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Abstract 
For Stokes flow in non spherical geometries, when separation of variables 
fails to derive closed form solutions in a simple product form, analytical solu-
tions can still be obtained in an almost separable form, namely in semiseparable 
form, R-separable form or R-semiseparable form. Assuming a stream func-
tion ψ , the axisymmetric viscous Stokes flow is governed by the fourth order 

elliptic partial differential equation 4 0E ψ =  where 4 2 2E E oE=  and 2E  is 
the irrotational Stokes operator. Depending on the geometry of the problem, 
the general solution is given in one of the above separable forms, as series ex-
pansions of particular combinations of eigenfunctions that belong to the ker-
nel of the operator 2E . In the present manuscript, we provide a review of the 
methodology and the general solutions of the Stokes equations, for almost 
any axisymmetric system of coordinates, which are given in a ready to use 
form. Furthermore, we present necessary and sufficient conditions that are 
serving as criterion for identifying the kind of the separation the Stokes equa-
tion admits, in each axisymmetric coordinate system. Additionally, as an illu-
stration of the usefulness of the obtained analytical solutions, we demonstrate 
indicatively their application to particular Boundary Value Problems that 
model medical problems. 
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1. Introduction 

Separation of variables is undoubtedly among the most powerful methods for 
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solving analytically partial differential equations (PDEs). It can be applied to 
problems regardless of the number of dimensions and provides both, qualitative 
and quantitative information for the behavior of the solution in the whole do-
main. This is extremely useful when studying physical, biological, medical and 
engineering problems or problems where the asymptotic behavior or limiting 
cases can be reached in a straight forward manner through analytical methods, 
eliminating the need of imposing further assumptions, as a numerical treatment 
of the problem should require. A key aspect for obtaining separable solutions of 
Boundary Value Problems (BVPs) in 3-D, concerns the identification and the 
reflection of the geometrical characteristics of the problem to the choice of the 
suitable orthogonal curvilinear system of coordinates, i.e. the one for which the 
physical boundary of the problem coincides to one of the coordinate surfaces. 
Expressing the partial differential operator in the particular system, the deriva-
tion of separable solutions depends then on the analytical solvability of the asso-
ciate ordinary differential equations (ODEs), in which the partial differential 
equation decomposes. The orthogonality property of the eigenfunctions that be-
long to each of the solution subspaces, quantifies their “contribution” to the ex-
act solution of the BVP at hand. 

Moon and Spencer in [1] and Morse and Feshbach in [2] have investigated 
extensively, the conditions under which separable or R-separable solution of the 
Laplace and the Helmholtz equations can be obtained, in various orthogonal 
curvilinear systems of coordinates. These equations are used to model potential 
and wave problems and their separability is very well studied. On the contrary, 
the separability of Stokes equations, only recently has been studied exhaustively 
by the authors, in any axisymmetric curvilinear system [3]. 

Stokes equations describe the viscous axisymmetric flow of a Newtonian fluid 
[4] and may describe the flow through porous media [5] [6] [7] or the flow of 
biological fluids, e.g. blood plasma [8] and many more. Stokes flow is described 
mathematically through a system of two differential equations employing the 
velocity and the pressure field. Specifically, in axisymmetric cases, these quanti-
ties can be calculated through a scalar function ψ , namely the stream function, 
which satisfies the fourth order elliptic partial differential Equation (PDE) 

4 0E ψ =  where 4 2 2E E oE=  and 2E  is the irrotational Stokes operator. 
The fact that the equation 2 0E ψ =  separates variables in spherical coordi-

nates is known almost 170 years ago [5]. The general solution of Stokes flow in 
the spherical coordinate system has been used for solving several problems. 
Sampson [9] moving forward his own work used the general solution to provide 
the solution of the flow past an approximate sphere, while Kim [10] provided the 
analytical solution for the flow past three spheres. Sankar [11] derived solutions 
for flows in and around a sphere or between concentric spheres. 

Although many attempts had been made for deriving solutions in other than 
the spherical coordinate system, such as the prolate and the oblate spheroidal 
ones, closed form solutions of Stokes equations were obtained, only 150 years 
later, and recently, a solution method and complete solutions expansions were 
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obtained in the inverted spheroidal systems. Lastly, the authors identified and 
proved the necessary and sufficient conditions for the separation and R-separation 
of the Stokes operator in any axisymmetric system of coordinates, augmented 
this way the theoretical knowledge on the field and providing ready to use ex-
pansions for solving analytically boundary value problems [3]. 

More precisely, Oberbeck [12] in 1876, using Cartesian coordinates, derived a 
solution for the Stokes flow in an unbounded fluid due to the steady translation 
of an ellipsoid. Sampson in 1891 [9] obtained a partial solution of the Stokes 
flow along the main axis of a translating spheroid in an unbounded fluid, using 
spheroidal coordinates. Payne and Pell in 1960 [13] derived a solution for Stokes 
flow around a spheroid. Happel and Brenner [5], provided a solution for the 
axisymmetric viscous flow around a single spheroid with different boundary 
conditions using an ad-hoc technique, which seemed to be adequate for solving 
approximately engineering problems, although a general solution of the govern-
ing fourth order partial differential equation was not known. Coutelieris et al. 
[14] [15] used spheroid-in-cell models to study the mass transfer of a swarm of 
spheroidal (prolate or oblate) adsorbers in Stokes flow. Ken and Chang [16] stu-
died the motion of a spheroidal particle freely suspended in a gaseous medium 
with a uniform temperature with small Peclet and Reynolds numbers and in [17] 
studied the Stokes flow caused by a rigid spheroidal particle in a viscous fluid 
with slip boundary condition. Zlatanovksi [18] used the Brinkman model to 
solve Stokes flow past a porous prolate spheroidal particle while Deo and Datta 
[19] solved Stokes flow past a fluid prolate spheroid. Moreover, Deo and Gupta 
[20] derived the solution of Stokes flow of an incompressible viscous fluid past a 
swarm of porous approximately spheroidal particles with Kuwabara boundary 
condition. 

Dassios et al. [6] using linear algebra theory, derived the complete solution of 
Stokes equation in spheroidal cell, by introducing the concept of semiseparation 
of variables. Particularly, they derived the 0-eigenspace and the generalized 
0-eigenspace of the operator 2E  in the spheroidal coordinates which is con-
sisted of eigenfunctions in separable form, given in terms of products of Gegen-
bauer functions of the first and the second kind. The complete representation of 
the solution space of 4 0E ψ =  is obtained as a sum of series expansion of these 
separable eigenfunctions and the series expansions of the generalized eigenfunc-
tions which are given in terms of mixed order Gegenbauer functions. An exten-
sive review of the relative literature can be found in [6]. Dassios and Vafeas in 
[21] rearranged these expansions in a different way aiming to provide a more 
convenient expansion. Deo and Tiwari in 2008 [22] derived the complete solu-
tion of the equation 2 0E ψ = , in bispherical and toroidal coordinate systems, 
while Hadjinicolaou and Protopapas proved the R-separation of Stokes equation 
in the inverted prolate and oblate spheroidal coordinate systems [23] [24] [25], 
which further expands our tools to treat Stokes flow problems around non 
convex bodies. 

