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Abstract 
In recent years, variable selection based on penalty likelihood methods has 
aroused great concern. Based on the Gibbs sampling algorithm of asymmetric 
Laplace distribution, this paper considers the quantile regression with adap-
tive Lasso and Lasso penalty from a Bayesian point of view. Under the non- 
Bayesian and Bayesian framework, several regularization quantile regression 
methods are systematically compared for error terms with different distribu-
tions and heteroscedasticity. Under the error term of asymmetric Laplace dis-
tribution, statistical simulation results show that the Bayesian regularized 
quantile regression is superior to other distributions in all quantiles. And 
based on the asymmetric Laplace distribution, the Bayesian regularized quan-
tile regression approach performs better than the non-Bayesian approach in 
parameter estimation and prediction. Through real data analyses, we also con-
firm the above conclusions. 
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1. Introduction 

Since the pioneering work by Koenker and Bassett in 1978, quantile regression 
(QR) has been deeply studied and widely applied to descript the elaborate rela-
tionship between the dependent variable and predictors [1]. Compared with the 
traditional mean regression, quantile regression has more robustness to data 
with outliers. In 1999, Koenker and Machado connected the asymmetric Laplace 
distribution (ALD) to QR model and defined a goodness-of-fit criterion for quan-
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tile regression, which is the natural analog of R2 statistic of least squares regres-
sion [2]. In 2001, Yu and Moyeed first proposed a Bayesian quantile regression 
model that the error follows an asymmetric Laplace ( AL) distribution, and 
proved the maximization of likelihood-based inference used independently dis-
tributed asymmetric Laplace densities was equivalent to the minimization of the 
loss function [3]. In 2010, Hewson and Yu suggested quantile regression model 
for binary data within the Bayesian framework [4]. In 2011, Reich et al. intro-
duced Bayesian spatial quantile regression model [5]. In 2013, Sriram et al. 
showed that the misspecified likelihood in the ALD approach still leads to con-
sistent results [6]. In 2009, Kozumi and Kobayashi built a more efficient Gibbs 
sampler for fitted the quantile regression model based on a location-scale mix-
ture of the asymmetric Laplace distribution to draw samples from the posterior 
distribution [7]. In 2012, Khare and Hobert proved that this new sampling algo-
rithm converges at a geometric rate [8]. In 2015, Sriram proposed a correction to 
the MCMC iterations to construct asymptotically valid intervals [9]. 

In 2004, Koenker added the Lasso regularization method to the mixed-effect 
quantile regression model for the first time, and the Lasso penalty made the 
random effect shrink to zero [10]. In 2007, Wang et al. considered the least 
absolute deviance (LAD) estimate with adaptive Lasso penalty (LAD-lasso) 
and proved its oracle property [11]. In 2008, Li and Zhu considered quantile 
regression with the Lasso penalty and developed its piecewise linear solution 
path [12]. In 2009, Wu and Liu studied the quantile regression with the SCAD 
method and the adaptive Lasso method [13]. In 2008, Park and Casella studied 
the Lasso penalty from the Bayesian angle, and proposed that the hierarchical 
model can be effectively solved by the Gibbs sampler, thereby introducing the 
regularization method [14]. In 2010, Li et al. studied the regularization method 
in quantile regression from the perspective of Bayesian and proposed to set the 
prior distribution of parameters to Laplace prior, and use Gibbs sampler to 
sampling Bayesian Lasso quantile regression [15]. In 2012, Alhamzawi et al. 
proposed Bayesian adaptive Lasso quantile regression, by setting different pe-
nalty parameters for different variables, and setting the penalty parameter to in-
verse gamma distribution, and the inverse gamma priori Parameters are treated 
as unknowns and estimated along with other parameters [16]. In 2018, Adlouni 
et al. showed that a regularized quantile regression model with B-Splines based 
on five penalties (Lasso, Ridge, SCAD0, SCAD1 and SCAD2) in Bayesian frame-
work [17]. 

