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Abstract 
Loschmidt’s paradox is extended by replacing its assumption of time reversi-
bility with full CPT symmetry. Mobility is identified as a means for express-
ing collisions or dissipation, and the cross product of its gradient with the 
magnetic field, for expressing parity. Three phenomena incorporating such 
cross products are identified. The first is the cross product of the mobility 
gradient with the magnetic field. The second combines this cross product 
with the E cross B drift. The third is the reciprocal of the Nernst effect ex-
pressed as a cross product of the temperature gradient and the magnetic field. 
Simulations are conducted for testing Loschmidt’s extended paradox. Onsag-
er’s exclusion of magnetic fields and rotation from reciprocals violates CPT 
symmetry and is unjustified. All three cross-product phenomena skew statis-
tics in a fashion unanticipated by Boltzmann’s assumptions in his H-Theorem. 
CPT symmetric systems fall outside the assumptions of the theorem which is 
not rendered invalid but simply limited to its domain of applicability. There-
fore, these systems do not violate the second law as Boltzmann defines it. 
They bypass it. 
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It is the only physical theory of universal content concerning which I am con-
vinced that, within the framework of the applicability of its basic concepts, it will 
never be overthrown—Albert Einstein on the Second Law [1]. 

1. Introduction 

The second law, as stated in Boltzmann’s H-Theorem [2] asserts that, on the av-
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erage, entropy in an isolated system never decreases with time. i.e., d d 0S t ≥ . 
Joseph Loschmidt [3] [4] objected to the proof. In his famous paradox, he ar-
gued that if all physical processes are truly microscopically time-reversible, then 
any entropy increasing process is as probable as a corresponding entropy de-
creasing process. Therefore, according to physical laws, the change in entropy 
must be zero. Boltzmann’s response was to assert that molecular chaos (Stoss-
zahlansatz), i.e. uncorrelated molecular collisions, increases the randomness of a 
system. His molecular chaos assumption, however, implicitly assumes the arrow 
of time [5]. A time-reversed molecular chaos would lead to an anti-second law 
result, i.e., t t→ −  leads to ( )d d 0S t− ≤ . Boltzmann’s explanation, therefore, 
is no explanation at all, but simply the refutation of Loschmidt’s time reversibil-
ity premise: the arrow of time is a fundamental assumption implicitly used by 
Boltzmann in the H-Theorem which is his proof of the second law. 

Other proofs by Gibbs [6] [7], Tolman [8], and Von Neuman [9] [10] also 
implicitly rely on the arrow of time. One of the most recent, the fluctuation 
theorem [11] [12] [13] shows that the probability of observing an occurrence of 
entropy production opposite to the second law decreases with the time of obser-
vation. However, as Evans and Searles [12] [13] point out, this theorem must be 
combined with the axiom of causality. Their solution implicitly assumes the ar-
row of time and, regardless, is not workable as it violates locality (see Appendix 
A). 

In view of advances in the physics of the twentieth and twenty-first century, 
Loschmidt’s paradox appears to be based on a narrowly focused premise. Laws 
of nature, as currently understood, are not simply time-reversible. Their sym-
metry includes charge, parity and time reversal in combination. Therefore, 
simply asserting the arrow of time is not a sufficient condition for validating or 
falsifying the second law.  

As Carl Popper famously remarked, physical laws can never be shown to be 
true, but they should be experimentally falsifiable. On the other hand, mathe-
matical theorems can be proven from a set of axioms. The H-Theorem falls into 
this second category as it is derived from assumptions and postulates such as the 
Fundamental Postulate of Thermodynamics. As of now, all such proofs of the 
second law supervene on the assumption of the arrow of time. 

This paper challenges the second law by extending Loschmidt’s paradox as 
follows: if the laws of nature are CPT symmetrical and reversible, then a system 
could return to a previous state even in the presence of an arrow of time, thereby 
restoring its entropy to its original value. This version of the paradox renders 
moot the arrow of time assumption. This paper does not resolve the mystery of 
the arrow of time. However, it shows that systems with CPT symmetry skew 
particles’ statistics in a fashion unanticipated by Boltzmann, making them fall 
outside assumptions of his H-Theorem. Referring to Einstein’s quote at the be-
ginning of this paper, on the second law, CPT symmetric systems do not fit 
within the framework of the applicability of its basic concepts. Therefore, the 
second law, as Boltzmann defines it, is not violated, it is bypassed. 
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The idea of applying CPT symmetry to thermodynamics is not new. Klimenko 
[14] [15] and Klimenko and Maas [16] show that the kinetics of antimatter sys-
tems is time-antisymmetric when CPT invariance is taken into consideration. In 
contrast, this paper presents a classical analysis that mainly covers conventional 
matter systems in which the charge is constant, that is, these systems comply 
with PT symmetry. However, the results are applicable to CPT symmetry.  

Physical phenomena capable of expressing parity in CPT symmetry require a 
cross product, typically with a magnetic field (i.e., ×B). Interestingly, Onsager 
[17] [18] excluded magnetic fields from his reciprocals because of a conflict with 
the second law. This paper shows that this exclusion is not justified (discussed in 
Appendix B). Turned on its head, his argument can be taken as a proof that 
systems that include magnetic fields or rotations can violate the second law.  

A phenomenon that contests the second law must also include a measure of 
particle collisions (Boltzmann’s molecular chaos or Stosszahlansatz) tightly wo-
ven into the selected CPT symmetry cross-product mechanism. Mobility is such 
a measure. This tight coupling can be achieved by using the mobility gradient 
∇ μ as the other factor in the aforesaid cross product. 

Therefore, a system that extends Loschmidt’s paradox must combines CPT 
symmetry with Boltzmann’s molecular chaos. This system must express charge, 
parity, time, and mobility. It could be a gas of charged particles (Charge) whose 
behavior (Time) is described by a cross product (Parity) between a mobility gra-
dient ∇ μ (collisions) and a magnetic field B.  

Three such cross-product phenomena have been identified and simulations 
have been conducted as means for challenging the second law. This paper is or-
ganized as follows:  

1) Section 2 covers the ∇ μ × B drift. This phenomenon gives rise to sponta-
neous circulation driven by ambient thermal energy.  

2) Section 3 covers the ∇ μ × B + E × B drift which produces spontaneous 
space charges and voltages. 

3) Section 4 covers the reciprocal of the Nernst Effect (∇ T × B) which gene-
rates spontaneous temperature gradients. 

4) Section 5 describes simulation experiments supporting the theory. 
5) Section 6 explains that the thesis advanced in this paper does not break the 

second law as proven by Boltzmann and others, it bypasses it. 
6) Section 7 provides experimental supporting evidence. 
7) Section 8 is the conclusion. 
8) Section 9 suggests future research projects. 

2. The ∇ μ × B Drift 

Charged particles in a medium configured with a mobility gradient and sub-
jected to a magnetic field perpendicular to the gradient, drift in a direction per-
pendicular to the gradient and the field. This effect can, in general, be described 
as a cross product: 
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Bµ× ∝ ∇ ×v Bµ .                       (1) 

A mobility gradient can give rise to a force. See Note in [19]. This effect, first 
introduced as a surface drift in a previous paper by this author [20] [21], shall be 
elaborated upon below.  

The simplest configuration enabling the ∇ μ × B drift is shown in Figure 
1(a). It comprises a surface in the XZ plane, separating a medium with zero mo-
bility, except absorption and emission (for example the floor of a vacuum 
chamber) from a medium with infinite mobility (the volume of the chamber). 
Other surface effects such as image potentials are ignored for simplicity. In this 
simplified case, the mobility function is a step from zero to infinity at the surface, 
producing an impulse gradient in a direction normal to the surface i.e., along the 
Y axis. When a magnetic field B is applied parallel to the surface along the Z axis, 
a particle starting out from the surface follows a circular orbit that eventually 
brings it back to the surface. The surface interaction generates a drift along the X 
axis through two mechanisms: 

1) Position Distribution Skewing. 
2) Velocity Distribution Skewing. 