Specifically, the authors proved that Stokes equation 2 0E ψ = , in the inverted 
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prolate coordinate system [23] [24] and in the inverted oblate coordinate system 
[25], R-separates variables and they derived the corresponding eigensolutions. 
Aiming to obtain the solution of the 4 0E ψ = , they used the concept of the 
semiseparation of variables and developed an algorithm through which the ge-
neralized eigenfunctions of the kernel of 2E , are given through recurrence 
relations, since the generalized eigenfunctions could not be expressed in a closed 
form. The eigenfunctions of the 0-eigenspace are expressed as products of Ge-
genbauer functions divided by the Euclidean distance r, while the generalized 
0-eigenspace is consisted of combinations of products of Gegenbauer functions, 
in semiseparable form, divided by the third power of the Euclidean distance, 3r . 

This solution expansion was utilized by Dassios et al. [8] to study the flow past 
a red blood cell, modeled as an inverted prolate spheroid, while Hadjinicolaou et 
al. expanded this model to treat the sedimentation of a red blood cell [26] and 
also the blood plasma flow around two aggregated low density lipoproteins [27] 
and the translation of two aggregated low density lipoproteins within blood 
plasma [28]. These results are demonstrated in Section 6. 

To this end, departing from the spheroidal geometries, in [3] the authors in-
vestigated, formulated and proved the necessary and sufficient conditions for the 
separation or the R-separation of 2 0E ψ =  in any axisymmetric system of 
coordinates, and provided a road map for deriving the relative eigenfunctions. In 
the case of R-separability the exact form of the function R was identified as well. 
They also proved the general statement that if Stokes equation separates va-
riables in a system then it R-separates variables in the inverted one, while if it 
R-separates variables, it can also R-separates variables in the corresponding in-
verted system of coordinates, if an extra condition is satisfied. 

The structure of the manuscript is as follows. In Section 2, the physical and 
mathematical background is given, while in Section 3, we present the necessary 
and sufficient conditions for the separability of Stokes equation 2 0E ψ = . In 
Section 4, we review the different kinds of separation that the equations  

2 0E ψ = , 4 0E ψ =  admit in spherical and spheroidal geometries and in Sec-
tion 5, we show results, regarding the irrotational flow in other axisymmetric 
systems of coordinates. In Section 6, we display applications in Biology, while in 
Section 7 we discuss some key points of the obtained results. 

2. Rotational and Irrotational Flow 

The steady flow of an incompressible fluid around particles where the viscous 
forces dominate over the inertial ones is called Stokes flow since it was first stu-
died by sir George Stokes [4]. When particles are embedded in a fluid domain 

3Ω ⊆  , Stokes flow is described [5] as  

 ( ) ( ), ,Pµ∆ = ∇ ∈Ωv r r r                         (1) 

( ) 0, ,∇⋅ = ∈Ωv r r                            (2) 

where r  is the position vector, ( )v r  is the velocity field, ( )P r  is the pres-
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sure field and µ  is the shear viscosity. 
In the axisymmetrical case the flow is described by a function ψ , namely 

stream function, which satisfies the fourth order partial elliptic equation [5] 
4 0,E ψ =                                (3) 

where 4 2 2E E oE=  is the Stokes bi-stream operator and 2E  is the Stokes op-
erator, which describes the irrotational flow  

 2 0.E ψ =                                (4) 

Since the flow is assumed as an axisymmetric one, Stokes operator has to be ex-
pressed in an axisymmetric coordinate system.  

Any axisymmetric system of coordinates ( ) [ )1 2, , , 0,2q q ϕ ϕ ∈ π  is defined via 
the relations  

 

( )
( )
( )

1 1 2

2 1 2

3 1 2

, cos

, sin

,

x q q

x q q

x z q q

ρ ϕ

ρ ϕ

=


=
 =

                          (5) 

where ( )1 2 2, ,x x x  denote a point in the Cartesian coordinates. The metric coef-
ficients 1 2,h h  and the radial cylindrical coordinate ϖ  [5] are  

 ( )1 2 1 22 2 2 2

1 1 2 2

1 1, , , ,h h q q
z z

q q q q

ϖ ρ
ρ ρ

= = =
       ∂ ∂ ∂ ∂

+ +       ∂ ∂ ∂ ∂       

     (6) 

while Stokes operator, 2E , assumes the form  

 2 1 2
1 2

1 2 1 2 1 2

.h hE h h
q h q q h q

ϖ
ϖ ϖ

    ∂ ∂ ∂ ∂
= +    ∂ ∂ ∂ ∂    

               (7) 

The knowledge of the stream function ψ  enables us to derive significant hy-
drodynamic quantities, such as the velocity components  

 
1

2

2

2

1

1

q

q

hu
q

hu
q

ψ
ϖ
ψ

ϖ

∂ = − ∂
 ∂ =
 ∂

                            (8) 

the pressure field P  

 

( )

( )

2
2

1 1 2

2
1

2 2 1

EP h
q h q

EP h
q h q

ψµ
ϖ

ψµ
ϖ

 ∂∂
 = −
∂ ∂


∂ ∂

= −∂ ∂

                        (9) 

the drag force  

 
2

3
2z

EF s
n

ψµ ϖ δ
ϖ

 ∂
= π  ∂  

∫                       (10) 

and the drag coefficient  
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2
2 ,z

d
FC

U Aρ
=                             (11) 

where U is the particle speed, A is the cross sectional area, ρ  is the fluid den-
sity. Moreover, we can derive the settling terminal velocity U∞ . This is the ve-
locity of a particle when the gravitational force acting on it and the drag force 
become equal, and given via the equation  

 ( ) ,zF gVρ ρ′= −                          (12) 

where ρ′  is the mean particle density, g is the local acceleration of gravity vec-
tor and V is the particle’s volume. 

3. Necessary and Sufficient Conditions for the Separation  
and the R-Separation of Stokes Equation E 2 0=ψ  

Among the most useful methods on solving a PDE is the separation (and 
R-separation of variables). In both cases, the unknown function decomposes the 
PDE in ODEs. In the simple separation of variables we assume that the unknown 
function can be written as a product of functions of one variable, while in the 
case of the R-separation the product is assumed to be multiplied by a function R 
of at least two variables (not in a product form). In what follows we present the 
necessary theory: two theorems and a lemma, that we need in order to examine 
whether the Stokes operator 2E  separates or R-separates variables in axisymmetric 
system of coordinates [3].  