Based on the existing literature, the Bayesian quantile regression is realized by 
expressing the asymmetric Laplace distribution as scale mixtures of the standard 
normal distribution and the standard exponential distribution, and the Gibbs 
sampler is used to simulate the distributed parameters. The regularized quan-
tile regression under the Bayesian framework is compared with the non-Bayesian 
regularized quantile regression method. Finally, the prostate cancer data sets are 
used to illustrate the advantages and disadvantages of these two approaches. 
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2. Methods 
2.1. Quantile Regression 

Given data ( ){ }, , 1, ,i ix y i n= � , with covariate vector ( )1 2, , ,i i i ikx x x′ = �x  and 
( )1, , ny y′ = �y  is the response variable. The thθ  quantile regression model 

for the response iy  given ix  takes the form of 

( ) ( ) ,
iy i iQ θ θ′=x x β                       (1) 

where ( ) ( )1F
i iy i y iQ θ θ−=x x  is the inverse cumulative distribution function and 

( )θβ  is the unknown coefficients vector that is dependent on the quantile θ ,  

( )0,1θ ∈ . 

The regression parameter β  can be estimated by minimizating the following 
objective function 

( )
1

min ,
n

i i
i

θβ
ρ

=

′−∑ y x β                       (2) 

where ( ) ( )( )I 0u u uθρ θ= − <  is the loss function and ( )I ⋅  denotes the indi-
cator function. 

In 2001, Yu and Moyeed [3] argued that the minimization problem in equa-
tion (2) is equivalent to maximizing the likelihood function of iy  by assum-
ing iy ’s are random variables from a skewed Laplace distribution with  

iµ ′= x β  and 1σ = . The density function of a skewed Laplace distribution is 
given by 

( ) ( ) ( )1
, , exp ,

y
f y θθ θ ρ µ

µ σ θ
σ σ
− −  = − 

  
             (3) 

where, σ  is the scale parameter, µ  is the location parameter and θ  is the 
asymmetrc parameter. 

Then the likelihood function of the sample ( )1 2, , , ny y y ′= �y  can be ex-
pressed as 

( ) ( ) ( )
1

1 1L , , exp .
nn n

in
i

yθ

θ θ
µ σ θ ρ µ

σσ =

−  = − − 
 

∑y           (4) 

Tsionas [18], Kozumi and Kobayashi [7] have demonstrated that ALD can be 
viewed as a mixture of standard an exponential distribution, ( )exp 1  and a 
standard normal distribution ( )N 0,1 . Assume that z and υ  represent a stan-
dard exponential distribution and a standard normal distribution, respectively.  

For 
( )

1 2
1

θω
θ θ
−

=
−

, 
( )

2
1

f
θ θ

=
−

, if ( )0, ,ALDµ σ θ∼ , random variable  

1
2z zµ ω φσ υ

−
= + , Therefore, it can be known that the independent variable 

iy  of the quantile regression is equivalent to 

1
2 .i i i i iz zβ ω φσ υ

−
′= + +y x                    (5) 
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2.2. Bayesian Quantile Regression with Lasso and Adaptive Lasso 
Penalty 

The Bayesian quantile regression parameter estimation model with Lasso penalty 
(Li and Zhu) [12] is 

( )
1

min ,
n k

i i j
i j

θβ
ρ λ β

=

′− +∑ ∑y x β                   (6) 

Li et al. [15] set the prior distribution of the parameter jβ  to a Laplace prior 

( ) ( )
1

| , 2 exp
kk

j j
j

p β σ λ σλ σλ β
=

 
= − 

 
∑ . It is also assumed that the error term 

iµ  obeys the asymmetric Laplace distribution (ALD). 

Bayesian quantile regression with adaptive Lasso penalty (BQR-AL) is based 
on different penalty parameters are applied to different regression coefficients. 
Therefore, the parameter estimation model of BQR-AL is 

( )
1 1

min ,
n k

i i j j
i j

θβ
ρ λ β

= =

′− +∑ ∑y x β                   (7) 

Alhamzawi and Yu [16] proposed different penalization parameters for dif-
ferent regression coefficients, and the prior of the penalty parameters is set to the 
inverse gamma distribution, and treat the hyperparameters of the inverse gam-
ma prior as unknowns. Thus, the Laplace prior on jβ  by 

( )
11
22

| , exp ,
2

j
j j

j j

p
σ βσβ σ λ

λ λ

 
 

= − 
 
 

                (8) 

Andrews and Mallows [19] mentioned that 

{ }
2 2 2

0

1exp exp exp d , 0.
2 2 2 22

tt s s
ss

ξ ξ ξξ ξ
∞    

− = − − >   
π    

∫       (9) 