2.1. Position Distribution Skewing 

Figure 1(a) shows a charged particle following an orbit under the influence of a 
magnetic field B in a quasi-vacuum chamber, as it is being emitted and absorbed 
by a surface. 

If the orbit is clockwise (i.e., qBz > 0) and the surface is the floor (zero mobili-
ty medium below the surface), then the end point is always to the right of the 
starting point, and vice versa, if the surface is the ceiling (zero mobility medium 
above the surface), the end point is always to the left. Remarkably, the only con-
ditions for statistical biasing are 1) charged particles, 2) a magnetic field or rota-
tion and 3) the nominal distribution, undisturbed by a magnetic field, is sym-
metric and unbiased. Otherwise, positional biasing occurs independently of the 
properties of the surface which could be a perfect reflector, emitter, absorber or 
thermalizer. Figure 1(b) shows a simulation of all the paths a particle could take 
for its range of velocity vectors defined by the Maxwell-Boltzmann distribution. 
Green represents the peak of the distribution, blue the most energetic particles 
and red, the least energetic ones.  

2.2. Velocity Distribution Skewing 

A gas at any arbitrarily close distance to the surface has a symmetrical velocity 
distribution as shown in Figure 2(a) for the following reason.  

A perfectly reflecting or thermalizing surface behaves as an imaginary parti-
tion separating an imaginary volume also containing gas. Any particle emitted or 
absorbed by the surface can be regarded as crossing this partition and leaving or 
entering this imaginary volume. Therefore, the velocity distribution of all the 
particles at any given point arbitrarily close to the partition, is perfectly  
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(a)                                       (b) 

Figure 1. (a) When a magnetic field is present, a charged particle starting out from the 
floor follows a circular orbit that always intersects the surface to the right when the orbit 
is clockwise and to the left when it is counterclockwise; (b) This image shows a simulation 
of a large number of orbits with a maxwellian velocity distribution. Blue indicates orbits 
with the most energy, green those at the peak of the distribution, and red those with the 
least energy. Particles are assumed to have a negative charge and the magnetic field is 
“into the paper”. 
 

     
(a)                                     (b) 

Figure 2. (a) The velocity distribution of particles at any given point is unbiased; (b) 
However, when a surface is present, those particles (in red) that do make contact with the 
surface have a velocity distribution skewed in one direction, and those (in blue) that do 
not make contact have a distribution in the opposite direction. The asymmetry results in 
a transfer of momentum between the gas and the surface. In the figure, particles are as-
sumed to have a negative charge and the magnetic field is “into the paper”. 
 
symmetrical and has zero bias—as if the surface did not exist. At the surface it-
self, the distribution can be considered “half-Maxwellian” but it is still symme-
trical around the normal to the surface, as if the surface did not exist. (This 
model is consistent with Kirchhoff’s law of thermal radiation).  

However, the surface still introduces a subtle asymmetry as shown in Figure 
2(b). The velocity distribution of the subset of particles at a given point, with 
trajectories intersecting the surface (cross the partition) is biased as shown in 
red. Conversely, the subset of particles not making contact is biased in the other 
direction as shown in blue. The combined distribution has zero bias. Yet the 
surface introduces a correlation which transfers momentum between the gas and 
the surface. 

Figure 3(a) and Figure 3(b) show the skewing of the Maxwell Boltzmann 
distribution near a surface. 
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(a)                                      (b) 

Figure 3. (a) In a magnetic field, particles have a distribution biased in one direction 
when they intersect a surface, and in the opposite direction when they don’t; (b) The 
black curve represents the unbiased normalized Maxwell-Boltzmann velocity distribution 
for all particles corresponding to Figure 2(a). The red curve corresponding to Figure 2(b) 
is the distribution of the subset of particles at an elevation of 300 nm, having a trajectory 
that intersects the surface, for a magnetic field of 0.2 Tesla. Velocity is displayed along the 
X axis with 4039 m/s per division. 

2.3. Circulation Due to Momentum Transfer in the ∇ μ × B Drift 

The ∇ μ × B drift produces circulation of the gas within the container, in a di-
rection opposite to the orbits for the following reason. When an orbit is trun-
cated by a surface, momentum is transferred from the surface to the rest of the 
gas in a direction opposite to the orbital rotation. As shown in Figure 4(a), 
clockwise orbits produce a counterclockwise circulation and vice versa, in ac-
cordance with Newton’s third law. It is the macroscopic reaction to the com-
monly accepted microscopic cyclotron orbits. Figure 4(b) shows a simulation of 
this phenomenon. This circulation is spontaneous, driven by thermal energy 
transferred to the gas thermalized by the walls, floor and ceiling, with no input 
current. 

It may be experimentally verified in a modified Crookes radiometer [22] in 
thermal equilibrium with a heat bath and in a vertical magnetic field. In contrast 
with conventional devices, this radiometer includes vanes with equally colored 
faces and an opaque bulb and is driven by the thermal energy of the gas. A more 
detailed description of this experiment is presented in section 9 Suggested Fu-
ture Research. This experiment is a magnetic version of Duncan’s paradox [23].  

2.4. Analysis of the ∇ μ × B Drift 

Consider particles with charge q and an effective mass m* subjected to a mag-
netic field Bz applied along the Z axis. The particles are emitted by a surface in 
the XZ plane into a medium above it, filling the XYZ volume. The surface is as-
sumed to have zero mobility except for the ability to emit and absorb particles. 
Surface effects such as image potentials are ignored. The medium is assumed to 
have mobility μ. Two types of media shall be discussed with the following sim-
plifying assumptions: 

1) Medium with infinite mobility. 
2) Medium with a small but finite mobility. 
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(a)                                       (b) 

Figure 4. (a) The truncated orbits drive circulation of charged particles around the 
chamber; (b) A simulation shows in red those trajectories moving to the right, and in blue, 
those moving left, up and down. The greater concentration of particles around the edges 
is due to their mutual repulsion (enhanced by the simulation). 

2.4.1. Case 1. Medium with Infinite Mobility 
This case is illustrated in Figure 5. Mobility in the medium is assumed to be in-
finite, such that a particle leaving the surface with a tangential angle θ0 eventual-
ly collides with the surface after following an uninterrupted arc of radius R, sub-
tending angle Δθ. The time taken by the particle travelling at velocity xyv  pro-
jected on the XY plane, to cross the arc RΔθ is the same as the time taken by the 
particle traveling at drift velocity Bvµ×  projected on the surface, to cross the 
chord 2Rsin(Δθ/2). 

( )2 sin 2
Travel Time

xy B

RR
v vµ

θθ

×

∆∆
= = .               (2) 

Since Δθ = 2θ0, 

( )0

0

sin
B xyv vµ

θ
θ× = .                       (3) 

The expectation value of xyv  and Bvµ×  are derived in Appendix C for the 
Maxwell-Boltzmann distribution. They are 

*2
B

xy
k Tv
m

π
= ,                         (4) 

and 

( ) ( ) *Si Si
2

B
B xy

k Tv v
mµ× = =

π
π π .                 (5) 

The sign of Bvµ×  depends on the sign of qBz and the orientation of the sur-
face. For example, if the gas particles are contained by a cubic chamber with 
edges along the X, Y and Z axes (as shown in Figure 4(a), when qBz > 0, the 
surface drift is to the right on the floor, upward on the right wall, to the left on  
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Figure 5. Drift velocity diagram. A particle leaves the surface, and follows an uninter-
rupted arc that brings it back to the surface. 
 
the ceiling and downward on the left wall. This results in a spontaneous circula-
tion around the chamber. Figure 4(b) is a simulation showing in red the trajec-
tories of particles moving to the right, and in blue, those moving up, down and 
to the left. 