Theorem 1. If ( )1 2, ,q q ϕ  is an axisymmetric system of coordinates with me-
tric coefficients 1 2,h h  and radial cylindrical coordinate ϖ , the Stokes equation 
separates variables if and only if there exist functions  

( ) ( ) ( ) ( )1 1 2 2 1 1 2 2, , ,f q f q F q F q  such as  

 1
1 2

2

h f f
hϖ

=                             (13) 

and  

 2
1 2

1

.h F F
hϖ

=                            (14) 

Theorem 2. If ( )1 2, ,q q ϕ  is an axisymmetric system of coordinates with me-
tric coefficients 1 2,h h  and radial cylindrical coordinate ϖ , the Stokes equation 
R-separates variables if and only if there exist functions  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 1 2 2 1 2 1 1 2 2, , , , , , ,f q f q F q F q R q q R q R q  such that  

21
1 2

2

,h R f f
hϖ

=                          (15) 

22
1 2

1

,h R F F
hϖ

=                          (16) 

( )1 2 1 2
1 1 1 2 2 2

1 1 ,R Rf F R R R
F q q f q q

   ∂ ∂ ∂ ∂
+ = +   ∂ ∂ ∂ ∂   

            (17) 
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where ( ) ( ) ( )1 2 1 1 2 2,R q q g q g q≠ .  
Lemma 1. Let an axisymmetric system of coordinates ( )1 2, ,q q ϕ  with metric 

coefficients 1 2,h h , radial cylindrical coordinate ϖ  and the corresponding 
system of coordinates under the inversion with respect to a sphere of radius 

0b >  having metric coefficients 1h′ , 2h′  and radial cylindrical coordinate 
ϖ ′ , then the following relations, interconnecting the metric coefficients hold 
true.  

 
2

1 12 ,rh h
b

′ =                            (18) 

2

2 22 ,rh h
b

′ =                            (19) 

2

2 .b
r

ϖ ϖ′ =                            (20) 

These two theorems formulate separability conditions of Stokes operator in 
any axisymmetric systems of coordinates. The results use geometrical characte-
ristics of the system, which are the metric coefficients 1 2,h h  and the radial cy-
lindrical coordinate ϖ . Then the following steps have to be applied. Calculating  

the quantities 1 2

2 1

,h h
h hϖ ϖ

 we first examine whether conditions (13), (14) hold. If  

these are true we assume simple separation of variables. Else we investigate 
whether (15), (16) hold. These conditions allow us to identify a function R, such 
that Equation (17) is also satisfied and thus R-separability is attained. Moreover, 
by employing the lemma, we interrelate the conditions needed for separation in 
an axisymmetric system with those needed for the separation in the corres-
ponding inverted one. Specifically:  
• if Stokes equation separates variables in an axisymmetric system of coordi-

nates, then Stokes equation R-separates variables in the corresponding 
inverted system of coordinates with ( )1 2,R q q r= , where r is the Eucli-
dean distance, expressed in the parameters of the particular coordinate 
system.  

• if Stokes equation R-separates variables in an axisymmetric system of coor-
dinates, then Stokes equation also R-separates variables in the corresponding 
inverted system of coordinates if (17) is also true.  

These results are of a great importance since any solution of the equation 
4 0E ψ = , describing Stokes flow in any axisymmetric system of coordinates, be-

longs either to the kernel space of 2E , or to the corresponding generalized ei-
genspace of 2E . The conditions under which 2 0E ψ =  separates or R-separates 
variables are fully investigated in [3]. 

4. Separability of E 2 0=ψ  and E4 0=ψ  in Spherical and  
Spheroid Geometries 

In this section, we present results regarding the solutions of the equations 
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equations 2 40, 0E Eψ ψ= =  obtained through separation and the R-separation 
of variables and also through the so-called semiseparation and the R-semiseparation 
of variables, in the spheroidal coordinate systems.   

4.1. Separation in Spherical Geometry 

The most common geometry employed when studying flow around particles is 
the spherical one. Stokes operator [5] in spherical coordinates system  
( ) [ ] [ ), , , 0, 1,1 , 0,2r rζ φ ζ φ> ∈ − ∈ π  is  

 
2 2 2

2
2 2 2

1 ,E
r r

ζ
ζ

∂ − ∂
= +
∂ ∂

                    (21) 

where every point ( )1 2 3, ,x x x  in the Cartesian coordinates [1] is expressed as  

 ( ) ( ) ( )( )2 2
1 2 3, , 1 cos , 1 sin , .x x x r r rζ ϕ ζ ϕ ζ= − −        (22) 

Equation 2 0E ψ =  separates variables in spherical geometry [5] and the so-
lution space consists of products of functions of each one of the independent va-
riables the radial and the angular ones, which are  

 ( ) ( ) ( ) ( )1 1, , , ,n n n n
n n n nr G r H r G r Hζ ζ ζ ζ− + − +         (23) 

where ,n nG H  are the Gegenbauer functions of the first and the second kind, 
respectively [29]. The Gegenbauer functions ( ) ( ),n nG Hζ τ  are related to Le-
gendre polynomial and functions [5] [29].  

In Figure 1 and Figure 2, we depict streamlines in spherical geometry for the 
eigenfunctions ( ) ( )1 2

2 3,r H r Hζ ζ− −  that satisfy 2 0E ψ = .  
 

 

Figure 1. Streamlines for ( )1
2r H ζ−  in spherical geometry. 
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Figure 2. Streamlines for ( )2
3r H ζ−  in spherical geometry. 

 
In order to calculate the solution of 4 0E ψ =  the concept of the generalized 

eigenfunctions is used and the relative methodology is processed. Accordingly, 
one needs to derive the functions gψ  that satisfy 2

gE Wψ = , where W is a so-
lution of 2 0E ψ = . The functions gψ  are the generalized eigenfunctions of 2E  
which are of the form  

 ( ) ( ) ( ) ( )2 2 3 3, , , .n n n n
n n n nr G r H r G r Hτ τ τ τ+ + − + − +          (24) 

In Figure 3 and Figure 4, we present streamlines in spherical geometry for 
the generalized eigenfunctions ( ) ( )4 5

2 3,r H r Gζ ζ  of 2E .  
Taking into account (23), (24) we conclude that 4 0E ψ =  also separates va-

riables. 

4.2. Separation and Semiseparation in Prolate Spheroidal  
Geometry 

In the prolate system of coordinates ( ) [ ] [ ), , , 1, 1,1 , 0,2τ ζ φ τ ζ φ≥ ∈ − ∈ π  any 
point ( )1 2 3, ,x x x  is defined as [1]  

 ( ) ( ) ( )( )2 2 2 2
1 2 3, , 1 1 cos , 1 1 sin , ,x x x c c cτ ζ ϕ τ ζ ϕ τζ= − − − −   (25) 

where 0c >  is the semifocal distance and Stokes operator [6] is  

 ( ) ( ) ( )
2 2

2 2 2
2 22 2 2

1 1 1 .E
c

τ ζ
τ ζτ ζ

 ∂ ∂
= − + − ∂ ∂−  

          (26) 
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Figure 3. Streamlines for ( )4

2r H ζ  in spherical geometry. 