Let 

1
2

j

ση
λ

= , (8) can be written as 

( ) { }| , exp ,
2j j jp ηβ σ λ η β= −                  (10) 

also equivalent to 

( ) { } { }
2

2 2
0

1| , exp 2 exp 2 d ,
22j j j j j j

j

p s s s
s

ηβ σ λ β η
∞

= − −
π∫     (11) 

so there are 

( ) { } { }2 2 2
20

1| , exp 2 exp 2 d .
22j j j j j j j

jj

p s s s
s

σβ σ λ β σ λ
λ

∞
= − −

π∫    (12) 

The prior distribution of 2
jλ  is set to the inverse gamma prior, so the distri-
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bution density function of 2
jλ  is 

( ) ( ) ( ) 12 2
2| , exp ,j j
j

p
δ δγ γλ δ γ λ
δ λ

− −   = − 
Γ   

             (13) 

where 0δ >  and 0γ >  are two hyperparameters. Yi and Xu [20] pointed out 
that the values of these two hyperparameters determine the degree of compres-
sion of the variables in (13), because small γ  large δ  will lead to greater 
compression, so in order to avoid the impact of special values on the estimation 
of regression coefficients, we consider δ  and γ  as unknown parameters. 

In summary, the Bayesian quantile regression hierarchical model with adap-
tive Lasso penalty is 

( )

( )

( ) { }

1
2

0

2

,

1,

1 exp ,
22

| exp ,

i i i i i

i
i

i i

z z

p

p

p z z

β ω φσ υ

β

υ
υ

σ σ σ

−
′= + +

∝

  = − 
π   

= −

y x

 

( ) { } { }

( ) ( ) ( )

( ) { }
( )

2 2 2
2

12 2
2

1

1

1, | , exp 2 exp 2 ,
22

| , exp ,

exp ,

, .

j j j j j j j
jj

j j
j

a

p s s s
s

p

p b

p

δ δ

σβ σ λ β σ λ
λ

τ γλ δ γ λ
δ λ

σ σ σ

γ δ γ

− −

−

−

= − −
π

  = − 
Γ   

= −

=

    (14) 

2.3. Gibbs Sampling 

From the hierarchical model, the joint posterior density function of each para-
meter is 

( )

( ) ( ) ( ) ( ) ( ) ( )

( )

{ } { }

( ) ( )

1

2 2

1 1

2

21 21

2 2
2

1

12 1 1
2

, , , , , , | ,

| , , , | , | , | , ,

exp
2

1 exp 2 exp 2
22

exp exp

k

n k

i j j j j
i j

n
i i i

i
i ii

k

j j j j
j jj

a
j

j

p

p p z p s p p p

ωz
z

zz

s s
s

δ δ

σ λ λ

σ σ β σ λ λ γ δ σ γ δ

σσ σ
φσ φ

σβ σ λ
λ

γ γλ γ σ
δ λ

= =

−=

=

− − − −

∝

 ′− − ∝ − − 
  

× − −
π

  × − − 
Γ   

∏ ∏

∏

∏

z s y Χ

y z Χ

y x

�β

β

β

{ } ,bσ
 

where 

( ) ( ) ( ) ( )1 2 1 2 1 2 1 2, , , , , , , , , , , , , , , .n n n ky y y x x x z z z s s s= = = =y Χ z s� � � �  

The full condition posterior distribution of each parameter is 
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( )
( )

0

2
0 0

2

2

2
2

| N , ,

| N , ,

1| GIG , , ,
2

1| GIG , , ,
2 2

jj j

i

j j
j

z

s

β

β

β β

β β

α

σ β
λ

⋅

⋅

 ⋅  
 
 

⋅   
 

s

s

∼

∼

∼ �

∼
 

( )3
1 2

2

2

1

| G , ,

| GIG 1 , ,
2

| G 1, .

j
j

k

j
j

a a

s

k

σ

σ
λ δ γ

γ δ λ−

=

⋅

 
⋅ + + 

 
 

⋅ − 
 

∑

∼

∼

∼

                  (15) 

Here 

( )

( )

2 2

22

1

2

2 2 2
1 1

2 ,

,
3 ,
2

.
2

i i

n k
ji i i

i
i ji j

a n k a

sz
a z b

z

α σω φ σ

σφ

ω
φ λ

−

−

= =

= +

′= −

= + +

 ′− −
 = + + +
  

∑ ∑

� y x

y x

β

β

           (16) 

Since the full condition posterior distribution ( ) ( )( ) 2

1
|

kk k
j

j
p δ δδ δ γ λ

− −

=

⋅ ∝ Γ ∏   

of δ  does not have a closed form, it is a logarithmic convex function. Gilks 
[21] proposed using the adaptive rejection sampling algorithm to sample this 
distribution. 

