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Abstract 
The Sakaguchi-Kuramoto model is a modification of the well-known Kura-
moto model, in which a frustration factor is added to the coupling term of 
each phase oscillator. The added frustration factor destroys the gradient 
structure, but the modified model is more widely used in practice. In this pa-
per, we study how frustration factors influence the synchronization transition 
of coupled oscillators in the Sakaguchi-Kuramoto model with frequency 
mismatch rules. The results show that in the system of coupled oscillators, the 
frustration factor manifests a disorder field, which restrains the explosive 
synchronization and weakens the synchronization ability of the whole net-
work. In addition, it is found that the frequency synchronization can not be 
detected by the common phase order parameter, so a new index is introduced 
to characterize the degree of frequency synchronization. As an example, at 
the end of the paper, we theoretically analyze the synchronization dynamics 
of two-oscillator system, and indirectly verify the correctness of simulations 
for the multi-body system. 
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1. Introduction 

Synchronization is a very common phenomenon in different fields, such as 
physics, chemistry, biology and so on. It is also the basic mechanism to reveal 
the collective phenomenon in nature and man-made systems. The traditional 
discussion of these phenomena is mainly based on the coupled limit-cycle sys-
tem. Theoretically, synchronization has been successfully studied in models of 
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coupled oscillators [1] [2]. Among these models, Kuramoto model is the sim-
plest in which the dynamics of an oscillator are described by only a phase varia-
ble [3] [4] [5]. The Kuramoto model not only introduces statistical methods, but 
also links the synchronous behavior in the field of dynamics with the non-equil- 
ibrium phase transition in statistical physics. 

In recent years, the influence of the frustration factors on the synchronization 
transition of coupled oscillators has attracted extensive attention [6]-[10]. The 
frustration factor is one of the most important parameters in phase transition 
models such as Heisenberg XY model, Frenkel-Kontorova model and so on. For 
example, in frustrated large square Josephson junction arrays, the frustration 
factor plays a crucial role. In the field of engineering technology, the frustration 
factor can be easily realized by adding a magnetic field. 

Inspired by the law of nature, we introduce the frequency mismatch rules into 
the Sakaguchi-Kuramoto model, in which only the two oscillators with large 
frequency difference can be connected directly. This idea is based on the follow-
ing facts. In daily life, two people with different personalities complement each 
other and make up for the missing part of their personalities, so they often be-
come good friends. It is a natural law that differences complement each other 
and opposites attract. 

The rest of this paper is organized as follows. In Section II, some basic notions 
on Sakaguchi-Kuramoto model with frequency mismatch rules are introduced. 
Then in Section III, we give the main results of numerical simulations. The syn-
chronization dynamics of the two-oscillator system are numerically simulated 
and theoretically analyzed in Section IV. Section V is devoted to the concluding 
remarks, in which we analyze the limitation of current work and put forward the 
next work plan.  

2. Basic Notions on Sakaguchi-Kuramoto Model 

In the current work, our aim is to study the synchronization dynamics of coupled 
oscillators on complex networks. Therefore, the first task is to build a substrate 
network, which follows the steps below [11] [12]. 1) The natural frequency of the 
ith oscillator is set to ( ) ( )1 1i i Nω = − − . 2) Each edge added randomly must 
stand the test of inequality (1), otherwise it will be discarded. Adding an edge 
repeatedly is prohibited. 3) The process of adding edges does not stop until the 
given L edges are obtained.  

1

1 ,
L

j j
jL
ω ω γ∗

=

− >∑                          (1) 

where jω∗  and jω   are the natural frequencies of the nodes locating at both 
ends of the jth edge, γ  is the threshold value of average frequency gap of the 
whole system. 

