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Abstract 
Nanostructured Antireflections Layers (NALs) are a promising substitute for 
conventional antireflection layers. In the nature, such structures have long 
existed on insects’ eyes. Here, we have derived a general form of mathemati-
cal relation that generates a profile close to that of surface of a Moth’s eye. By 
properly designing NALs over dielectric, light has been efficiently transmitted 
through our high index nanostructures with minimal reflection. The parame-
ters determining the transmission efficiency are the pitch and the profile of 
the periodic nanostructures. By optimizing the profile, we have designed 
NALs with transmission reaching 100%. Our periodic structures have mi-
nimal dependence on the pitch. This makes it possible to fabricate NALs with 
the very broadband transmission, without inducing diffraction to lower wa-
velengths of the transmitted light. Also, our periodic NALs make it possible 
to transmit laser lights without scattering. 
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1. Introduction 

Conventional antireflections consist of one or more layers over each other laying 
over a substrate. These layers work based on destructive interference of light [1] 
[2] [3]. While one layer can only be used for one specific wavelength or angle of 
illumination, multi-layer structures partially solve this limitation [1] [3] [4]. 
However, still, layers have rather low bandwidth and angular tolerance. A major 
problem with this technology arises from the residual stress between these layers 
or layers and substrate [4]. This lowers the lifetime of layered antireflection 
coatings when they’re used in environments with fluctuating temperatures. Also, 
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when a high-power beam of light passes through them, these layers peel off the 
substrate [5] due to the difference in the expansion coefficient of different mate-
rials. Recently, nanotechnology and nanostructures [6] [7] [8] [9] have solved 
many problems in technology introducing materials [10] that exhibit special 
characteristics electrically, mechanically [11]-[15] and when they’re under illu-
minations of light [6] [7] [16] [17]. Fabrication method of these nanomaterials 
[6] [18] [19] usually depends on the type of the materials and the physical cha-
racteristics they’re designed for. 

NALs are the new generation of anti-reflection coatings designed to deal with 
previous problems [6]. These nanostructured materials are designed based on a 
fill factor concept [1]. This means that the effective refractive index depends on 
the volume occupied by the nanostructure [17]. Such coatings are widely used 
for increasing light transmission to solar cells [20] [21], and light extraction 
from LED’s [22] [23] and lasers [24] [25]. Sub-wavelength NAL structures are 
usually carved out of substrate for smoother transition of refractive index. NALs 
are used for different applications. For example, these structures can be used for 
increasing transmission in infrared detectors [26] or transmission of laser 
through different optical elements like lenses or polarizers [6] [17]. For solar 
cells and LEDs, the goal is to enhance scattering by eliminating total internal 
reflection or enhancing near-surface reflection by scattering light off normal [20] 
[21] [27]. 

Nanostructuring the surfaces of dielectric materials is often used to improve 
transmission at the silicon/air interface in IR applications. As previously men-
tioned, one of the main applications of NALs is enhancing transmission of light 
through optical elements used in high-power-laser applications [25] [28] [29] 
[30]. In such applications, it is also crucial to avoid scattering. Therefore, the 
randomly distributed NALs are replaced by orderly ones [25] [30] [31]. Al-
though periodic structures don’t impose scattering to the transmitted light, 
usually such structure’s max efficiency happens at a certain pitch for every spe-
cific wavelength [17]. To the best of our knowledge, the researchers who have 
designed these nanostrucutres, first calculated refractive index of different 2D 
antireflection films laying over each other for maximal transmission. Afterwards, 
they related the calculated refractive indexes to the amount filled by a 3D dielec-
tric disk using fill factor or Maxwell-Garnett approximation [17]. Although the 
2D layers in some cases result in 100% transmission, due to the approximation, 
the 3D geometries associated with these 2D structures do not yield the same max 
transmission [17]. One way to deal with this problem is directly designing the 
NALs and evaluating the transmission of light through the 3D design using nu-
merical methods.  

