remark. See reference [18] for the above corollary. 
Theorem 10. If 2x a>  and the equilibrium point *E  is unstable, then sys-

tem (1) has limit cycle(s). 

Proof. We see that 
2

2

2

d 0
d x x

x x y
t a x

α

=

= − <
+

 with 0y > . Thus the straight line  

2x x=  is an untangent line of the system (37). Taking the Dulac function 
( ),w x y ex y l= + − , where 0l >  is sufficiently large, and computing 0w =  

along the orbits of Equations (37), we derive 
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( ) ( )2
2 1 1

1

d 1 0,
d
w xm l ex d l ex er x em x
t K

 
= − − − − + − − < 

 
 

where 20 x x< < . For this system, we can construct a Bendixson ring including 
unstable singular point *E . By the Poincare-Bendixson theorem, system (37) 
has at least one limit cycle in the first quadrant. This completes the proof. 

4. Bifurcation Analysis 

4.1. Transcritical Bifurcation 

Without loss of generality, denoting the system (1) as 

( ), .
x

f x y
y

 
= 

 





                           (39) 

Firstly, by fixing values of all the parameters and varying the bifurcation pa-
rameter 1m , we observed that the two equilibrium points 0E  and 2E  collide 
with each other as 1m  cross the critical value 1 1m r= . Thus, there is a chance of 
bifurcation around this point 0E . 

Theorem 11. The system (39) undergoes a transcritical bifurcation around 

0E  when the parameters satisfy [ ]
1 1 1:TCm m r= = . 

Proof. For the Jacobian matrix at 0E , we have eigenvectors v and w corres-

ponding to matrix ( )0J E  and its transpose, respectively: 
1
0

v w  
= =  

 
. Then 

the following transversality conditions are hold: 

[ ]( ) ( )

[ ]( ) ( )

[ ]( )( ) ( )

1

1

T
0 1

T
0 1

T 2
0 1

0
, 1 0 0,

0

1
, 1 0 1 0,

0

, , 1 0 0.
0

TC
m

TC
m

TC

w f E m

w Df E m v

w D f E m v v a
a

α
α

 
= = 

 
−   = = − ≠    
 −   = = − ≠    
 

           (40) 

Clearly, one of the eigenvalues of the Jacobian matrix ( )0J E  is zero and the 
other is negative. From the Sotomayor’s theorem( see [19] [20]), the system (39) 
undergoes a transcritical bifurcation around 0E  at [ ]

1 1
TCm m= . This completes 

the proof. 
Here we take a as bifurcation parameter for the consideration of ( )2J E . 
Theorem 12. Assume that the parameters satisfy conditions for the existence 

of 2E  and 1 1m r< , then the system (39) undergoes a transcritical bifurcation 
around 2E  when the parameters satisfy: 

[ ] ( )2 2

2

: .TC e m x
a a

m
α −

= =                   (41) 

Proof. For the Jacobian matrix at 2E , we have eigenvectors v and w corres-
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ponding to matrix ( )2J E  and its transpose, respectively: 1 1

2

1
v m r

m

 
 = − 
 
 

, 

0
1

w  
=  
 

. Then the following transversality conditions are hold: 

[ ]( ) ( )

[ ]( ) ( ) [ ]( ) [ ]( )
[ ]( )( ) ( )

[ ]( )
( )

T
0

T 1 1 1 1
0

2 2

1 1 1 1T 2
0 2

2 2
2

0, 0 1 0,
0

1, 0 1 0,

2
, , 0.

TC
a

TC
a TC TC

TC

TC

w f E a

m r m rw Df E a v
ee a x e a x

m r d r meaw D f E a v v
m ma x

α

 = = 
 

− −   = = ≠   − + +

 
− −   = + <   +  

  (42) 

It is clear to see that one of the eigenvalues of the Jacobian matrix ( )2J E  is 
zero and the other is negative. From the Sotomayor’s theorem, the system (39) 
undergoes a transcritical bifurcation around 2E  at [ ]TCa a= . This completes 
the proof. 

4.2. Hopf Bifurcation 

We choose parameter d as a bifurcation parameter. Assume that the parameters 
satisfy conditions for the existence of *E  and 

[ ]

( ) ( )

2
* 1 * *

2 3
1 ** * *

: .H x r x eaxd d
K ya x y a x

α α
= = − <

+ +
             (43) 

Define ( ) ( ) ( )d u d iv dλ = ±  as a pair of purely imaginary eigenvalues of 
matrix ( )*J E , where ( ) 1 2u d A= . It is clear to see that, if following condi-
tions hold at [ ]Hd d= : 1 0A = , 2 0A > , and transversality condition 

( )
( ) ( )( )

( ) ( )( )

3 2 2 3
* 1 1 1 * 1 * 1 * * 1 *

2 2 2
* * 1 * 1 1 * 1 * 1

4 5 2
0,

2 2

y a r K e r x a r x K ex y a r x
u d

a x a x K y a r ar x r x d K a e

α α α

α α

 + + + + − + ′ = ≠
 + − + − + + + − 

(44) 

for instance, 2
1 * 1 *r x K yα≥ . Then *E  changes its stability through Hopf bifur-

cation threshold the critical value [ ]Hd d= . 
Theorem 13. Assume that the parameters satisfy conditions for the existence 

of equilibrium *E , the condition (43) and the transversality condition (44), then 
the system (1) undergoes a Hopf bifurcation around equilibrium *E  as para-
meter d passes through the bifurcation value [ ]Hd . 