After completing the substrate network, each node is embedded with a Saka-
guchi-Kuramoto oscillator whose natural frequency has been specified. The dy-
namical behaviors of N coupled oscillators are governed by the following equa-
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tions [13],  

( )
1

d
sin , 1,2, .

d

N
i

i ij j i
j

A i N
t
φ

ω λ φ φ α
=

= + − − =∑             (2) 

where iφ  is the phase of the ith oscillator, iω  is its natural frequency, λ  is a 
positive coupling strength, N is the number of oscillators in the entire network. 
The oscillators are coupled with each other according to the elements of the 
network’s adjacency matrix ijA , with 1ijA =  if there is a connection between 
oscillator i and oscillator j, and 0ijA =  otherwise. Here, α  is a phase frustra-
tion factor that can prevent the phases of two connected oscillators from getting 
too close. 

We now fix 400N =  and 0.6γ =  for all simulations in the present work, 
since the results described below do not change qualitatively for larger system 
size or greater frequency mismatch. We keep 4000L =  as a constant through-
out this work. Therefore, the average degree of each oscillator is 20k = . Typ-
ically, the collective behavior in Equation (2) can be monitored by the phase or-
der parameter [3]:  

( ) ( )

1

1 e j
N

i t

j
R t

N
φ

φ
=

= ∑                      (3) 

where [ ]0,1Rφ ∈  is an index of phase coherence. When all the oscillators have 
the same phase, Rφ  reaches one, and for the completely random state, it drops 
to zero. In the following numerical simulations, Equation (2) is integrated by the 
fourth-order Runge-Kutta method with time step 0.01. The initial phase of each 
oscillator is chosen from the interval [ ]0,2π  at random.  

3. Main Results 

In this part, we mainly focus on the influence of frustration factors on the syn-
chronization transition of coupled oscillators. In view of the periodicity of sine 
function and its symmetry with respect to α = π , the value of frustration factor 
α  is tuned in the interval [ ]0,π . 

In Figure 1, both synchronization and desynchronization diagrams are plot-
ted for four different values of α . From 0α =  to α = π , the peak value of 
Rφ  decreases to zero first and then rises slightly. The main reason is that the 
frustration factor forces the phase difference between the directly connected os-
cillators to decay, thus suppressing the emergence of phase synchronization.  

Furthermore, it is noted that with the increase of α , the area of hysteresis 
loop shows the same change rule. When α  is growing from 0 to 2π , the 
mode of phase synchronization changes from explosive synchronization to con-
tinuous phase transition. When the value of α  reaches 2π , no matter how 
strong the coupling strength is, it can not wake up the phase synchronization 
between the oscillators. When α  exceeds 2π , the synchronous ability of net-
work rises slightly under weak coupling strength, but with the increase of coupl-
ing strength, the phase synchronization gradually annihilates. This abnormal  
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Figure 1. The phase order parameter vs. the coupling strength for different values of α . 
(a) 0.25α = π , (b) 0.50α = π , (c) 0.75α = π , (d) 1.00α = π . The forward (backward) 
continuations shown in the panels refer to the simulations of adiabatic increase (decrease) 
of coupling strength. 
 
phenomenon naturally gives rise to the question: with the increase of coupling 
strength, how do the phases of oscillators evolve in the system? 

The natural frequencies and instantaneous phases of all oscillators in the sys-
tem are plotted on a series of unit circular surfaces, in which each black dot 
represents an oscillator, as shown in Figure 2. The polar radius and the polar 
angle of the black dot represent the natural frequency and the instantaneous 
phase of the oscillator, respectively. 

We find that the phase distributions of the oscillators show diversity for dif-
ferent frustration factors at the same coupling strength. A typical partial phase- 
locked state is illustrated in Figure 2(a). The phases of the oscillators are com-
pletely random and evenly scattered on the unit circular surface, as shown in 
Figure 2(b). In Figure 2(d), the phases of oscillators are diametrically opposed, 
separated by an angle δ = π , which is commonly known as a π  state. Interes-
tingly, all the oscillators spontaneously split into two subgroups bounded by the 
average frequency of the system. Figure 2(c) is a mixture of Figure 2(b) and 
Figure 2(d), in which a completely incoherent state and a π  state coexist. By 
comparing Figure 1 with Figure 2, one may notice that although the phase or-
der parameters are the same on the macro level, the phase distributions of oscil-
lators in the system are quite different. 