In nature already nanostructures exist that maximize light transmission into 
the eyes of some insects. A series of mathematical equations are fitted to a mo-
theye structure. We’ve seen that for high index materials like silicon, the trans-
mission through ordinary Motheye nanostructures falls below 100%. Using Ri-
gorous Coupled Wave Analysis (RCWA) we have evaluated the profiles that fit 
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the moth’s eye. Then, we have further optimized these nanostrucutres for en-
hancing light transmission through high index materials like silicon using more 
complex mathematical expressions for the profile. In this paper, using RCWA 
we have explored Motheye like optimized nanostructures of Silicon, for reaching 
100% transmission (silicon is transparent in IR). This is a big achievement for 
high power laser applications used in industry where even a tenth of a percent 
back reflection is considerable [17] [25] [30] [31] and can be destructive. In ap-
plications such as transparency glasses, even a percent of glare can have a drastic 
effect on reduction of quality of image [32]. Our structures have eliminated even 
the tiniest reflection making them very suitable for a wide range of applications. 
In our previous work [6], we observed that logarithmically designed NALs effi-
ciency, highly depended on pitch. Therefore, for gaining high transmission for 
higher wavelengths we had to increase the pitch. However, our current Motheye 
nanostructures are relatively insensitive to the pitch. Therefore keeping the pitch 
constant (submicron), we have evaluated the nanostructures transmissions. This 
is another plus for the periodic nanostructures efficiency which is usually de-
pendant on the pitch [17]. By designing nanostructures with sub-micron pitch, 
we can design very broadband NALs which transmit both high and low wave-
lengths, without imposing diffraction to lower wavelengths. 

2. Maximizing Transmission 

In this section, we have investigated multiple profiles for periodic nanostruc-
tures to reach 100% transmission. In our previous work, we investigated profiles 
which generated over up to 99.1% for a height equal to π  phase shift [6]. Here, 
we find the profiles for maximal transmission of light, even superior to the pre-
vious profiles [6]. The heights of NALs will generate the same phase shift in the 
transmitted electromagnetic waves for a fair comparison. We try different ma-
thematical equations for the profile of NALs and evaluate each profile using  

RCWA. The equations we use have a general form of 
1

1
n

xf
p

 
= −  

 
, where f 

represents the fill factor and x
p

 represents side length of cross section at each  

elevation normalized to pitch. We have chosen this mathematical equation to its 
resemblance to motheye. By swiping 1n , we have gained series of mathematical 
relations resulting in 100% transmission. As the first step, we assume that 

2 1n = . We find the suitable pitch for maximizing transmission at roughly 12 μm 
numerically ( Pitch 0.64 m= µ ) using Bisection method [33]. At this pitch, if we 
assume 1 1n = , the transmission will be maximum around 12 μm wavelength. 
Then we keep the pitch constant and swipe the wavelength from 0.95 μm to 25 
μm. The transmission is shown in Figure 1. The max transmission of 100% 
happens at 1 0.7n = . However, the transmission drops rapidly for longer wave-
lengths compared to cases with higher 1n  values. Note that by changing 1n  
the wavelength that maximum transmission happens deviates slightly. 
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Figure 1. “ 1n ” changes from 0.6 to 0.9. The pitch is kept constant at 0.64 μm. It’s clear 
that the max point deviates from 4 mλ = µ  by changing 1n . The max transmission is 
for 1 0.7n =  where the peak transmission is 99.94%. The max bandwidth belongs to 

1 0.9n = . 

 
For further improving the profile, we generalize the mathematical relation to 

( ( )( ) 211
nnf x m= − ). It is seen that if 2 1n ≠ , the max point doesn’t happen at 

0.7 anymore. In Figure 2(a), the maximum 100% happens for 2 0.9n =  (in part 
(a) 1 0.6n = ). For Figure 2(b), the max 99.99% happens for 2 0.85n =  and 

2 0.90n =  (in part (b) 1 0.7n = ). In Figure 2(c), max 100% happens for 

2 0.7n = , 2 0.75n = , 2 0.80n = , 2 0.85n =  (in part (c) 1 0.8n = ). The band-
widths in Figure 2 are shown in Table 1. Further investigation has shown that 
the max transmission bandwidth happens for 1 0.75n = . For 1 0.75n = , we have 
swiped 2n  between 0.55 and 0.75. 

In Figure 3, the transmission is shown for a wavelength span from 9.5 μm to 
25 μm. We further reduce 2n  and increase the wavelength span to find how 
much the performance drops at wavelengths even longer than 25 μm. Keep in 
mind that in designing the NALs the height of the pillar is set to a π  phase 
shift. 

In Figure 4, ( 1 0.75n = ), the max transmission is 100% which happens for 

2 0.55n =  and 2 0.50n = . However, at longer wavelengths (above 50 μm), the 
highest transmission is 99.82% for 2 0.50n =  and 2 0.45n =  (Figure 4(a)). 
Our simulations show that for 1 0.65n = , although one would not get a 100% 
transmission, the spectrum of transmission is better than the previous case. Fig-
ure 4(b) shows that when 2 0.45n = , the transmission reduces to 99.96% for 
high wavelengths (above 50 μm). 

The importance of the profiles introduced is that their max transmission is 
not dependant on pitch. This is a big advantage compared to our previous work 
[6], where the transmission peak for each wavelength happened at a specific  
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Figure 2. In all the three figures, 2n  is changing from 0.7 to 1. (a) 1 0.6n =  (b) 1 0.7n =  (c) 1 0.8n = . 