3. Simulation Studies 

Based on the MCMC algorithm of Gibbs sampling, Bayesian estimation is 
carried out on the model. The simulation studies used to compare the regula-
rized quantile regression under the Bayesian and the non-Bayesian frame-
work. These methods include Bayesian quantile regression with adaptive Lasso 
penalty (BQR-AL), Bayesian quantile regression with Lasso penalty (BQR-L), 
quantile regression with Lasso penalty (QR-L), quantile regression with SCAD 
penalty (QR-SCAD) and quantile regression (QR). 

3.1. Independent and Identically Distributed Random Errors 

Here, we follow the same simulation strategy introduced by Li, Xi and Lin [15] 
in the simulation studies 1, 2 and 3 with different parameter values for the error 
distributions. 

We consider a linear model 

, 1, ,i i i i nε′= + =y x �β  
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where iε ’s have the thθ  quantile equal to zero. 
For i.i.d. random errors, this paper will consider the following four forms of 

simulation 
Simulation 1: ( )3,1.5,0,0,2,0,0,0β = , 
Simulation 2: ( )0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85β = , 
Simulation 3: ( )5,0,0,0,0,0,0,0β = , 

Simulation 4: 
10 10 10

3, ,3,0, ,0,3, ,3β
 

=   
 
� � ������� ��� . 

In the first three simulation studies, the rows of x  is generated in a multiva-
riate normal distribution ( )N 0,Σ  with ( ) 0.5 i j

ij
−Σ = . In Simulation 4, we first 

generate 1Ζ  and 2Ζ  from ( )N 0,1 , then let 1j jx Ζ ν= + , 1, ,10j = � ,  
( )N 0,1jx ∼ , 11, , 20j = � , 2j jx Ζ ν= + , where 21, ,30j = � , where  
( )N 0,0.01jν ∼ , 1, ,10,21, ,30j = � � . 

In each simulation, we consider the error distributions in our simulation fol-
lows 

1) A normal distribution ( )N ,1µ  with the thθ  quantile equal to zero. 
2) A Laplace distribution ( ),1Laplace µ  with the thθ  quantile equal to zero. 
3) A t distribution with three degrees of freedom, ( )3t . 
4) A 2χ  distribution with three degrees of freedom, ( )

2
3χ . 

5) A asymmetric Laplace distribution ( ),0.5,1ALD µ  with the thθ  quantile 
equal to zero. 

The number of observations in one simulated sample is n = 200. The simula-
tion is repeated 50 times for each error distribution. The evaluation index is the 
median mean absolute deviation (MMAD), i.e. 

200

1

ˆMMAD median 1 200 true
i i

i=

 ′ ′= − 
 

∑ x xβ β
 

The quantile regression model for the quantile ( )0.3,0.5,0.7θ =  is estimated 
separately. The simulation results are shown in Figures 1-4. 

Figure 1 shows that under the condition of simulation 1, that is, sparse coeffi-
cients, the MMD values of BQR-AL and BQR-L are lower than those of the fre-
quency school method, in which the MMAD value satisfying the error term 
compliance distribution ( ),0.5,1ALD µ  is smaller. 

Figure 2 corresponds to the dense coefficient in simulation 2, and it can be 
seen that the MMAD values of BQR-AL and BQR-L are very small and close to 
each other. 

Figure 3 corresponds to the case where the coefficient of the simulation 3 is 
sparse, and the same conclusion as the simulation 1 can still be obtained. And 
the effect of Bayesian regularized quantile regression is more obvious. 