 

 
Figure 4. Streamlines for ( )5

3r G ζ  in spherical geometry. 

 
Equation 2 0E ψ =  separates variables and the obtained eigenfunctions are  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , .n n n n n n n nG G G H H G H Hτ ζ τ ζ τ ζ τ ζ       (27) 

In Figure 5 and Figure 6, we depict sample streamlines in prolate geometry 
for the eigenfunctions ( ) ( ) ( ) ( )2 2 3 3,H G H Gτ ζ τ ζ  that satisfy 2 0E ψ = . Using  
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Figure 5. Streamlines for ( ) ( )2 2H Gτ ζ  in prolate spheroid. 

 

 
Figure 6. Streamlines for ( ) ( )3 3H Gτ ζ  in prolate spheroid. 

 
the methodology that we followed in the spherical case and taking into account 
that the prolate spheroid degenerates to a sphere when the semifocal distance 
tends to zero, we obtain the generalized eigenfunctions of Stokes operator as 
products of Gegenbauer functions of mixed order, such as:  
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 ( ) ( ) ( ) ( ) ( )1 0 3 2 1
1, ,
3

G G G Gτ ζ τ ζ τ ζΩ = − +             (28) 

( ) ( ) ( ) ( ) ( )2 3 0 1 2
1, .
3

G G G Gτ ζ τ ζ τ ζΩ = −              (29) 

The reader can find the complete set of the generalized eigenfunctions in [6]. 
The form of the generalized eigenfunctions indicates that 4 0E ψ =  does not 
separate variables, but exhibits a kind of separation, which was called semi- 
separation. In Figure 7 and Figure 8, we draw streamlines in prolate geometry 
for the generalized eigenfunctions ( ) ( )1 2, , ,τ ζ τ ζΩ Ω  of 2E .  

4.3. Separation and Semiseparation in Oblate Spheroidal  
Geometry 

Any point ( )1 2 3, ,x x x  in the Cartesian coordinate system, is expressed using the 
oblate spheroid coordinates ( ), ,λ ζ ϕ  where [ ], 1,1λ ζ∈ ∈ −  and 0α >  is the 
semifocal distance with  

 ( ) ( ) ( )( )2 2 2 2
1 2 3, , 1 1 cos , 1 1 sin , .x x x α λ ζ ϕ α λ ζ ϕ αλζ= + − + −  (30) 

Stokes operator assumes the form  

 ( ) ( ) ( )
2 2

2 2 2
2 22 2 2

1 1 1 .E
a

λ ζ
λ ζλ ζ

 ∂ ∂
= + + − ∂ ∂+  

           (31) 

Equation 2 0E ψ =  separates variables and the eigenfunctions are  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , .n n n n n n n nG i G G i H H i G H i Hλ ζ λ ζ λ ζ λ ζ       (32) 

 

 

Figure 7. Streamlines for ( ) ( ) ( ) ( )0 3 2 1
1
3

G G G Gτ ζ τ ζ− +  in prolate spheroid. 
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Figure 8. Streamlines for ( ) ( ) ( ) ( )3 0 1 2
1
3

G G G Gτ ζ τ ζ−  in prolate spheroid. 

 
The generalized eigenfunctions are given as products of Gegenbauer functions of 
mixed order, such as:  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* *
2 2 2 2 , 4.n n n n n n n n n na G i G G i G b G i G G i G nλ ζ λ ζ λ ζ λ ζ− − + ++ + + ≥       (33) 

These eigenfunctions indicate that 4 0E ψ =  in the oblate geometry also semi- 
separates variables. 

4.4. R-Separation and R-Semiseparation in Inverted Prolate  
Spheroidal Geometry 

The inversion of convex geometrical objects with respect to a sphere with the 
same origin, creates interesting non-convex shapes, many of them resemble 
physical or biological entities. Their use in mathematical models and the analyt-
ical treatment of which dictates the “translation” of the problem at hand to the 
particular inverse coordinate system. Any point ( )1 2 3, ,x x x  on the Cartesian 
coordinate system is defined in the inverted prolate spheroidal coordinates as  

 ( ) ( )
( )

( )
( ) ( )

2 2 2 2

1 2 3 2 2 2 2 2 2

1 1 cos 1 1 sin
, , , , ,

1 1 1
x x x

c c c
τ ζ φ τ ζ φ τζ

τ ζ τ ζ τ ζ

 − − − −
 =
 + − + − + − 

(34) 

where 0c >  is the semifocal distance and [ ] [ )1, 1,1 , 0,2τ ζ φ≥ ∈ − ∈ π . Stokes 
operator assumes the form  

 

( )
( ) ( ) ( )( )

( ) ( )( )

2 2 2 2
2 2 2 2 2

24 2 2

2
2 2 2 2

2

1
2 1 1 1

2 1 1 1 .

c
E

b

τ ζ
τ τ τ τ ζ

τ ττ ζ

ζ ζ ζ τ ζ
ζ ζ

+ −  ∂ ∂
= − + − + − ∂ ∂− 

∂ ∂
+ − + − + − ∂ ∂ 

     (35) 
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Stokes equation R-separates variables with ( ),R τ ζ  being the Euclidean dis-
tance r and the eigenfunctions [23] are  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1, , , ,n n n n n n n nG G G H H G H H
r r r r

τ ζ τ ζ τ ζ τ ζ     (36) 

where  

 2 2 1.r c τ ζ= + −                           (37) 

In Figure 9 and Figure 10, we depict sample streamlines in the inverted pro-

late geometry for the eigenfunctions 
( ) ( ) ( ) ( )3 3 3 3

2 2 2 2
,

1 1

H G H Hτ ζ τ ζ

τ ζ τ ζ+ − + −
 that satisfy  

2 0E ψ = .  

Moreover, the generalized eigenfunctions can not be obtained in closed form, 
but they can be calculated through recurrence relations [23]. Sample eigenfunc-
tions are given below.  

 ( ) ( ) ( ) ( ) ( )2 2 2 1
3 3 3

2 2 2 2
, ,

2 1 3 1

G H G Gτ ζ τ ζ
τ ζ

τ ζ τ ζ
Ω = +

− + − − + −
            (38) 

( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 0 3 3 0
4 3 3 3

2 2 2 2 2 2
, .