2.4.2. Case2. Medium with Small But Finite Mobility 
For a given mobility μ, the mean free time τ can be expressed as τ = μm*/q. For a 
velocity v , the mean free path is:  

*m v
q

µλ = .                         (6) 

Therefore, the projection of the mean free path λxy and velocity xyv  on the 
XY plane is 

*
xy

xy

m v
q

µ
λ = .                       (7) 

Referring to Figure 6, the ∇ μ × B drift can be derived as follows. The length 
of the arcuate mean free path projection on the XY plane between collision1 at 
the surface and collision 2 in the medium is:  

xy Rλ θ= ∆ ,                         (8) 

where Δθ is the angle subtended by the arcuate path between the initial and final 
velocity vector and R is the radius of curvature. The angle Δθ, or equivalently the 
μBz product (see Equation (13)) shall be assumed to be small to allow simplifying 
trigonometric approximations. Half the drift between the linear path and the 
arcuate path is: 

2 2R θ∆ .                         (9) 

The full drift distance projected on the X axis is:  
2

0sin( )R θ θ∆ .                    (10) 

The time taken by the particle travelling at xyv  to cross the arc λxy = RΔθ (Equa-
tion (8)) is the same as the time taken by the particle traveling at drift velocity Bvµ×  
to cross the full drift distance along the surface (Equation (10)). Hence: 

( )2
0sin

Traveling time
xy B

RR
v vµ

θ θθ

×

∆∆
= = .           (11) 
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Figure 6. In a finite mobility medium, a particle leaves the surface, travels an arc of length 
λxy = RΔθ until it experiences a collision. The drift along the X axis due to the magnetic 
field is RΔθ2sin(θ0). The trigonometric results are only valid for small values of Δθ. 
 

Therefore, 

( )0sinB xyv vµ θ θ× = ∆ .                 (12) 

Combining Equations (6) and (8), and since *
xy zR m v qB=  one gets:  

xy
zB

R
λ

θ µ= ∆ = .                   (13) 

Hence the drift velocity as a function of θ0 is: 

( )0sinB xy zv v Bµ µ θ× =                  (14) 

Since xyv , μ, and Bz are independent of θ0, and ( )0 0sin d 2θ θ =∫  between 0 
and π, one can integrate Equation (14) for 00 θ< < π , to obtain the expected 
drift velocity Bvµ× , yielding: 

2B xy zv v Bµ µ× = .                    (15) 

The expected velocity xyv  is derived in Appendix C in Equation (75). Com-
bining with Equation (15) the expected drift velocity Bvµ×  can be expressed as: 

*

2 B
B z

k Tv B
mµ µ×
π

= .                 (16) 

As already mentioned in relation to Figure 4(a), the sign of Bvµ×  depends on 
the sign of qBz and the orientation of the surface. When qBz > 0, the surface drift 
is to the right on the floor, upward on the right wall, to the left on the ceiling and 
downward on the left wall.  

The term μ in Equation (16) represents the mobility of the medium over a 
surface with mobility of zero. The mobility function is a step in a direction nor-
mal to the surface, i.e., along the Y axis. Furthermore, Bvµ×  occurs along the X 
axis. Therefore, this equation can be rewritten in a more generalized vector form 
as: 
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*

2 B
B

k T
mµ×
π

= ×v Βµ .                    (17) 

Since μ is a step function, it can be taken as a differential step along a perpen-
dicular to the surface. Expressed more generally, mobility can be configured 
with a gradient ∇ μ normal to the surface. Equation (17) can then be rewritten 
as:  

*

2 B
B

k T
mµ×∇ = ×
π

∇v Βµ ,                  (18) 

where the velocity gradient is parallel to the mobility gradient. The ∇ μ × B 
drift can be viewed as generated by an entropically generated force (see Appen-
dix D). 

Systems discussed in this section have a mean free path comparable to the ra-
dius of the particles’ orbits, implying that they operate below the thermodynam-
ic limit [24] which, as Sheehan points out [25], leads to unusual effects. Assum-
ing a surface with a step function in mobility, then one could use Equation (13) 
to define an index η as a measure of how close one is to this limit: 

xy
zB

R
λ

η θ µ= = ∆ = .                   (19) 

(In general, μ can be continuous rather than a step function. Therefore, a 
more general definition would be η = ΔμBz). The thermodynamic limit is 
reached when the mean free path XY projection λxy is very small in comparison 
with the orbital radius, i.e., xy Rλ   or equivalently, when η or μBz tend to zero. 
At that point, the behavior of particles become symmetrical in space as if the 
magnetic field did not exist, and the surface drift velocity Bvµ×  as defined by 
Equations (16), (17) and (18) goes to zero. In contrast, when the mean free path 
is large, a strong surface drift occurs. For example, when η = 2π then λxy is equal 
to the circumference of an orbit. This result highlights two important parame-
ters in the design of a device using the E × B drift:  

1) The carrier mobility should be high. Among semiconductors, Indium An-
timonide (InSb) has an electron mobility μ = 7.7 m2∙V−1∙s−1, at T = 300 K, one of 
the highest known [26]. 

2) The magnetic source should be capable of generating a strong magnetic 
flux density. A neodymium or iron nitride magnet can produce a field of at least 
1 Tesla. 

In a device employing InSb with B = 1 Tesla and T = 300 K, the thermody-
namic limit index is η = 7.7. This implies that λxy is 1.226 times longer than the 
circumference of an orbit of radius R, sufficiently high to support a usable E × B 
drift. 

3. The ∇ μ × B + E × B Drift 

This section shows that, in the presence of a magnetic field, a mobility gradient 
in tandem with an electric field can cause particles to accumulate to produce 
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space charges and voltages. The following shall be discussed: 
1) The E × B drift shall be briefly reviewed. 
2) The ∇ μ × B and E × B in combination. 

3.1. The E × B Drift 

In general, when a force F acts on particles with charge q, and in the presence of 
a magnetic field B, the particle drift with an average velocity E B×v  in a direction 
defined by the cross product of F and B, which can be expressed as [27] 

2

1
E B q×

×
=

F Bv
B

.                        (20) 

More specifically, particles with charge q subjected to an electric field E expe-
rience a force F= qE. Therefore, according to Equation (20) the E × B drift can 
be expressed as 

2E B×
×

=
E Bv

B
.                         (21) 

When B and E are perpendicular to each other, the vector Equation (21) can 
be simplified to: 

y
E B

z

E
v

B× = ,                          (22) 

where E B×v  is in the X direction. The E × B current along the X axis can then 
be expressed as 

y
E B

z

E
J nq

B× = .                        (23) 

A detailed analysis of the E × B drift is provided in Appendix E. Equation (23) 
holds only when the mobility is infinite. In media with finite mobility the mag-
nitude of the drift current is given by Equation (96) in Appendix E: 

( )21

yz

zz

Enq B
BB

µ

µ
=

+
J ,                    (24) 

and the direction of the drift is determined by the mobility of the particles and 
shifted away from the X axis according to Equation (97) in Appendix E: 

1 1tanE B
zB

θ
µ

−
×

 
=  

 
.                     (25) 

The thermodynamic limit index η = μBz determines the direction of the drift 
and its magnitude.  

3.2. The ∇ μ × B and E × B Drifts in Combination 

Upon close examination, the E × B drift cannot be separated from surface effects. 
When the mobility is uniform throughout the medium and for perpendicular 
fields Ey and Bz, the drift occurs in a straight line at an angle θE × B from X axis. 
When μ = ∞, the drift is along the X axis (θE × B = 0) as per Equation (97). When 
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μ is finite, θE × B is defined by Equation (21). Nevertheless, in any physical im-
plementation, the drift must eventually encounter a boundary such as the wall of 
a plasma chamber or the surface of a high performing (high mobility) semicon-
ductor.  

The charged particles then accumulate on this boundary thereby producing 
local variations in particle density, (i.e., space charges). These voltages have been 
observed in plasma experiments. [28] [29] [30] and in simulation. 

The Hall Effect (i.e., the reciprocal of the E × B drift) also requires surfaces 
onto which particles can accumulate and across which a measurable voltage can 
be measured. No Hall Effect voltage could possibly be measured in a particle 
container of infinite size (or has wrap around walls as can be done in simula-
tions). 