Next, we reveal the frequency dynamics of coupled oscillators from a micro-
scopic point of view. The effective frequency of each oscillator in steady state is 
defined as [14],  
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Figure 2. Phase distribution of four hundred oscillators on the unit circular surfaces for 
different values of α . (a) 0.25α = π , (b) 0.50α = π , (c) 0.75α = π , (d) 1.00α = π . A 
black dot represents an oscillator. The natural frequency and instantaneous phase of an 
oscillator are described by the polar radius and polar angle of the black dot, respectively. 
The remaining parameter λ  is set to 0.10. 
 

( )0

0

1 d .
t T

i itT
φ τ τ

+
Ω = ∫                        (4) 

where T is an average time and 0t  is a discarded transient time. 
Figure 3(a) shows that with the increase of coupling strength the average ef-

fective frequency of the oscillators becomes smaller and smaller and diverges in 
the negative direction when α  is less than 2π . The frequency synchroniza-
tion transition shown in Figure 3(c) is mirror-symmetric with that shown in 
Figure 3(a). Figure 3(b) shows that when α  is equal to 2π , the divergence 
degree of the effective frequency of the oscillators in the system increases with 
the increase of coupling strength, rather than the expected decrease. What is 
most striking is that all the oscillators stick to their own natural frequencies until 
the emergence of an abrupt synchronization, as shown in Figure 3(d). There is 
no premonition for this kind of synchronization transition.  

This phenomenon of frequency synchronization cannot be detected by the 
phase order parameter. Therefore, it is necessary to define a new index to cha-
racterize the degree of frequency synchronization of coupled oscillators. The 
frequency order parameter is given by,  
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Figure 3. The panels show the evolution of the effective frequencies of four hundred os-
cillators with the increase of coupling strength for different values of α . (a) 0.25α = π , 
(b) 0.50α = π , (c) 0.75α = π , (d) 1.00α = π . Each data point in the panels is the aver-
age of the 2000 time steps after the transient process. 
 

( ) ( )
( )max

1
t

R t
t

σ
σ

Ω
Ω

Ω

= −                          (5) 

where ( )tσΩ  represents the standard deviation of instantaneous frequency of 
all oscillators in the system at time t. According to the definition, ( )R tΩ  is be-
tween 0 and 1. The higher the value of ( )R tΩ , the higher the degree of frequen-
cy synchronization. Specifically, 0RΩ =  indicates a totally random frequency 
distribution, while 1RΩ =  represents that the instantaneous frequencies of all 
oscillators converge to the same value. 

Figures 4(a)-(c) show a similar frequency evolution law, in which the degree 
of frequency synchronization decreases with the increase of coupling strength. 
However, the most surprising result is observed for the case of α = π , in which 
an abrupt frequency synchronization transition appears, as shown in Figure 
4(d). In addition, we find that there is a hysteresis loop between the forward and 
backward continuations via changing of the coupling strength λ . The region of 
hysteresis loop in Figure 4(d) is consistent with that in Figure 1(d). Because of 
the introduction of the frequency order parameter, the explosive synchroniza-
tion of frequencies is easily detected. 

Figure 5a and Figure 5(b) display the dependence of Rφ  ( RΩ ) on α  and 
λ . By comparing Figure 5(a) with Figure 5(b), one may find that both panels 
are axisymmetric. Their axes of symmetry are both α = π . The phase locking in 
Figure 5(a) inevitably induces the frequency synchronization in Figure 5(b).  
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Figure 4. The frequency order parameter vs. the coupling strength for different values of α . 
(a) 0.25α = π , (b) 0.50α = π , (c) 0.75α = π , (d) 1.00α = π . The forward (backward) 
continuations shown in the panels refer to the simulations of adiabatic increase (decrease) of 
coupling strength. 

 

 
Figure 5. (Color online). Color mark plots representing the phase synchronization degree (a) 
and the frequency synchronization degree (b) in the space of α  and λ , respectively. The 
greater the value of the color scale, the higher the degree of coherence. 

 
On the contrary, the conclusion is not true. Figure 5(b) has one more synchro-
nization area than Figure 5(a), in which the instantaneous phases of the oscilla-
tors are locked in reverse and the effective frequencies are the same.  