6 1 9 1 9 1

H H G H H Gτ ζ τ ζ τ ζ
τ ζ

τ ζ τ ζ τ ζ
Ω = + +

− + − + − + −
    (39) 

In Figure 11 and Figure 12, we present streamlines in the inverted prolate 
geometry for the generalized eigenfunctions ( ) ( )3 4, , ,τ ζ τ ζΩ Ω  of 2E .  

It has been proved that Stokes bistream equation, 4 0E ψ = , R-semiseparates va-
riables [23] [24], with R being the third power of the Euclidean distance r, i.e. 3r . 
 

 

Figure 9. Streamlines for ( ) ( )3 3

2 2 1

H Gτ ζ

τ ζ+ −
 in inverted prolate geometry. 
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Figure 10. Streamlines for ( ) ( )3 3

2 2 1

H Hτ ζ

τ ζ+ −
 in inverted prolate geometry. 

 

 

Figure 11. Streamlines for ( )1 ,τ ζΩ  in inverted prolate geometry. 
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Figure 12. Streamlines for ( )1 ,τ ζΩ  in inverted prolate geometry. 

4.5. R-Separation and R-Semiseparation Inverted Oblate  
Spheroidal Geometry 

Any point ( )1 2 3, ,x x x  on the Cartesian coordinate system is defined in the in-
verted oblate spheroidal coordinates as  

 ( ) ( )
( )

( )
( ) ( )

2 2 2 2

1 2 3 2 2 2 2 2 2

1 1 cos 1 1 sin
, , = , , ,

1 1 1
x x x

a a a
λ ζ φ λ ζ φ λζ

λ ζ λ ζ λ ζ

 + − + −
 
 − + − + − + 

(40) 

where 0a >  is the semifocal distance and [ ] [ ), 1,1 , 0,2λ ζ φ∈ ∈ − ∈ π . 
Stokes operator is  

 

( )
( ) ( ) ( )( )

( ) ( )( )

2 2 2 2
2 2 2 2 2

24 2 2

2
2 2 2 2

2

1
2 1 1 1

2 1 1 ) 1 .

a
E

b

λ ζ
λ λ λ λ ζ

λ λλ ζ

ζ ζ ζ λ ζ
ζ ζ

− +  ∂ ∂
= + + + − + ∂ ∂+ 

∂ ∂
− − + − − + ∂ ∂ 

     (41) 

Stokes equation R-separates variables and the eigenfunctions [25] are  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1, , , ,n n n n n n n nG i G G i H H i G H i H
r r r r

λ ζ λ ζ λ ζ λ ζ    (42) 

with ( ),R λ ζ  being the Euclidean distance 2 2 1r a λ ζ= − + . 
Moreover, as in the inverted prolate spheroidal case, the generalized eigen-

function can not be derived in closed form, but they can be calculated through 
recurrence relations [25]. These eigenfunctions are sum of products of Gegen-
bauer functions of different order, multiplied by the function 3r−  and of the 
form given below  
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( ) ( ) ( ) ( )2 2 2 1

3 3
2 2 2 2

5 25
.

8 1 72 1

G i H G i Gλ ζ λ ζ

λ ζ λ ζ
− −

− + − +
               (43) 

It has been proved [25] that Stokes bistream equation R-semiseparates variables 
[25], with R being the Euclidean distance on the third, i.e. 

3
3 2 2 1a λ ζ− + . 

5. Separability of Equation E 2 0=ψ  in Other Axisymmetric  
Geometries 

Next, we provide results in other than the spherical and the spheroidal systems 
of coordinates.   

5.1. R-Separation in Bispherical Geometry 

In bispherical coordinate system ( ), ,η θ ϕ  any point ( )1 2 3, ,x x x  in the Carte-
sian coordinates system [1] is expressed as  

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )1 2 3

sin cos sin sin sinh
, , , , ,

cosh cos cosh cos cosh cos
x x x

α θ ϕ α θ ϕ α η
η θ η θ η θ

 
=   − − − 

 (44) 

where [ )0, , 0,a η θ> ∈ ∈ π , while Stokes operator assumes the form  

 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

2 2
2

2 2

2

2

cosh cos sinh
cosh cos

csc cosh cot
.

cosh cos

E
a

η θ η
η η θ η

θ η θ
η θ θ θ

−   ∂ ∂ = +∂ − ∂
− ∂ ∂ + + − ∂ ∂ 

      (45) 

Equation 2 0E ψ =  R-separates variables [22] and the eigenfunctions are  

 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1 2

1 2

1 2

1 2

1 cosh cos ,
cosh cos

1 sinh cos ,
cosh cos

1 cosh cos ,
cosh cos

1 sinh cos ,
cosh cos

n

n

n

n

n G

n G

n H

n H

η θ
η θ

η θ
η θ

η θ
η θ

η θ
η θ

+

+

+

+

−

−

−

−

            (46) 

with ( ) ( ) ( ), cosh cosR η θ η θ= − .  
In Figure 13 and Figure 14, we present sample streamlines in bispherical geome-

try for the eigenfunctions 
( ) ( )( )

( ) ( )
( ) ( )( )

( ) ( )
5 2 7 2sinh 2 cos sinh 3 cos

,
cosh cos cosh cos

G Hη θ η θ
η θ η θ− −

 of 2E .  

5.2. R-Separation in Toroidal Geometry 

In toroidal coordinate system ( ), ,η θ ϕ  any point ( )1 2 3, ,x x x  in the Cartesian 
coordinates system [1] is expressed with  

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )1 2 3

sinh cos sinh sin sin
, , , , ,

cosh cos cosh cos cosh cos
x x x

α η ϕ α θ ϕ α θ
η θ η θ η θ

 
=   − − − 

 (47) 
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Figure 13. Streamlines for 
( ) ( )( )

( ) ( )
5 2sinh 2 cos

cosh cos
Gη θ
η θ−

 in bispherical geometry. 

 

 

Figure 14. Streamlines for 
( ) ( )( )

( ) ( )
7 2sinh 3 cos

cosh cos
Hη θ
η θ−

 in bispherical geometry. 
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where ( ]0, 0, ,a η θ> ≥ ∈ −π π  and Stokes operator assumes the form  

 

( ) ( ) ( ) ( )
( ) ( ) ( )

( )
( ) ( )

2 2
2

2 2

2

2

cosh cos cos cosh 1
sinh cosh cos

sin
.

cosh cos

E
a

η θ θ η
η η η θ η

θ
η θ θ θ

−  −∂ ∂ = +∂ − ∂   
∂ ∂ + + − ∂ ∂ 

   (48) 

Equation 2 0E ψ =  R-separates variables [22] and the eigenfunctions are  

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

1 2

1 2

1 2

1 2

1 cosh cos ,
cosh cos

1 cosh sin ,
cosh cos

1 cosh cos ,
cosh cos

1 cosh sin ,
cosh cos

n

n

n

n

G n

G n

H n

H n

η θ
η θ

η θ
η θ

η θ
η θ

η θ
η θ

+

+

+

+

−

−

−

−

            (49) 

with ( ) ( ) ( ), cosh cosR η θ η θ= − .  
In Figure 15 and Figure 16, we present sample streamlines in toroidal geo-

metry for the eigenfunctions 
( )( ) ( )

( ) ( )
( )( ) ( )

( ) ( )
5 2 7 2cosh sin 2 cosh sin 3

,
cosh cos cosh cos

G Gη θ η θ
η θ η θ− −

 that 

satisfy 2 0E ψ = . 
 