The role of surfaces in these effects is often implicitly accepted, yet it is fun-
damental. Since a surface is characterized by an abrupt change in mobility, one 
can generalize the concept of surface by replacing it with mobility gradient. Ac-
cordingly, the E × B drift cannot be considered independently of mobility gra-
dient in general and of surfaces in particular, and of their thermalizing influence 
of mobility on particles. Therefore, the E × B drift must be analyzed in conjunc-
tion with the ∇ μ × B drift of Section 2. Figure 7 shows both kinds of drifts in a 
chamber. The drifts point in the same direction at the ceiling but in opposite di-
rections at the floor. 

As shown in Figure 7 and Figure 8(a), electrical carriers in the bulk are car-
ried by the E × B drift until they collide with a surface (floor, ceiling or wall.) 
where both drifts operate sometimes additively, sometime subtractively. While 
the direction of the E × B drift is only dependent on the cross product of E and 
B and independent of the charge of the particles, the direction of the  
 

 
Figure 7. ∇ μ × B and E × B drifts are enabled when a gas of electron subjected to a 
magnetic field and an electric field is in contact with surfaces consisting of the floor, walls 
and ceiling of a chamber. The drifts are parallel at the ceiling and antiparallel at the floor. 
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(a)                                     (b) 

Figure 8. (a) One can easily determine by inspection that a space charge accumulates on 
the bottom left of the chamber. The interaction between the orbits and the surfaces de-
pends on the orientation of the surface and the cycloid shape of the orbits. On the left 
wall electrons always drift down as they follow prolate cycloids. On the ceiling, they al-
ways drift left as they follow curtate or prolate cycloids. On the right wall, depending on 
their velocities, they either drift up the wall or leave the wall and drift through the bulk. 
At the floor, the drift is more complicated, but one can determine using a continuity ar-
gument that, in dynamic equilibrium, electrons move on average to the right. The drift 
through the bulk breaks the symmetrical circular flow, thereby increasing the concentra-
tion of particles and producing a space charge at the bottom left of the chamber; (b) This 
is a composite image produced by four simulations. It shows paths taken by a single par-
ticle when it leaves the floor, the ceiling or any of the walls. Blue represents the highest 
energy particle, green, the peak of the distribution and red, the lowest energy particles. 
 
∇ μ × B drift depends on the sign of qE and on the orientation of the surface 
(i.e., direction of ∇ μ). In the example shown in Figure 8(a), at the floor the E × 
B drift points to the left, and the ∇ μ × B drift, to the right and must be sub-
tracted, 

DriftFloor E B Bv v vµ× ×= − ,                    (26) 

but on the ceiling, they are in the same direction and must be added. 

DriftCeiling E B Bv v vµ× ×= + .                   (27) 

The ∇ μ × B drift (e.g., magnetic field/surface interaction) induces particles 
to circulate around the inside of the chamber as already illustrated in Figure 4(a) 
and Figure 4(b). In addition, the asymmetry introduced by the E × B drift re-
sults in the formation of space charges. This can be shown as follows. Assume 
that all particles in Figure 8(a) are initially uniformly distributed (no space 
charge) and that the number of particles nsurface at the floor is the same as at the 
ceiling. From Equations (26) the current at the floor is 

( )xFloor Surface E B BI n q v vµ× ×= − ,                (28) 

and from Equation (27), at the ceiling 

( )xCeiling Surface E B BI n q v vµ× ×= + .               (29) 

Let the total number of particles in the bulk be nBulk such that the bulk current 
is 

xBulk Bulk E BI n qv ×= .                    (30) 
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Therefore, the total initial current IxInitial in the X direction (before space 
charges develop) is 

( ) ( )xInitial Surface E B B Surface E B B Bulk E BI n q v v n q v v n qvµ µ× × × × ×= − + + + .    (31) 

Cancelling terms:  

( )2xInitial Surface Bulk E BI n n qv ×= + .                (32) 

Starting with uniformly distributed particles, a space charge forms down-
stream of the E⨯B drift. Eventually, equilibrium is reached which is brought 
upon by a shift in the E field and a diffusion current caused by the charge con-
centration gradient. This equilibrium state can be described by adding a Fick’s 
law [31] diffusive component to the drift equations. 

4. The Reciprocal of the Nernst Effect (∇ T × B) 

The Nernst (also called transverse or first Nernst-Ettingshausen) Effect [32] is a 
cross-product phenomenon: when an electrical conductor is subjected to a 
magnetic field Bz and a temperature gradient dT/dx perpendicular to the field, 
an electrical field Ey is produced perpendicular to Bz and dT/dx. 

d
dy z
TE B
x

=N ,                    (33) 

where N  is the Nernst constant. 
Phonons moving down the temperature gradient drag electrical carriers with 

them, which generate a current Jx along the X axis. The Hall Effect due to the 
magnetic field Bz, pushes the moving charges against surfaces normal to the Y 
axis thereby generating field Ey. This phenomenon, being expressed by the cross 
product ∇ T × B, is suitable to express CPT symmetry. 

The surfaces upon which charges accumulate are obstacles to electrical carri-
ers yet must be transparent to heat phonons. In other words, electrical resistance 
at surfaces is required to produce charge accumulations and observable voltages. 
However, thermal conductivity at these surfaces is needed to permit the flow of 
phonons which can be measured as temperature gradients in the bulk. In more 
general terms, a surface can be viewed as a variation in the mobility gradient of 
the carriers and in the mobility gradient of the phonons, which enables the for-
mation of a space charge and a temperature gradient.  

One could conjecture a reciprocal to the Nernst effect suitable to test the 
second law by simply rearranging Equation (33) 

d 1
d

y

z

ET
x B

 
 
 

=
N

,                       (34) 

which implies that in the presence of an electric field and a magnetic field, a 
temperature gradient is generated perpendicular to both fields solely due to the 
fields, and without any input current. Comparing Equation (34) with Equation 
(23), one sees that this effect is simply due to the dragging of heat phonons by 
electrical carriers transported by the E × B current E BJ × . This effect can be de-
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rived as follows. From Equation (23), the current E BJ ×  is  

y
E B

z

E
J nq

B× = .                       (35) 

This current drags heat phonons with it, generating a heat flow along the X 
axis: 

E B
qQ J
q ×∝                        (36) 

Remarkably, this heat flow is solely due to carriers dragging phonons, and 
contrary to Clausius’ definition of the second law (heat flows from hot to cold) it 
is not due to any temperature gradient.  

If the mobilities of the carriers and phonons are uniform along their paths 
(e.g., no boundary or surface), then no space charge and no temperature gra-
dient develop. The thermal conductivity corresponding to this phonon flow is 
measured to be zero because ΔT = 0. 

However, if there is no uniformity in the mobility of electrical carriers and 
phonons (i.e., there are gradients ∇ μcarriers and ∇ μphonons), then carriers pro-
duce space charges and local voltages (Section 3.0 The ∇ μ × B + E × B Drift), 
and phonons generate temperature gradients corresponding to a thermal con-
ductivity KPhonons. 

d 1
d Phonons

T Q
x K
=  .                     (37) 

Combining Equations (35), (36) and (37) shows that a temperature gradient is 
produced along the X axis  

d
d

y

Phonons z

En qT
x K B
∝ .                    (38) 

Defining 1 N  as the constant of proportionality, one obtains the reciprocal 
Nernst effect as conjectured in Equation (34). 

d 1
d

y

z

ET
x B

 
 
 

=
N

.                     (39) 

The temperature gradient is generated in the direction of E BJ × , perpendicu-
larly to Bz and Ey. Therefore, the reciprocal Nernst Effect is a cross-product 
phenomenon, one of the requirements for testing the second law as stated in the 
Introduction. 

The temperature gradient is caused by the accumulation of heat phonons car-
ried by electrical carriers circulating under the influence of the mobility gradient 
and E × B drift. It occurs spontaneously, driven by thermal energy drawn from 
thermalizing surfaces. 

One should note that the effect described in this section requires a dynamic 
system that supports the continuous and spontaneous circulation of gas particles, 
as described in Sections 2 and 3. Simulation of this system shows that gas par-
ticles move in a conveyor belt fashion, going to the left in the bulk and to the 
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right along the floor of the simulation chamber as shown in Figure 7, Figure 8, 
Figure 10 and Figure 11. A static system would be incapable of producing a 
temperature gradient as it would revert to the Loschmidt temperature paradox 
explained under Section 6.1.2 Spontaneous Temperature Gradients by Scalar 
Fields. In a static equilibrium, no temperature gradient can arise.  