4. Theoretical Analysis 

In this section, we concentrate ourselves on the simplest case, i.e., 2N =  [15]. 
In this way, the complex multi-body system can be simplified into two-body 
problem, which is convenient for theoretical analysis. The dynamic equations of 
the two oscillators are written as  
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( )1
1 2 1

d sin
dt
φ

ω λ φ φ α= + − −                     (6) 

( )2
2 1 2

d sin
dt
φ

ω λ φ φ α= + − −                     (7) 

Once the phase difference 1 2δ φ φ= −  is inserted in Equation (5) and Equation 
(6), one obtains  

( )1
1

d sin
dt
φ

ω λ δ α= − +                        (8) 

( )2
2

d sin
dt
φ

ω λ δ α= + −                        (9) 

By subtracting Equation (9) from Equation (8), the evolution of phase difference 
with time is obtained,  

 ( )1 2
d 2 sin cos
dt
δ ω ω λ δ α= − −                    (10) 

In the phase-locked state, the left-hand side of Equation (10) is equal to 0. Thus, 
the sine of the phase difference is given by  

 1 2sin
2 cos
ω ω

δ
λ α
−

=                            (11) 

Considering the boundedness of sine function, one can obtain  

1 2

2cosc

ω ω
λ

α
−

=                             (12) 

By adding Equation (1) to Equation (2), the effective frequency is obtained as 
follow  

 1 2 sin cos
2

ω ω
λ α δ

+
Ω = −                       (13) 

Equation (11) is taken into Equation (13), and the expression of effective fre-
quency is rewritten as  

2
1 2 1 2sin 1 ,

2 2 cos c
ω ω ω ω

λ α λ λ
λ α

+ − Ω = ± − ≥ 
 

            (14) 

where the minus sign “−’’ and plus sign “+’’ correspond to two different intervals 
( )0, 2α ∈ π  and ( ]2,α ∈ π π , respectively. This theoretical result successfully 

explains why the divergence directions of the effective frequencies in Figure 3(a) 
and Figure 3(c) are opposite. Except for the case of 2α = π , when the coupling 
strength exceeds the critical point of the system, the curves obtained by theoret-
ical analysis pass through each discrete point of numerical simulations, as shown 
in Figure 6. The theoretical analysis is in good agreement with the numerical 
simulation.  

5. Conclusions 

We have studied phase locking and frequency entrainment of coupled oscillators 
in the Sakaguchi-Kuramoto oscillator network with frequency mismatch rules.  
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Figure 6. The panels show the evolution of the effective frequencies of two oscillators 
with the increase of coupling strength for different values of α . (a) 0.25α = π , (b) 

0.50α = π , (c) 0.75α = π , (d) 1.00α = π . Each data point in the panels is the average of 
the 2000 time steps after the transient process. 
 
The results show that the frustration factor plays an important role in synchro-
nization transition of networks. The frustration factor can control the types of 
synchronization transition. Appropriate adjustment of frustration factors can 
eliminate the hidden dangers of harmful synchronization. We propose the fre-
quency order parameter, which makes up for the defect that the phase order pa-
rameter can not detect the frequency synchronization. In order to verify the 
correctness of numerical simulations of the multi-oscillator system, we degene-
rate the multi-body system into a two-oscillator system. We obtain the analytical 
solution of the two-oscillator system. Theoretical analysis supports the simula-
tion results. Unfortunately, we are incapable of obtaining analytical solutions of 
multi-oscillator system. This will be the key part of our next study. In the future 
research, we will use the stochastic noise to replace the fixed frustration factor, 
which is more suitable for the real world. We believe that the method developed 
in this paper also provides a useful tool to study the analogous problems such as 
time-delay effects. Suppose this model is applied to the study of time-delay ef-
fects, one only needs to rewrite the frustration factor as the ratio of the distance 
between oscillators to the speed of information transmission. The effect of varia-
ble frustration factors on the synchronization dynamics of complex networks 
will be an interesting topic. 
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