 

Figure 15. Streamlines for 
( )( ) ( )

( ) ( )
5 2 cosh sin 2
cosh cos

G η θ
η θ−

 in toroidal geometry. 
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Figure 16. Streamlines for 
( )( ) ( )

( ) ( )
7 2 cosh sin 3
cosh cos

G η θ
η θ−

 in toroidal geometry. 

5.3. Separation in Parabolic Geometry 

In parabolic coordinate system ( ), ,µ ν ϕ  any point ( )1 2 3, ,x x x  in the Cartesian 
coordinates system [1] is expressed as  

 ( ) ( ) ( )
2 2

1 2 3, , cos , sin , ,
2

x x x µ νµν ϕ µν ϕ
 −

=  
 

             (50) 

where , 0µ ν ≥ , while Stokes operator assumes the form  

 
2 2

2
2 2 2 2

1 1 1 .E
µ ν µ µ µ ν ν ν

 ∂ ∂ ∂ ∂
= − − + + ∂ ∂ ∂ ∂ 

              (51) 

Equation 2 0E ψ =  separates variables [30] and the eigenfunctions are  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1, , , ,I n J n I n Y n K n J n K n Y nµν µ ν µν µ ν µν µ ν µν µ ν  (52) 

where 1 1,J Y  are Bessel functions of the first order and first and second kind 
respectively and 1 1,I K  are modified Bessel functions of the first order and first 
and second kind respectively [29]. In Figure 17 and Figure 18, we depict stream-
lines in parabolic geometry for the eigenfunctions  

( ) ( ) ( ) ( )1 1 1 12 2 , 3 3I Y K Yµν µ ν µν µ ν  of 2E . 

5.4. R-Separation in Tangent Sphere Geometry 

In tangent sphere coordinates system ( ), ,µ ν ϕ  any point ( )1 2 3, ,x x x  in the Car-
tesian coordinate system [1] is expressed as  
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Figure 17. Streamlines for ( ) ( )1 12 2I Yµν µ ν  in parabolic geometry. 

 

 

Figure 18. Streamlines for ( ) ( )1 13 3K Yµν µ ν  in parabolic geometry. 

 

 ( ) ( ) ( )
1 2 3 2 2 2 2 2 2

cos sin
, , , , ,x x x

µ ϕ µ ϕ ν
µ ν µ ν µ ν

 
=  + + + 

           (53) 

where 0,µ ν> ∈ , while Stokes operator [30] assumes the form  
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 ( ) ( )
2 2 2 222 2 2

2 2 2 22 2

2 .E µ ν νµ ν
µ µ µ ν ν νµ µ ν

 ∂ − ∂ ∂ ∂
 = + + + +
∂ ∂ + ∂ ∂+  

     (54) 

Stokes equation ( )2 , 0E ψ µ ν =  R-separates variables [30] and the eigenfunc-
tions are  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1cos , sin , cos , sin ,rI n n rI n n rK n n rK n nµ µ ν µ µ ν µ µ ν µ µ ν (55) 

with ( ),R µ ν  being the inverse of the Euclidean distance 
2 2

1 .r
µ ν

=
+

 In  

Figure 19 and Figure 20, we depict streamlines in tangent sphere geometry for 
the eigenfunctions ( ) ( ) ( ) ( )1 13 cos 3 , 3 sin 3rK rKµ µ ν µ µ ν  that satisfy 2 0E ψ = .  

5.5. R-Separation in Cardioid Geometry 

In cardioid coordinate system ( ), ,µ ν ϕ  any point ( )1 2 3, ,x x x  in the Cartesian 
coordinates system is expressed as  

( ) ( )
( )

( )
( ) ( )

2 2

1 2 3 2 2 22 2 2 2 2 2

cos sin
, , , , ,

2
x x x

µν ϕ µν ϕ µ ν

µ ν µ ν µ ν

 − =
 + + + 

          (56) 

where , 0µ ν ≥ , while Stokes operator assumes the form  

 ( ) ( ) ( )
2 2 2 2 2 232 2 2

2 22 2 2 2

3 3 .E µ ν ν µµ ν
µ µ ν νµ µ ν ν µ ν

 ∂ − ∂ − ∂ ∂
 = + + + +
∂ ∂ ∂ ∂+ +  

   (57) 

Equation ( )2 , 0E ψ µ ν =  R-separates variables and the corresponding eigen-
functions are  
 

 
Figure 19. Streamlines for ( ) ( )1 3 cos 3rKµ µ ν  in tangent sphere geometry. 
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Figure 20. Streamlines for ( ) ( )1 3 sin 3rKµ µ ν  in tangent sphere geometry. 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1, , , .rI n J n rI n Y n rK n J n rK n Y nµν µ ν µν µ ν µν µ ν µν µ ν (58) 

with ( ),R µ ν  being the inverse of the Euclidean distance 
2 2

1r
µ ν

=
+

. In  

Figure 21 and Figure 22, we draw sample streamlines in cardioid geometry for 
the eigenfunctions ( ) ( ) ( ) ( )1 1 1 13 3 , 3 3rJ Y rK Yµν µ ν µν µ ν  of 2E .  

6. Applications in Biology 
6.1. Relative Motion of Blood’s Plasma Flow Past a Red Blood Cell 

Human’s blood is a suspension of red blood cells (RBCs), white blood cells and 
the platelets within blood’s plasma, which can be regarded as an incompressible 
Newtonian fluid. Blood’s plasma is about 55% of the vessel volume, while the 
RBCs occupy about 43%, leaving about 2% for white blood cells and the platelets, 
which proves the importance of the relative motion of blood’s plasma past red 
blood cells. The physical characteristics of blood permit us to model the flow as 
axisymmetric Stokes flow around an inverted prolate spheroid which describes 
the RBC. We consider a uniform velocity U parallel to 3x  axis in the negative 
direction and a stationary, isolated inverted prolate spheroid (Figure 23). The 
size of the RBC enables us to assume that the fluid extends to infinity [8].  

The problem at hand is defined using the following Equation (59) through 
(62)  

 ( )4 0, ,aE r r Vψ′ ′ ′ ′= ∈                         (59) 
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Figure 21. Streamlines for ( ) ( )1 13 3rJ Yµν µ ν  in cardioid geometry. 