This effect would never have been approved by Onsager who excluded mag-
netic fields and rotation from his reciprocals because of a conflict with the 
second law. His exclusion resolves the conflict but ends up violating CPT sym-
metry. In the opinion of this author, he was incorrect in his reasoning (see ex-
planation in Appendix B) and threw the baby out with the bathwater. In any 
case, by upholding CPT symmetry, one can turn his argument on its head and 
take it as a proof that magnetic fields and rotation can produce a second law vi-
olation. 

5. Simulations 

An E × B drift was simulated for a low-density electron gas subjected to a mag-
netic field Bz and an electric field Ey. The position of the electrons was displayed 
as projected on the XY plane. 

Electrons were initialized in the simulation chamber at random positions and 
with a maxwellian velocity distribution. They followed cycloid paths which, de-
pending on the initial velocity xyv  and the magnitude of the E and B fields, 
could either be curtate, regular, or prolate cycloids as shown in Figures 9(a)-(d). 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9. (a) When the electric field is zero, the drift velocity is zero and the orbit is cir-
cular; (b) When the drift velocity E Bv ×  is smaller than the particle velocity xyv  in the 

XY plane, then the trajectory is a prolate cycloid; (c) When E B xyv v× = , then the trajectory is a 

cycloid; (d) When E B xyv v× > , then the trajectory is a curtate cycloid. The shape of these cyc-

loids determines how a particle interacts with a surface i.e., drifts up, down, right or left. 
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The output of the simulation program, shown in Figures 10(a)-(d) and Fig-
ure 11. This last figure clearly indicates the accumulation of particles (space 
charge) at the bottom left of the simulation chamber. 
 

   
(a)                                        (b) 

  
(a)                                        (b) 

Figure 10. Four frames of a time lapse simulation showing particle trajectories as (a) they 
begin randomly distributed throughout the chamber; (b) they are carried by the E × B 
drift toward the left wall; (c) they accumulate on the left wall; (d) they accumulate on the 
floor in the bottom left corner. Red trajectories represent particles moving right, and blue 
trajectories, particles moving left, up or down. 
 

 
Figure 11. This figure displays the positions of particles after equilibrium is reached. The 
concentration is highest at the bottom left corner. 
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6. The Second Law—Broken or Bypassed? 

Three phenomena that incorporate CPT symmetry and collisions through a 
cross-product have been presented.  

1) The ∇ μ × B drift transfers momentum between a surface and the orbital 
motion of charged particles, thereby causing the gas or particles to circulate in a 
direction opposite to their orbits. 

2) The combination ∇ μ × B + E × B drift causes particles to accumulate into 
space charges and produce voltages. 

3) The reciprocal Nernst effect produces a temperature gradient without the 
need of heat flow or current, solely by means of E and B. 

Can these effects convert ambient heat to useful energy? Before answering this 
question, one needs to recognize that the field of second law violations is trea-
cherous, replete with hidden traps and failed Maxwell demons. Therefore, in 
proceeding with caution the following shall be discussed: 

1) Review of most relevant second law pitfalls. 
2) Getting around the law. 

6.1. Review of Most Relevant Second Law Pitfalls 

This section includes a short summary of some failed Maxwell Demons selected 
because like the approaches outlined in the previous sections, they use fields in 
their attempts to produce a voltage or a temperature gradient. The discussion 
also covers how these pitfalls differ from the suggested approach and includes:  

1) Spontaneous potentials by scalar fields. 
2) Spontaneous temperature gradients by scalar fields. 
3) Spontaneous temperature gradients by quantum statistics. 

6.1.1. Spontaneous Potentials by Scalar Fields 
The built-in voltage in a diode junction is sometime suggested as an energy 
source. It is inaccessible because it is exactly canceled by the potentials produced 
by the contacts. Other instances of inaccessible voltages are the work function 
and the chemical and surface potentials of materials. 

For the same reason, the difference in pressures between two points at differ-
ent depths in the ocean cannot be used to produce energy. Any pipe connecting 
the two points, say to run a turbine, develops the same pressure difference and 
the turbine does not work. Fundamentally, this limitation is due to the scalar 
property of the (electric or gravitational) field. Any loop integral of potential 
differences must necessarily be zero. 

6.1.2. Spontaneous Temperature Gradients by Scalar Fields 
The typical example of this second law trap is the Loschmidt’s temperature gra-
dient paradox [4]. He mistakenly believed that a column of Maxwellian gas 
would spontaneously (adiabatically) develop a temperature gradient as the gas 
particles move up and down the gravitational field. Particles that diffuse upward 
convert kinetic energy to potential energy, and particles which diffuse downward, 
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do the reverse. This temperature gradient would then be available to run a heat 
engine, thereby converting ambient heat to useful work. In fact, the column re-
mains isothermal for the following reason. In a classical gas, energy is expressed 
exponentially in a Maxwell distribution 

( ), e .B

E
k T

MBf E T A
−

=                      (40) 

A rise in elevation causes an increase in the potential energy term Ep expressed 
in the exponent. 

( ), e .
p

B

E E
k T

MBf E T A
+

−

=                     (41) 

It also results in a decrease in the gas density accompanied by a lowering of 
the amplitude and a denormalization of the distribution. This decrease in am-
plitude can be expressed by factoring potential energy out of the exponent.  

( ), e e .
p

B B

E E
k T k T

MBf E T A
− −

=                   (42) 

Renormalization to correct the amplitude term, removes the potential energy 
factor thereby restoring the distribution to its original ground level form as ex-
pressed in Equation (40). Therefore, the normalized distribution is invariant 
with elevation, and the column remains isothermal. This second law trap applies 
to any situation in which a scalar force acts on classical particles [33]. 

6.1.3. Spontaneous Temperature Gradients by Quantum Statistics 
Loschmidt’s classical temperature paradox discussed above can be extended to 
quantum distributions. Consider a gas column comprised of fermions in a force 
field. As in a Maxwell-Boltzmann case, energy is expressed in the exponential 
part of the Fermi-Dirac distribution.  

( ), .

1 e B

FD E
k T

Af E T =

+

                   (43) 

A rise in elevation causes an increase in potential energy in the exponent 

( ), .

1 e
p

B

FD E E
k T

Af E T +=

+

                  (44) 

However, renormalization does not restore the distribution to its ground level 
form because the distribution is not purely exponential. Therefore, (this is the 
trap) the distribution is not invariant, implying that the kinetic energy of the gas 
particle does vary with elevation (which is correct). Yet, the effective thermody-
namic temperature of the gas is invariant for the following reason.  

The Fermi-Dirac distribution includes “frozen out” microstates occupied by 
particles at the bottom of the Fermi sea, and “unfrozen” microstates occupied by 
particles near the surface of the sea. The frozen microstates are not thermody-
namically active, leaving only the unfrozen ones available for processes such as 
thermal transport and thermal capacity. The effective temperature depends on 
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the average kinetic energy of the unfrozen microstates, not the average kinetic of 
all microstates. The statistics of the unfrozen microstates are described by the 
exponential part of the Fermi-Dirac distribution, not the whole distribution, in 
other words, the distribution of unfrozen microstates is Maxwellian. These states 
cannot spontaneously produce a temperature gradient for the same reasons giv-
en in the previous section on the Loschmidt’s temperature gradient paradox. 
Therefore, temperature is isothermal up and down the column in accordance 
with the second law. See Note [34]). This same phenomenon is responsible for 
the depression of specific heat from the classical Dulong-Petit form to the 
Debye/Einstein form. 

6.2. Getting Around the Law 

CPT systems use a magnetic field which is non-scalar. Therefore, they avoid the 
scalar field pitfall outlined in Section 6.1.1. They have asymmetrical non Max-
wellian statistics, therefore they avoid the pitfalls outlined in Sections 6.1.2 and 
6.1.3. 