For simulation 4, since the number of variables is larger than the sample size, 
the design matrix is a singular matrix, so the QR and QR-SCAD methods cannot 
be run in this simulation, and the other methods can still operate normally. This 
also proves the advantages of the regularization method. The results are shown 
in Figure 4. 
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Figure 1. The panels represent the MMADs in simulation 1. 

 

 
Figure 2. The panels represent the MMADs in simulation 2. 
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Figure 3. The panels represent the MMADs in simulation 3. 

 

 
Figure 4. The panels represent the MMADs in simulation 4. 
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Figures 1-4 show that, in terms of the MMAD, BQR-AL and BQR-L method 
performs better than the other regularized quantile regression method. The re-
sults of the MMAD for simulation 1 - 4 are reported in Figures 1-4. From these 
simulation, we can learn the following results: 

1) In the above simulation, the MMADs of BQR-AL and BQR-L tend to give 
lower MMAD compared with the other regularized quantile regression under 
non-Bayesian for all distributions under considerations. It is shown that the sta-
bility and repeatability of the Bayesian regularized quantile regression are better. 

2) In the case of sparse and very sparse regression coefficient, the MMAD 
value of BQR-AL is the smallest. In the case of dense regression coefficient, the 
MMAD value of BQR-L is smaller. Moreover, the estimation effect of the two 
methods is similar. 

3) The BQR-AL and BQR-L methods can achieve good results under all error 
term distributions. It is shown that the regularized Bayesian quantile regression 
method is robust to the assumption of the error term, and the two methods are 
satisfactory even if the error term deviates from ALD. 

4) No matter what the distribution of the original data is, when the error dis-
tribution is ALD, the regularized quantile regression method under Bayesian 
framework has high accuracy, especially the BQR-AL method, and the estimated 
value of its parameters is the closest to the real value. 

In addition to observing the MMADs of each method, this paper can also ob-
serve the estimation of its parameters. Due to the limited space, in this paper, the 
parameter estimation results of error obeying ALD distribution in simulation 1 
are simulated: 

It can be seen from the parameter estimates in Table 1, the QR class method 
generally gives less biased parameter estimates, but this does not guarantee a 
good quantile prediction, as implied by the MMADs in Figure 4. 

3.2. Non-i.i.d. Random Errors 

Consider the following model when the error term is subject to a non-i.i.d. 

( )1 2 3 32 1 ,y x x x x ε= + + + + +  
where ( )1 N 0,1x ∼ , ( )3 0,1x U∼ , 2 1 3x x x z+ +∼ , where ( )N 0,1z ∼  and  

( )N 0,1ε ∼ . The remaining five noise variables 4 5 6 7 8, , , ,x x x x x  are generated 
from the independent standard normal distribution. The results are shown in 
Table 2 and are based on 50 repetitions, each with sample size n = 200. 

It can be known from Table 2 that the BQR-L method have smaller MMAD 
values, indicating that the regularized quantile regression method under the 
Bayesian framework is also superior to the regularized quantile regression me-
thod under the non-Bayesian framework when the error obeys the non-i.i.d.. 

3.3. Prostate Cancer Data Set 

This section mainly analyzes prostate cancer data in the “bayesQR” package 
[22]. The dataset was first proposed by Stamey et al. [23], including a medical 
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Table 1. Parameter estimates for simulation 1 in the case of i.i.d. 