 

 
Figure 22. Streamlines for ( ) ( )1 13 3rK Yµν µ ν  in cardioid geometry. 
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Figure 23. Blood’s plasma flow past a RBC. 

 

( ) 0, ,a r r Vψ ′ ′ ′= ∈∂                          (60) 

( ) 0, ,a r
r V

n
ψ ′∂

′ ′= ∈∂
∂

                        (61) 

21 , ,
2a U rψ ϖ ′ ′→ → +∞                        (62) 

where ( )a rψ ′  is the stream function, (59) denotes the Stokes equation, (60) de-
fines the no slip condition on the surface of the RBC, while (61) expresses the 
impenetrability of the RBC and (62) denotes that the flow extends to infinity. 

In order to solve the problem at hand, we employ the inverted prolate sphe-
roid geometry using the variables ( ), ,τ ζ φ  and we apply the boundary condi-
tions having derive first new formulas for the Gegenbauer functions. This pro-
cedure results four equations with five unknown constants in each case. The fi-
nal expression was derived using the fact that a prolate spheroid degenerates to a 
sphere when the semifocal distance tents to zero. The obtained stream function 
[8] is  

 ( ) ( ) ( )
3

2 23
3 2 2 1

, ,
1

a n n
n

b g G
c

ψ τ ζ τ ζ
τ ζ

+∞

=

=
+ −

∑              (63) 

where  

 ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 1 2 4 4
9 ,

5 5
bcU bcUg A G H bcUG E G Hτ τ τ τ τ τ= − − + −  (64) 

( ) ( ) ( )

( ) ( )

( )

2 2
2 2 2 1 1 2

1 1 1 2 2 2 2 2

2 2

( )
2

2

, 2,
2

n n n n n n n n

n n n n n n

n n n n

bcUg A G w e w d H

bcU w e d H E G

bcU w d e H n

τ τ τ

τ τ

τ

− −

− − − − +

+

= + − −

+ +

+ ≥

         (65) 
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and 2 2, , , ,n n n n nA E w e d  are constants. 
In Figure 24 and Figure 25, we draw streamlines for the stream function aψ  

in the plane 2 0x =  with axes ratio 5
3

 and 10
3

.  

 

 

Figure 24. Streamlines for aψ  in the plane 2 0x =  with axes ratio 5
3

. 

 

 

Figure 25. Streamlines for aψ  in the plane 2 0x =  with axes ratio 10
3

. 
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Using the stream function [31] analytical expressions for the drag force and 
the drag coefficient were also derived. Moreover, using the same methodology, 
the problem of the translation of a red blood cell through blood’s plasma was 
solved [26], though which the derivation of the terminal settling velocity of the 
RBC was enabled. 

6.2. Blood’s Plasma Flow Past a Swarm of Red Blood Cells 

Expanding the previous ideas and the particle-in-cell model [6], a mathematical 
model [32] that describes the flow of blood’s plasma through a swarm of red 
blood cells (Figure 26) was developed. Particularly, the internal inverted prolate 
spheroid ( aS′ ) is assumed to be solid, while a fictitious external one ( Sβ′ ) cir-
cumscribes the fluid (Figure 27). The dimensions of the external spheroid are 
calculated such that the solid volume fraction in the cell equals to the solid vo-
lume fraction of the swarm [32].  
 

 
Figure 26. Swarm of RBCs in blood’s plasma. 

 

 
Figure 27. Statement of the problem. 
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The problem at hand is mathematically formulated with the Equation (66) 
through (70)  

 ( )4 0, ,qE r r Vψ′ ′ ′ ′= ∈                        (66) 

( ) 0, ,q ar r Vψ ′ ′ ′= ∈∂                         (67) 

( )
0, ,q

a

r
r V

n
ψ ′∂

′ ′= ∈∂
∂

                       (68) 

( ) 0, ,q r r Vβψ ′ ′ ′= ∈∂                         (69) 

( )2 0, ,qE r r Vβψ′ ′ ′ ′= ∈∂                       (70) 

where 2E′  is the Stokes operator in V ′ , 4 2 2E E oE′ ′ ′=  is the Stokes bisteam 
operator and ( ), ,q rψ θ φ′ ′  stands for the stream function. 

The analytic solution of the problem is given in [32] which is 

( ) ( ) ( )
3

*
2 23

1
, ,q n n

n

b g G
r

ψ τ ζ τ ζ
+∞

=

= ∑                  (71) 

where *
ng  are sums of Gegenbauer functions ,n nG H  given analytically in [32]. 

In Figure 28 and Figure 29, we depict streamlines for ( ),qψ τ ζ′ ′  using only 
the first term of the series solution, assuming the values 0.3, 1, 4, 8, 12− − − − −  
(from the outer to the inner inverted prolate spheroid). At this point, it is worth 
noticing that the second term of the series provides only small arithmetic correc-
tions [32].  

By employing the obtained expression for the stream function ( ),qψ τ ζ , us-
ing (8), (9) expressions for the velocity components and the pressure field were 
also derived. 

 

 

Figure 28. Streamlines for ( )2
qψ  with 1.15aτ =  in the plane 2 0x = . 
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Figure 29. Streamlines for ( )2
qψ  with 1.05βτ =  in the plane 2 0x = . 

6.3. Relative Motion of Blood’s Plasma Flow Past Two Aggregated  
Low Density Lipoproteins 

The aggregation of low density lipoproteins (LDLs) is important in atherosclero-
sis, which is a decease that decreases the diameter of the arteries and increases 
blood pressure [28]. The two aggregated LDLs resemble an inverted oblate 
spheroid and due to the physical characteristics we model the flow as Stokes flow 
around an inverted oblate spheroid (Figure 30). The problem is defined through 
(72) to (75).  

 ( )4 0, ,tE Vψ′ ′ ′ ′= ∈r r                       (72) 

( ) 21 0, ,
2t U Vψ ϖ′ ′ ′ ′+ = ∈∂r r                   (73) 

( ) 21 0, ,
2t aU V

n
ψ ϖ∂  ′ ′ ′ ′+ = ∈∂ ∂  

r r                (74) 

( )
2 0, ,t r

r
ψ ′

′→ → +∞
′
r

                     (75) 

where tψ  is the stream function, (72) is the governing equation of the flow, (73) 
denotes that there is no relative tangential velocity component on the surface of 
the aggregated LDLs, (74) implies that the aggregated LDLs are impenetrable 
and (75) expresses the assumption that the blood plasma extends to infinity 
where it is at rest. 

The solution [28] of the problem defined in (72)-(75) is  

 ( ) ( ) ( ) ( )
3

2 2 2 2 2 23 2 2 1
, ,

1
t n n n n n

n

b A G i E G i G
a

ψ λ τ λ λ τ
λ τ

+∞

+
=

= +  
− +

∑      (76) 

where 2 2,n nA E  are constants defined in [28]. 
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Figure 30. Statement of the problem. 