Is the second law violated by CPT symmetric systems? Surprisingly, if one 
were to use Boltzmann’s definition of the law, the short answer is no.  

To answer this question properly, one needs to define the second law. As 
Čápek and Sheehan [35] remark, this law has been differently formulated by re-
searchers such as Carnot, Clausius, Plank, Kelvin, Caratheodory, Gibbs and 
Boltzmann.  

Some formulations are empirical or experimentally inductive such as heat 
flows from hot to cold, (Clausius,) and perpetual motion machines are impossi-
ble (Kelvin-Planck). Induction, however, is not reliable as Bertrand Russell de-
monstrates with his farmer/chicken paradox. The chicken, being fed daily by the 
farmer, induces that he is a benefactor. Yet one day the farmer wrings the ani-
mal’s neck. These formulations, in Popper’s words, are experimentally falsifiable. 

In contrast, Boltzmann’s second law, the H-Theorem, is deductive and rigo-
rously derived. It correctly proves that entropy never decreases in an isolated gas. 
Yet, this rigor hides a weakness predicated by the assumptions made at the out-
set of the deductive process which, for the H-Theorem [2] [36] [37] are: 

1) The gas is homogeneously distributed.  
2) The statistics are symmetrical.  
3) The gas particles are indistinguishable (Gibbs paradox [6]). 
4) Time is unidirectional (arrow of time). 
The H-Theorem is deductive and therefore limited by its starting assumptions. 

Any system falling outside of the box defined by these assumptions is not limited 
by, and may not comply with, the theorem. Yet the theorem remains logically 
consistent within its range of coverage. 

The CPT systems discussed in this paper do not comply with the assumptions 
of the H-Theorem because:  

1) The gas is not homogeneously distributed. Heat carriers including electrical 
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carriers and phonons, are heterogeneously distributed throughout the system. 
Phonons get around the scalar limitation of the electrical field because they are 
neutral bosons, not affected by the fields. A loop integral of potential differences 
through these carriers is not zero. 

2) CPT symmetric systems have an asymmetrical velocity distribution. In a 
magnetic field, the interaction of particles with the surface skews the position 
and velocity distributions. This effect was unanticipated by Boltzmann in his 
H-Theorem. 

3) The gas particles comprise electrically charged carriers and neutral pho-
nons which are distinguishable by their charges, spin and mass, and by their he-
terogeneous distributions. 

In summary, CPT symmetric systems fall outside of the starting assumptions 
of the H-Theorem. They do not “break” the second law as defined by Boltzmann, 
they simply “bypass” it. 

7. Experimental Evidence Supporting the Theory 

Fu and Fu [28] conducted experiments in which they applied a magnetic field to 
two identical and parallel Ag-O-C surfaces in a vacuum tube at room tempera-
ture. A current was produced from one surface to the other, in a direction de-
pendent on the field’s direction. Their work, which mostly replicates the 
Crookes radiometer experiment suggested in Section 2.3 and elaborated upon in 
Section 9, confirms the theory proposed in this paper. 

Further evidence involves mysterious spurious voltages often and reliably ob-
served in the course of plasma E × B drift experiments by independent scientists. 
Did the researchers unwittingly violate the second law by drawing energy 
through their instrument in the act of collecting data? Possibly. The significance 
of these voltages may have been masked by the high plasma temperatures which 
preclude energy production [29] [30]. In any case, a definite answer to this ques-
tion can only be provided by follow up experiments. 

8. Conclusions 

CPT symmetrical systems in which parity is expressed by a cross product be-
tween the magnetic field and the mobility gradient (a measure of dissipation) fall 
outside assumptions in the H-Theorem because these systems skew statistics in a 
fashion unanticipated by the founders of thermodynamics. The proof of the 
theorem remains valid within its domain of applicability; therefore, these sys-
tems do not break the second law, they bypass it. 

Three kinds of systems were discussed. The first ones which combine the mo-
bility gradient with the magnetic field (∇ μ × B) produce spontaneous circula-
tion of gas particles inside a chamber. This movement is driven by thermal 
energy from the wall of the chamber. The second ones which include an electric 
field (∇ μ × B + E × B) generate spontaneous space charges and voltages. The 
third ones which embody the reciprocal of the Nernst Effect (∇ T × B) use cir-
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culating electrical carriers to produce spontaneous temperature gradients. 
A simulation has been performed that confirms the theory. The proposed 

magnetic Crookes’ experiment has already essentially been conducted [28] and 
confirms the theory. In addition, experimental data unintentionally collected in 
E × B experiments by several independent researchers indicate that such phe-
nomena can produce spontaneous space charges and voltages. 

Non-scalar fields such as the magnetic field in conjunction with a mobility 
gradient can impart circulation to heat flow, implying that temperature and en-
tropy can have circulation as well. This represents a direct challenge to the ze-
roth law and to the principle of detailed balance. This topic should be further 
explored. 

Laboratory experiments are suggested to further validate or falsify the pro-
posed technology. Its benefit cannot be overstated: conversion of ambient heat 
to useful energy, the only by-product being cold; unlimited non-polluting re-
newable green energy. Given the energy production potential of the proposed 
technology, future research should concentrate on physical configurations that 
operate at or below room temperature, including thermoelectric and supercon-
ductor implementations.  

9. Suggested Future Research 

Given its potential as an energy source, this technology should be experimentally 
validated or falsified. Several laboratory conditions should be investigated: 

1) Plasma. E × B drift experiments should be repeated for the express purpose 
of testing the second law. Even though the high operating temperatures of the 
plasma negate any economic value, this approach is easy to implement and has 
scientific merit because it shows that, regardless of temperature, the second law 
can, in principle, be bypassed.  

2) Magnetic Crookes’ radiometer. Such a radiometer comprises an opaque 
vacuum bulb placed in a vertical magnetic field, containing fixed vanes, and 
coated on the inside with a low work function material such as Lanthanum 
Hexaboride to emit (and absorb) electrons at a high enough temperature. Each 
vane is configured as a capacitor comprised of an insulating plate in a sandwich 
between two conductive films. Circulating electrons would then produce an ob-
servable voltage across the faces of the stationary vanes. This experiment has al-
ready been essentially performed by Fu and Fu [28] but should be replicated and 
confirmed. 

3) Thermoelectric materials. Electrical carriers (electrons and holes) in high 
mobility materials such as Indium Antimonide (InSb) can undergo E × B drift. 
and therefore, provide attractive room-temperature implementation for the 
proposed technology. 

4) Superconductors. Carriers in superconductors (Cooper pairs) behave as a 
gas and therefore, can also support the proposed technology. Since the device is 
a superconductor, it would have to be thin to operate with a magnetic field. As 
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the depletion mode in semiconductors allows the presence of an electric field, 
the London depth region in superconductors allows the penetration of the mag-
netic field which is necessary for operation. Alternatively, type II or type 1.5 su-
perconductors could be used. This approach could be highly efficient. Since su-
perconducting devices operate at low temperature, ambient heat at surrounding 
room temperature would rapidly “fall” into them (i.e., thermal black holes anal-
ogy.) Converting this heat to electricity would result in self-sustained highly effi-
cient superconducting devices. 

Supplementary Materials 

The computer code used in the simulations can be provided upon request. 
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Appendix A. The Fluctuation Theorem Assumes the Arrow  
of Time 

One of the most recent contributions to the time reversibility paradox is the 
fluctuation theorem first proven by Evan, Cohen and Morriss [11] in 1993. This 
theorem is, in fact, a group of closely related theorems, two of which shall be 
discussed. The one by Evans and Searles [11] [12] [13] describes the behavior of 
the time-average entropy production rate tΣ  in terms of probability. It states 
[13] that the ratio of the probability that t AΣ =  to the probability that 

t AΣ = −  can be expressed as an exponential function of time.  

( )
( )

Pr
e

Pr
t At

t

A

A

Σ =
=

Σ = −
.                    (45) 

In other words, as time t elapses or system size A increases, the probability of 
observing an occurrence of entropy production opposite to the second law de-
creases. 