θ  Method 1β  2β  3β  4β  5β  6β  7β  8β  

 trueβ  3 1.5 0 0 2 0 0 0 

0.3 

BQR-AL 3.0110 1.5013 −0.0103 0.0035 1.9993 0.0101 −0.0004 −0.0088 

BQR-L 3.0092 1.5014 −0.0113 0.0053 1.9948 0.0128 0.0002 −0.0096 

QR-SCAD 3.0090 1.5094 −0.0094 0.0174 1.9965 0.0122 0.0043 −0.0007 

QR-L 3.0163 1.4942 −0.0130 0.0079 1.9952 0.0083 −0.0001 −0.0091 

QR 3.0143 1.4997 −0.0146 0.0063 2.0018 0.0067 −0.0007 −0.0148 

0.5 

BQR-AL 3.0088 1.5077 −0.0105 −0.0004 1.9979 0.0170 −0.0032 −0.0064 

BQR-L 3.0064 1.5074 −0.0107 0.0013 1.9925 0.0202 −0.0032 −0.0066 

QR-SCAD 3.0062 1.5109 −0.0005 0.0102 1.9931 0.0257 −0.0020 0.0084 

QR-L 3.0167 1.4983 −0.0101 0.0050 1.9883 0.0182 −0.0043 −0.0066 

QR 3.0124 1.5095 −0.0137 0.0045 1.9939 0.0160 −0.0027 −0.0081 

0.7 

BQR-AL 3.0057 1.5142 −0.0123 −0.0051 1.9973 0.0234 −0.0043 −0.0035 

BQR-L 3.0025 1.5135 −0.0122 −0.0029 1.9907 0.0271 −0.0048 −0.0035 

QR-SCAD 3.0015 1.5242 −0.0047 0.0079 1.9937 0.0311 −0.0002 0.0063 

QR-L 3.0108 1.5042 −0.0080 0.0014 1.9890 0.0228 −0.0021 −0.0078 

QR 3.0065 1.5127 −0.0122 −0.0011 1.9949 0.0231 −0.0060 −0.0050 

 
Table 2. MMADs of each method in the case of non-i.i.d. 

θ  0.3 0.5 0.7 

BQR-AL 0.67640 1.58100 2.44680 

BQR-L 0.65308 1.55980 2.41390 

QR-SCAD 0.72930 1.57730 2.43000 

QR-L 0.69427 1.57320 2.43920 

QR 0.72090 1.59810 2.48700 

 
record of 97 male patients undergoing radical prostatectomy, containing the lev-
el of prostate antigen y (lpsa) and eight influencing factors. These influencing 
factors were: log cancer volume (lcavol), log prostate weight (lweight), age, log of 
the amount of benign prostatic hyperplasia (lbph), seminal vesicle invasion (svi), 
log of capsular penetration (lcp), Gleason score (gleason) and percentage of 
Gleason score 4 or 5 (pgg 45). As with the numerical simulation of the second 
part, still consider ( )0.3,0.5,0.7θ =  here. 

In Table 3, we will compare three methods: QR, BQR-L, and BQR-AL. The 
QR method will use the “quantreg” package in R and the default rank method to 
get the confidence interval. Here, the 95% interval is considered and parameter 
estimation is performed. For the Bayesian method, the MCMC algorithm is used 
to perform 5000 simulations on the posterior distribution by default, and the  
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first 1000 samples are discarded. The results are shown in Table 3. 
It can be seen from Table 3 that the parameter estimates of the BQR-L and 

BQR-AL methods are very close to the classical quantile regression and the 
credible intervals of the BQR-L and BQR-AL methods are narrower than the 
QR, in which the BQR-AL interval to be more accurate than BQR-L, from this 
point of view, the Bayesian quantile regression method with penalty is estimated 
to be more accurate than the non-Bayesian regularized quantile regression me-
thod. 

Of course, we can also intuitively understand by drawing images. In this sec-
tion, for a more intuitive observation, the estimated values of the various me-
thods for 0.7θ =  are plotted, and similar results are obtained for other quan-
tiles. In order to be intuitive, the estimated values of each method will be trans-
lated, and the image is drawn as shown in Figure 5. 

 
Table 3. Parameter estimation and 95% interval of prostate cancer data. 

θ  variable QR BQR-L BQR-AL 

 lcavol 0.8310 (0.5078, 0.9594) 0.6101 (0.4360, 0.7904) 0.6232 (0.4515, 0.8133) 

 lweight 0.3166 (0.0679, 0.5257) 0.2425 (0.0836, 0.4068) 0.2444 (0.0833, 0.4216) 

 age −0.1282 (−0.2590, 0.1218) −0.1523 (−0.2868, −0.0066) −0.1628 (−0.2974, −0.0283) 