7. Conclusion 

The general solution for the Stokes axisymmetric flow equations 2 0E ψ =  (ir-
rotational) and 4 0E ψ =  (rotational) are given in different separable forms of 
the corresponding eigenfunctions and generalized eigenfunctions, in terms of 
linear combinations of products of special functions. These are separable, 
R-separable, semiseparable and R-semiseparable solutions. Each component in 
the series expansion of the analytical solution exhibits particular patterns, re-
vealing physical and geometrical characteristics of the axisymmetric flow. In this 
manuscript, we collect, categorize, analyze and present in a systematic and com-
prehensive way relative results. The different kinds of the separation of variables 
that the Stokes operator can get in different axisymmetric systems are given in 
what follows. Emphasis is given in the qualitative results, while the reader is re-
directed to the original papers for the complete solution expansions. In the 
spherical [5], the parabolic [30] and the spheroidal coordinate system [6] 
( )1 2, ,q q φ , the Stokes equation separates variables, and the stream function 
( )1 2,q qψ  can be written as a sum of products of two functions of one single va-
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riable each one, denoting the radial and the angular dependence 1 2,q q , respectively. 
This kind of separability is considered as a 1D by 1D decomposition of the kernel 
space of the Stokes operator 2E . Furthermore, Stokes equation in the bispherical, 
toroidal [22], inverted spheroidal [24] [25], tangent sphere and cardioid geometries 
[30] R-separates variables, and the stream function is given as product of a simple se- 

ries expansion with a function 
( )1 2

1
,R q q

, where ( )1 2,R q q  can not be written  

in a separable form. Moreover, all the necessary conditions for the simple sepa-
rability or the R-separability of the Stokes operator as formulated, stated and 
proved in [3], are also presented, providing accurate criteria and ready to use 
results for those who seek for analytical solutions for the rotational and irrota-
tional Stokes flows, in any axisymmetric coordinate system. Taking into account 
that the eigenfunctions of the kernel of the 2E  operator, form a complete set of 
solutions for the irrotational flow in the corresponding geometry, their deriva-
tion is a necessary step for obtaining a solution of the irrotational Stokes flow, 

4 0E ψ = , where 4 2 2E E oE= . It was shown that in the spherical coordinate 
system, due to the symmetry to any direction, Stokes bi-stream operator 4E  
separates variables [5], while in spheroidal coordinates, due to the axis symmetry 
[6], it semiseparates variables. In the inverted spheroidal coordinate systems [24] 
[25] 2 0E ψ =  R-separates variables, which reflects the geometrical inversion 
(with respect to a sphere) of the coordinate system to the analytical solution. The 
generalized eigenfunctions of Stokes operator 2E  in the spheroidal geometry 
are obtained in terms of a 3D by 3D combinations of Gegenbauer functions for 
each variable, of two kinds and of , 2, 2n n n− +  degree, justifying the notion of 
semiseparation, while accordingly, their inverted ones are multiplied by the Euc-
lidean distance on the minus third, 3r− . This decomposition is denoted as 
R-semiseparation. The stream function obtained this way, is sufficient general to 
be applied to interior and exterior boundary value problems and has been em-
ployed for solving boundary value problems arising in various scientific fields. 
We demonstrate, indicatively, applications in Biology, concerning the modeling 
and the study of the relative motion of blood plasma flow past a red blood cell or 
a swarm of red blood cells and also the problem of blood plasma flow past two 
aggregated low density lipoproteins. The obtained analytical expansions for the 
stream function can be used for deriving other physical quantities of interest 
such as the velocity and the pressure filed. They may also be used as basis for 
numerical implementation. 
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Nomenclature 
ψ  stream function r  position vector 

2E  irrotational Stokes operator 4E  rotational Stokes operator 

( )v r  velocity field ( )P r  pressure field 

µ  shear viscosity 
1 2
,q qu u  velocity components 

( )1 2, ,q q ϕ  axisymmetric coordinate system zF  drag force 

( )1 2,q qρ  circular cylindrical coordinate ( )1 2,z q q  circular cylindrical coordinate 

1 2,h h  metric coefficients ϖ  radial cylindrical coordinate 

( )1 2 2, ,x x x  cartesian coordinates dC  drag coefficient 

U particle speed A cross sectional area 

ρ  the fluid density U∞  settling terminal velocity 

ρ′  the mean particle density g local acceleration of gravity vector 

V particle’s volume ,n nG H  Gegenbauer functions of n-th degree 

( ), ,r ζ φ  spherical coordinate system ( ), ,µ ν ϕ  cardioid coordinate system 

( ), ,τ ζ φ  prolate coordinate system c semifocal distance in prolate geometry 

( ), ,λ ζ ϕ  oblate coordinate system a semifocal distance in oblate geometry 

( ), ,η θ ϕ  bispherical coordinate system ( ), ,η θ ϕ  toroidal coordinate system 

( ), ,µ ν ϕ  parabolic coordinate system ( ), ,µ ν ϕ  tangent sphere coordinate system 

1 1,Y K  first order modified Bessel functions 1 1,J Y  first order Bessel functions 

( )aψ ′r  stream function for blood plasma flow past a RBC 

( )qψ ′r  stream function for blood plasma flow past a swarm of RBCs 

( )tψ ′r  stream function for blood plasma flow past two aggregated LDLs 

 

https://doi.org/10.4236/jamp.2020.82026

	Separability of Stokes Equations in Axisymmetric Geometries
	Abstract
	Keywords
	1. Introduction
	2. Rotational and Irrotational Flow
	3. Necessary and Sufficient Conditions for the Separation and the R-Separation of Stokes Equation 
	4. Separability of  and  in Spherical and Spheroid Geometries
	4.1. Separation in Spherical Geometry
	4.2. Separation and Semiseparation in Prolate Spheroidal Geometry
	4.3. Separation and Semiseparation in Oblate Spheroidal Geometry
	4.4. R-Separation and R-Semiseparation in Inverted Prolate Spheroidal Geometry
	4.5. R-Separation and R-Semiseparation Inverted Oblate Spheroidal Geometry

	5. Separability of Equation  in Other Axisymmetric Geometries
	5.1. R-Separation in Bispherical Geometry
	5.2. R-Separation in Toroidal Geometry
	5.3. Separation in Parabolic Geometry
	5.4. R-Separation in Tangent Sphere Geometry
	5.5. R-Separation in Cardioid Geometry

	6. Applications in Biology
	6.1. Relative Motion of Blood’s Plasma Flow Past a Red Blood Cell
	6.2. Blood’s Plasma Flow Past a Swarm of Red Blood Cells
	6.3. Relative Motion of Blood’s Plasma Flow Past Two Aggregated Low Density Lipoproteins

	7. Conclusion
	Conflicts of Interest
	References
	Nomenclature