 

 
Figure 3. NALs designed based on 1 0.75n =  show the max bandwidth specially at lower 
powers of 2n . 

 
pitch, linearly related to the wavelength. In that case, the max transmission for 
each wavelength happened at a specific pitch, therefore one would need to 
change the pitch of NALs for maximizing different wavelengths. This is not de-
sired since for gaining high transmission at longer wavelengths, one would need  
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(a)                                                        (b) 

Figure 4. Better spectral transmission (a) The spectrum related to “ 1 0.75n = ” for 2n  between 0.35 to 0.55. (b) The spectrum 
related to “ 1 0.65n = ” for 2n  between 0.4 to 0.50. 

 
Table 1. Transmission Band-width for three cases of Figure 2 based on 99% transmission 
cut-off. 

Index of refraction 1 0.60n =  1 0.70n =  1 0.80n =  

2 0.70n =  5 μm 8.5 μm 13.6 μm 

2 0.75n =  4.2 μm 6.6 μm 9.3 μm 

2 0.80n =  3.5 μm 5 μm 6.8 μm 

2 0.85n =  2.8 μm 4.2 μm 5.5 μm 

2 0.90n =  2.4 μm 3.5 μm 4.5 μm 

2 0.95n =  2.0 μm 2.9 μm 3.8 μm 

2 1.00n =  1.7 μm 2.4 μm 3.4 μm 

 
to linearly increase the pitch of the nanostructure. Then, if we want to use the 
nanostructure for both longer and shorter wavelengths, diffraction will be in-
evitable for shorter wavelengths due to higher pitch. The limit of pitch for com-
plete elimination of diffraction is shown in Equation (1) ( incλ  is the wavelength 
of incidence). 

Pitch
2

inc

subn
λ

≤                             (1) 

The RCWA approach shows that our new profile is not pitch dependant to a 
very good extend. This is to our belief related to the way it distributes the E-field 
in space above the nanostructure. The spacial distribution of wave inside and out 
the NALs is subject of a subsequent publication which we are currently working 
on using finite element method. The refractive index of the nanostructures is 
shown in Figure 5. The refractive index is related to the profile at each elevation 
using fill-factor concept. The mathematical relation relating the two is shown in 
Equation (2) and Equation (3). 
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Figure 5. The refractive index related to the Motheye nanostructures at each elevation for 

1 0.6n =  and 2 0.45n = . 

 

( )FillFactor 1Si AirA n A n= × + − ×                  (2) 

Fill-Factorx =                        (3) 

In the equation, we have assumed that the volume is occupied by Si, but in 
general it can be any material that is transparent at the illumination wavelength. 
Previously, we had found the proper refractive index at each elevation from sub-
strate and assigned a geometric profile to the calculated index. Here, we first find 
a proper profile by mimicking nature and then related to a refractive index at 
each elevation. 

In Equation (3), x is length or width of the cross-section of NAL. We have not 
yet been able to fabricate a 3-D NAL with square cross-section from tip to base. 
Therefore, we have fitted a geometry with circular cross-section, to the square 
cross-section. The side-view and 3D profile of the periodic structures are shown 
normalized to the pitch in Figure 6. The resulting structures resemble that of 
motheye surface and can be considered “Enhanced Motheye-NanoStructures”. 

3. Conclusion 

NALs are a promising option for enhancing transmission of light from air into 
high index materials. By engineering the profile of the NALs, one can reach very 
high transmissions. These structures offer zero residual stress with the substrate 
when exposed to high power laser beams and are of significant importance for 
transmitting light energy into high-index substrates. Our nanostructures yield a 
100% transmission. This high transmission at different wavelengths has negligi-
ble dependence on the pitch of the nanostructure. This is another achievement 
compared to our previous design. Previously for each wavelength, we needed to  
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(a)                                                         (b) 

Figure 6. Motheye like profiles with very high performance are shown. (a) 2-D cross-section consisted of 100 layers (b) 3D profile 
of the periodic motheye structures normalized to the pitch with circular cross-section. 

 
change the pitch of the nanostructures to maintain a high transmission. There-
fore, NALs designed for longer wavelengths can have small pitches (even below 
1 μm). This is important if one wants the nanostructures to function at lower 
wavelengths alongside the longer wavelengths. Our broadband nanostructures 
do not impose diffraction to the shorter wavelengths (due to very small pitch), 
while they highly enhance transmission for above 50 μm wavelengths. This 
makes our NALs highly desirable for transmitting laser lights at a broad span of 
wavelengths. The profiles of these nanostructures resemble that of a motheye’s 
surface, and considering the capabilities and designing approach, they can be 
considered enhanced motheye nanostructures. 
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