0.3 lbph 0.1693 (0.0221, 0.2993) 0.1897 (0.0315, 0.3510) 0.1990 (0.0392, 0.3528) 

 svi 0.2687 (0.1134, 0.44230) 0.2928 (0.0862, 0.4690) 0.3071 (0.1107, 0.4882) 

 lcp −0.2632 (−0.5559, 0.0310) −0.1089 (−0.3149, 0.0794) −0.1279 (−0.3325, 0.0734) 

 gleason −0.0249 (−0.1910, 0.1988) 0.0823 (−0.0756, 0.2363) 0.0867 (−0.0737, 0.2500) 

 pgg45 0.2430 (−0.0540, 0.5164) 0.1071 (−0.0499, 0.2952) 0.1134 (−0.0523, 0.3113) 

 lcavol 0.6278 (0.4480, 0.8226) 0.6083 (0.4292, 0.7917) 0.6282 (0.4488, 0.8207) 

 lweight 0.2759 (0.0882, 0.4258) 0.2420 (0.0744, 0.4183) 0.2486 (0.0934, 0.4152) 

 age −0.1994 (−0.2879, −0.0667) −0.1487 (−0.2888, −0.0034) −0.1643 (−0.2961, −0.0190) 

0.5 lbph 0.2319 (0.0745, 0.3454) 0.1858 (0.0157, 0.3500) 0.2011 (0.0443, 0.3513) 

 svi 0.3312 (0.1606, 0.4665) 0.2900 (0.0958, 0.4709) 0.3039 (0.0988, 0.4813) 

 lcp −0.1830 (−0.3249, −0.0517) −0.1051 (−0.3043, 0.0788) −0.1288 (−0.3363, 0.0611) 

 gleason 0.1467 (−0.0753, 0.2190) 0.0843 (−0.0769, 0.2417) 0.0835 (−0.0838, 0.2426) 

 pgg45 0.1146 (0.0060, 0.3218) 0.1055 (−0.0568, 0.3019) 0.1129 (−0.0493, 0.3099) 

 lcavol 0.6639 (0.3897, 0.8638) 0.6068 (0.4278, 0.7969) 0.6266 (0.4491, 0.8235) 

 lweight 0.0786 (−0.0389, 0.4159) 0.2436 (0.0796, 0.4181) 0.2467 (0.0825, 0.4175) 

 age −0.0977 (−0.3382, 0.0101) −0.1503 (−0.2868, −0.0046) −0.1632 (−0.2968, −0.0250) 

0.7 lbph 0.1652 (0.0001, 0.4058) 0.1878 (0.0335, 0.3423) 0.2027 (0.0401, 0.3598) 

 svi 0.3157 (0.1816, 0.5286) 0.2887 (0.0891, 0.4667) 0.3077 (0.1121, 0.4902) 

 lcp −0.0888 (−0.3516, −0.0038) −0.1008 (−0.2950, 0.0811) −0.1270 (−0.3326, 0.0662) 

 gleason −0.0967 (−0.1385, 0.0368) 0.0820 (−0.0750, 0.2393) 0.0814 (−0.0900, 0.2466) 

 pgg45 0.2324 (0.0755, 0.2866) 0.1092 (−0.0549, 0.3104) 0.1131 (−0.0575, 0.3198) 
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Figure 5. Regression estimates under five different methods and 95% credible intervals for BQR-AL 
and BQR-L. 

 
It can be clearly seen from Figure 5 that the quantile regression with Bayesian 

can provide a credible interval, while the non-Bayesian quantile regression is not 
always available and the credible interval of BQR-AL is narrower than BQR-L. 
The Bayesian quantile regression with penalty is estimated to be more accurate 
than the non-Bayesian regularized quantile regression. The effect of BQR-AL is 
better. 

4. Conclusion 

Bayesian quantile regression with adaptive Lasso penalty is an extension and 
improvement of the Lasso method. Adaptive Lasso penalty is based on different 
penalty parameters are applied to different regression coefficients. This method 
can effectively eliminate the influence of noise variables and obtain more accu-
rate parameter estimation. Through the Gibbs sampling algorithm, this paper 
systematically compares the regularized quantile regression under the non- 
Bayesian and Bayesian framework, and finds that when the error term obeys 
the independent identically distributed or heteroscedasticity distribution, both 
BQR-AL and BQR-L have higher accuracy and are superior to non-Bayesian 
methods. When the error obeys ALD, the BQR-AL method has the highest ac-
curacy for the MMAD under the same quantile, and its parameter estimate is 
also the closest to the true value in general. In the real data set, we can also find 
the same conclusion. Therefore, we can say that the Bayesian penalty regression 
method can get a good effect under the condition that the coefficient is sparse or 
dense, and it can be described in full aspect at different quantile points, and it will 
occupy a very important position in the future high-dimensional data analysis. 
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