We will calculate the first Lyapunov number σ  at the point *E  of the sys-
tem which is used to determine the stability of limit cycles around Hopf bifurca-
tion. Therefore we first translate the point *E  to the origin by a non-singular 
linear transformation *x̂ x x= − , *ŷ y y= − , then the system (39) in power se-
ries around the origin(drop the hats for the sake of convenience as usual) is: 

( )
( )

2 2 3 2 2 3
10 01 20 11 02 30 21 12 03 1

2 2 3 2 2 3
10 01 20 11 02 30 21 12 03 2

, ,

, ,

x a x a y a x a xy a y a x a x y a xy a y F x y

y b x b y b x b xy b y b x b x y b xy b y F x y

 = + + + + + + + + +


= + + + + + + + + +





 

(45) 

https://doi.org/10.4236/jamp.2020.83042


S. T. Wang et al. 
 

 
DOI: 10.4236/jamp.2020.83042 543 Journal of Applied Mathematics and Physics 
 

with coefficients 

( )

( ) ( )

( ) ( )

( ) ( ) ( )

( )

1 * * * *
10 012

1 **

1 * * *
20 02 112 3 2

1 ** *

*
30 03 12 214 3

* *

* *
10 01 * 20 02 112 3 2

* * *

*
30 4

*

, ,

, 0, ,
( )

, 0, 0, ;

, , , , ,

r x x y xa a
K a xa x
r y x y aa a a
K a xa x a x

y a aa a a a
a x a x
ey a ey a eab b dy b b d b

a x a x a x
ey ab

a x

α α

α α α

α α

α α α

α

= − + = −
++

= − + − = = −
++ +

= − = = =
+ +

= = − = − = − =
+ + +

=
+ ( )03 12 21 3

*

, 0, 0, .eab b b
a x
α

= = = −
+

   (46) 

and smooth functions ( )1 4, i j
iji jF x y a x y∞

+ =
= ∑  and  

( )2 4, i j
iji jF x y b x y∞

+ =
= ∑ . From [19] [21], we know that the first Lyapunov 

number for a planar system is given by 

( ) ( ){
( ) ( ) ( )
( ) ( )( )

( ) ( )

2 2
10 10 11 11 02 02 11 10 01 11 20 11 11 023 2

01 2

2 2 2
10 11 02 02 02 10 10 02 20 02 10 01 20 20 02

2 2
01 20 20 11 20 01 01 10 11 02 11 20

2
10 01 10 10 03 10 30 10

3
2

2 2 2

2 2

3 2

a b a a b a b a a b a b a b
a A

b a a a b a b b a a a a a b b

a a b b b a b a b b a a

a a b b b a a a a

σ π = − + + + + +

+ + − − − −

− + + − − 

− + − + ( ) ( ) }21 12 10 12 01 21 ,b b a a b+ + −  

  (47) 

By computing the first Lyapunov number at the point *E , we will know that 
the Hopf bifurcation is supercritical and limit cycle(s) is(are) stable if 0σ < ; 
the Hopf bifurcation is subcritical and limit cycle(s) is(are) unstable if 0σ > . 
Hence we have to give the following numerical simulations in the next section, 
since the above expression is much too complicated. 

5. Numerical Simulations and Conclusions 
In this section we numerically give simulations of dynamical behavior between 
the prey and predator. In order to verify the feasibility and correctness of the 
theoretical derivation results, we will give some numerical simulations with a 
control parameter d and take 1 0.6r = , 1 20K = , 0.5α = , 1.5a = , 1 0.2m = , 

2 0.06m =  and 0.6e = . Thus, when 0.05d = , the equilibrium point *E  is 
(2.898588, 2.753889), then we can verify that the values of these parameters can 
meet theorem 7, which means that the equilibrium point *E  is globally asymp-
totical stable. The time series diagram and phase diagram of the system (1) can 
be seen in Figure 1. It is easy to see from Figure 1 that the population x and y 
are permanent and can approach a fixed value respectively. These results dem-
onstrate that the system (1) is permanent and the equilibrium point *E  is glo-
bally asymptotical stable. 

To investigate in detail how the control parameter affects the dynamical beha-
vior of the system (1), Figure 2 and Figure 3 depict the time series diagram and  
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Figure 1. (a) Time series diagram of population x; (b) Time series diagram of population 
y; (c) Phase diagram of population x and y. 

 

 
Figure 2. (a) Time series diagram of population x; (b) Time series diagram of population 
y; (c) Phase diagram of population x and y; (d) Enlarged phase diagram of population x 
and y. 

 
phase diagram of the system (1). On the basis of theoretical derivation and nu-
merical calculus, the critical threshold of the control parameter d is approx-
imately 0.04910. When the value of the control parameter d is greater than 
0.04910, the other solutions of the system (1) can gradually converge to the  
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Figure 3. (a) Time series diagram of population x; (b) Time series diagram of population 
y; (c) Phase diagram of population x and y; (d) Enlarged phase diagram of population x 
and y. 

 
equilibrium point *E , which means that the equilibrium point *E  is asymp-
totical stable; this result can be seen in Figure 2 with 0.04915d = . When the 
value of the control parameter d is less than 0.04910, the other solutions of the 
system can gradually converge to a limit cycle, which implies that the Hopf bi-
furcation occurs in the system (1), and this result can be seen in Figure 3 with 

0.04905d = . At the bifurcation parameter [ ] 0.0490796Hd ≈ , the first Lyapu-
nov number 0σ < , thus the Hopf bifurcation is supercritical and a limit cycle 
generated by the critical point is stable. 

Based on mathematical theory derivation and numerical simulation analysis, 
it is successful to show that dynamical behavior of this certain predator-prey 
system mainly depends on some critical parameters and relationships. Then, it is 
particularly significant to point out how the control parameter d affects the 
complexity of the system (1), which can lead this predator-prey system to 
emerge Hopf bifurcation. Moreover, these results also show that some control 
parameters can directly or indirectly affect the dynamic complexity of our pre-
dator-prey system. 
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