The second theorem is due to Crooks [38]. It relates the probability of a 
space-time trajectory x(t) to the probability of its time-reversal trajectory ( )x t . 
It states that the forward time trajectory is exponentially more likely than the 
reverse, given that it produces entropy ω[x(t)],  

( )
( )

( )e x tP x t
P x t

ω+   
   =
  

.                    (46) 

Both these theorems co-opt the very foundation of Loschmidt’s argument by 
relying on the assumption of time reversibility. However, precisely because the 
time parameter t is expressed symmetrically as shown in Equations (45) and (46), 
they are unable by themselves to resolve Loschmidt’s paradox in favor of the 
second law. As Evans and Searles point out, inverting the time axis, i.e., t t→ −  
produces a decrease in entropy, an anti-second law result.  

Evans and Searles [13] attempt to resolve this issue by classifying systems as 
causal (those in which cause precedes effect) and anticausal (those in which ef-
fect precedes cause). Entropy increases in causal systems when time flows for-
ward, and in anticausal systems when time flows backward. An observer in a 
backward moving time frame would think that an anticausal system is in fact 
causal because in his frame, he would perceive his cause (our effect) to precede 
his effect (our cause). He would observe an increase in entropy in his system, yet 
a second observer in a forward moving frame would observe a decrease in the 
entropy of the system of the first observer.  

Evans and Searles acknowledge the problem and seem to agree with Losch-
midt (page 1580 of [13]): 

“If every microscopic law or axiom of Nature is symmetric under time rever-
sal symmetry, then obviously one cannot derive time asymmetric theorems such 
as the FTs”. 

In the remainder of this quote they suggest a solution:  
“Somewhere in the derivations of the FT given in Section 2.3, we must have 
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introduced a time asymmetric assumption. That assumption was the Axiom of 
Causality”. 

They state (Abstract of [13]): 
“It is causality which ultimately is responsible for breaking time reversal 

symmetry and which leads to the possibility of irreversible macroscopic beha-
vior”. 

They resolve the issue by showing that the fluctuation theorem in combina-
tion with the axiom of causality proves the second law. Their solution bypasses 
Loschmidt’s paradox by negating its basic premise: the time reversibility as-
sumption. Stepping outside the box defined by Loschmidt, they assert that time 
is not symmetrical after all, it only moves forward, the arrow of time points in 
the positive direction and anticausal systems are not physical.  

Yet the issue is not fully resolved. A backward moving observer would come 
to the opposite conclusion. For him, time would flow in the opposite direction 
and he would ban causal systems from his physics. We have no way of knowing 
which observer we are, and in which direction time really flows. Nevertheless, 
just like Boltzmann failed to do in his H-Theorem, they do not explain the arrow 
of time. They assume it. 

Another serious issue is that the axiom of causality as defined by Evans and 
Searles contradicts locality. They describe a causal system (their equation 6.4a in 
[13]) as 

( ) ( ) ( )1 1 1d
t

C CB t L t t F t t
−∞

= −∫ ,                 (47) 

where LC is the response function, F is a driving force and BC is the system’s re-
sponse. One should note that the integral is taken from 1   0t−∞ < <  which im-
plies that the states of causal system are defined by its (long ago) non-local past. 

This definition violates locality. To fix this problem, one would have to recog-
nize that an event long ago, far away within a light cone, is only relevant to the 
present if a causal chain exists between this event and the present. If one were to 
retain only the most recent relevant history up to time-dt, then Equation (47) 
could be expressed differentially:  

( ) ( ) ( ) ( ) ( )1 1 1d
d d d d

t
C C Ct t

B t L t t F t t L t F t t
−

= − =∫ ,         (48) 

or 

( ) ( ) ( )
d

0 d
d
C

C

B t
L F t t

t
= .                  (49) 

This equation respects strict locality. It can be rendered as a geometrical con-
struct devoid of any cause/effect relationship, thereby nullifying the axiom of 
causality and bringing us back to the need for the arrow of time postulate.  

Appendix B. CPT Symmetry and the Second Law—Onsager’s 
Dilemma 

Onsager’s reciprocals are thermodynamic relationships between pairs of forces 
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and flows. For example, the Seebeck is the generation of a voltage in the presence 
of a temperature difference and the Peltier effect is the production of heat flow 
by an electric current. Onsager was concerned about CT symmetry such as the 
magnetic field and rotation. He excluded them from his reciprocals to avoid a 
second law violation. This appendix discusses this exclusion. A quick overview 
of his paper [17] is presented, which includes his derivation and the conflict with 
the second law. Accordingly, this appendix includes: 

1) Derivation of reciprocals. 
2) Conflict with the second law. 
3) Hidden assumptions: i.e., surfaces. 

B.1. Derivation of Reciprocals 

Onsager’s derivation relies on the assumption of time (T) reversibility of micro-
scopic fluctuations. It begins by expressing the phenomenological relationship J 
= LX between thermodynamic forces X and thermodynamic fluxes J. Dropping 
the vector notation, the relationship can be expressed as 

k kj j
j

J L X= ∑ .                      (50) 

where, as an example, Xk = (dT/dx)/T and Jk = dQ/dt. There is no need to go into 
the details of the proof here as it is available in [17]. The result relates three 
properties: 

1) Magnetic field and rotation;  
2) T-reversibility of microscopic fluctuations, and;  
3) The symmetry of the phenomenology relationship matrix L. This symmetry 

is expressed as Lkj = Lkj.  
The proof makes the forward inference very clear:  

No Magnetic Field AND No Rotation → T-Reversible → L Symmetric  (51) 

Using modus tollens, produces. 

Magnetic Field OR Rotation ← Not T-Reversible ← L Asymmetric    (52) 

However, Onsager needs the converse inference to justify his exclusion.  

Magnetic Field OR Rotation → Not T-Reversible → L Asymmetric.    (53) 

On this point, the proof is questionable as shall be discussed in the third sec-
tion of this appendix that covers hidden assumptions made by Onsager in his 
proof. For the moment, let us accept this converse inference and continue his 
reasoning. 

Onsager could have accepted Equation (53) at face value and extended reci-
procals to magnetic and rotating environments. He could have done so, by split-
ting the L matrix into symmetric and antisymmetric parts, the symmetric part of 
L being applicable to non-magnetic environments, and the antisymmetric part, 
to magnetic ones. This approach is analogous to splitting an electromagnetic 
phenomenon into an electric field and a magnetic field.  

This is precisely the approach taken by Mazur and de Groot [39] who show 

https://doi.org/10.4236/jamp.2019.712221


G. S. Levy 
 

 
DOI: 10.4236/jamp.2019.712221 3169 Journal of Applied Mathematics and Physics 
 

that the phenomenological matrix L can be antisymmetric. However, Onsager 
did not take this route because of the apparent conflict with the second law de-
scribed below. 

B.2. Conflict with the Second Law 

This proof uses the second law to show that the phenomenological relation ma-
trix L must be symmetric. The rate of entropy production can be expressed in 
terms of J and X as  

d
d k k

k

S J X
t
= ∑ .                       (54) 

The second law can be stated as dS/dt > 0.  

d 0
d k k

k

S J X
t
= >∑ .                     (55) 

Combining with Equation (50) one gets:  

0kj k j
jk

L X X >∑ .                      (56) 

Therefore, asserting the second law is the same as stating that L is positive de-
finite. One knows from matrix algebra that a positive definite matrix must be 
symmetric and all its eigenvalues, positive. Furthermore, an asymmetric matrix 
cannot be positive definite. Therefore, Onsager’s second derivation can be stated 
as:  

Second Law Violated ↔ L Not Positive Definite ← L Asymmetric. (57) 

Equation (53) indicates that a magnetic field or rotation causes L to be asym-
metric. Furthermore, Equation (57) states that if L is asymmetric then the 
second law is violated. Combining the two equations one concludes that mag-
netic fields or rotations violate the second law. 

Faced with this daunting violation, Onsager’s response was simple. He re-
stricted magnetic fields and rotation from reciprocals, thereby excluding a wide 
range of phenomena, without addressing the heart of the problem which was the 
conflict between the second law and CT symmetry. 

In the last two paragraphs of his paper (page 426 [17]) he appears to have had 
second thoughts, making the vague argument that reciprocal symmetry can be 
preserved by simply flipping the magnetic field and reversing time. 

“In the presence of a magnetic field the principle of microscopic reversibility 
may be applied in a modified form: The entire motion may be reversed by re-
versing the magnetic field together with the velocity of all the particles compos-
ing the dynamical system”. 

By suggesting “reversing the magnetic field” to reverse the velocity of all par-
ticles, he departs from the basic premise of his proof which is the time reversibil-
ity of microscopic fluctuations. His suggestion does not work because: 

1) An externally applied DC magnetic field does not fluctuate enough to re-
verse particle velocities. 
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2) Charges are conserved, they do not fluctuate. 
His attitude towards CT symmetric systems is ambivalent. He argues that they 

may still be included in his reciprocals, but still leaves them out without answer-
ing whether they violate the second law. Nevertheless, this exclusion is the 
equivalent of a sweep under the carpet. It leaves the conflict in a stalemate. 

B.3. Hidden Assumption: i.e., Surfaces 

Onsager’s assumes the reversibility of microscopic fluctuations. This assumption 
precludes any change in mobility at the microscopic level. For example, surfaces 
are excluded. Using the term “surface” to represent a change in mobility, one 
could correct Equation (51): 

No (Magnetic Field AND Surface) AND 
No (Rotation AND Surface) → T-Reversible → L Symmetr     (58) 

And the corresponding modus tollens is: 

(Magnetic Field OR Rotation) AND 
Surface ← Not T-Reversible ← L Asymmetric        (59) 

Combining Equations (53) and (59) leads to a contradiction: 

Magnetic Field OR Rotation → (Magnetic Field OR Rotation) AND Surface (60) 

Hence Equation (53) is incomplete and ceases to be applicable, allowing mag-
netic fields or rotation to coexist with the second law. 

This can be illustrated as follows. In a uniform magnetic field and in the ab-
sence of any surface, charged particles have untruncated circular orbits. Despite 
the curved orbits, an ensemble crossing any arbitrary volume has a symmetrical 
velocity distribution and zero mean velocity. The absence of surface removes any 
point of reference relative to which drift could occur. In other words, by sym-
metry of the ensemble, particles do not drift. The lack of information due to the 
statistical symmetry of particle motion makes energy extraction impossible, the-
reby upholding the second law. 

Accordingly, Onsager’s derivation of reciprocals could be adapted to make 
ensembles of microscopic fluctuations symmetrical even in the presence of 
magnetic fields and rotation. For example, his fluctuation analysis could be 
modified to apply to orbital parameters rather than plain linear variations, the-
reby removing the orbits’ curvature as the source of the asymmetry. 

In conclusion:  
1) To be strictly correct, and to preserve the second law, Onsager should have 

excluded from reciprocals, those environments that include magnetic fields or 
rotation and a surface. However, this approach violates CPT symmetry because 
the surface enables parity.  

2) In the absence of a surface, reciprocals do not violate the second law. They 
can be extended to magnetic and rotating environments by splitting the L matrix 
into symmetric and antisymmetric parts. This is the approach taken by Mazur 
and de Groot [39]. 

https://doi.org/10.4236/jamp.2019.712221


G. S. Levy 
 

 
DOI: 10.4236/jamp.2019.712221 3171 Journal of Applied Mathematics and Physics 
 

3) Regardless of whether a surface is present, Onsager’s exclusion violates CPT 
symmetry. Taking CPT seriously, his proof can be turned on its head, leaving 
one no choice but to conclude that when included with a mobility gradient such 
as a surface, magnetic fields and rotation can violate the second law. 

Appendix C. Expectation Value of νxy and ∇ μ × B 

The expectation value Bvµ×  can be calculated from Equation (3) and from the 
given distribution which is ( ), , d d dMBf v vθ φ θ φ  for a maxwellian gas. When a 
particle is thermalized by a surface, the distribution is half Maxwellian, symme-
trical around the normal on one side of the surface and zero on the other. Fur-
thermore, since Bvµ×  in Equation (3) is only a function of xyv  in the XY plane, 
the distribution can be further restricted to a 2D half Maxwellian distribution 

( )2 /2DMB xyf v . Hence the expectation value for the drift velocity is:  

( )2 /20 0
d dB B DMB xy xyv v f v vµ µ θ

∞

× ×

π
= ∫ ∫ .               (61) 

Substituting Equation (3) into Equation (61) yields 

( ) ( )2 /20 0

sin
d dB xy DMB xy xyv v f v vµ

θ
θ

θ
π ∞

×

 
=  

 
∫ ∫ .            (62) 

Since the distribution is independent of θ in the range 0 <θ < π one can write: 

( ) ( )2 /20 0

sin
d dB xy DMB xy xyv v f v vµ

θ
θ

θ
π ∞

× = ∫ ∫ .             (63) 

Defining the sine integral function as ( ) ( )( )Si sin dθ θ θ θ= ∫ , and express-
ing the expectation value xyv  as:  

( )2 /20
dxy xy DMB xy xyv v f v v

∞
= ∫ .                (64) 

yields: 

( )SiB xyv vµ× π= .                     (65) 

The expected velocity xyv  in Equation (65) can be calculated from the dis-
tributions ( )MB xf v  and ( )MB yf v . The full normalized distribution of xv  for 
the range xv−∞ < < ∞  is: 

( )
1 2 * 2*

exp
2 2

x
MB x

B B

m vmf v
k T k T

   −
=   
   π

.                 (66) 

The presence of a surface restricts the range of yv  to 0 yv< < ∞ . The dis-
tribution is half Maxwellian. Therefore, the normalization factor is twice as large 
for yv  as for xv . Therefore, 

( )
1 2 * 2*

/2 2 exp
2 2

y
MB y

B B

m vmf v
k T k T

 − 
=        π

.               (67) 

The 2D half-Maxwellian distribution for the velocity xyv  in the XY plane is 
the joint probability of the two independent probabilities ( )MB xf v  and  

( )/2MB yf v  along each degree of freedom. Hence:  
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( ) ( ) ( ) ( )2 /2 2 /2 /2, ,DMB x y DMB x y MB x MB yf v v f v v f v f v= = .         (68) 

Therefore, substituting Equations (66) and (67) into (68) yields:  

( ) ( )* 2 2*

2 /2 , d d 2 exp d d
2 2

x y
DMB x y x y x y

B B

m v vmf v v v v v v
k T k T

 − +   =       π
.      (69) 

Defining 2 2 2
xy x yv v v= +  and since d d d dx y xyv v v vθ= :  

( )
* 2*

2 /2 , d d exp d d
2

xy
DMB xy xy xy xy

B B

m vmf v v v v
k T k T

θ θ θ
 − 

=        π
.        (70) 

Equation (70) can be integrated to express 2 /2DMBf  only in terms of xyv . In-
tegrating dθ  from 0 to π for the half maxwellian range yields, 

( ) ( )2 /2 2 /20

* 2*

0

d , d d

exp d d .
2

DMB xy xy DMB xy xy

xy
xy xy

B B

f v v f v v

m vm v v
k T k T

θ θ

θ

π

π

=

 − 
=     π  

∫

∫
.        (71) 

Since 

0
dθ

π
π=∫                           (72) 

and substituting Equation (72) into Equation (71) produces: 

( )
* 2*

2 /2 d exp d
2

xy
DMB xy xy xy xy

B B

m vmf v v v v
k T k T

 − 
=        

.           (73) 

Therefore, the expected value xyv  is given by 

( )
* 2*

2
2 /20 0

d exp d
2

xy
xy xy DMB xy xy xy

B B

m vmv v f v v v v
k T k T

∞ ∞  − 
= =        
∫ ∫ .       (74) 

Integrating, 

*2
B

xy
k Tv
m

π
= .                        (75) 

Substituting into Equation (65) produces:  

( ) ( ) *Si Si
2

B
B xy

k Tv v
mµ×

π
= π = π ,               (76) 

and noting [40] that Si(π) = 1.85 and assuming effective mass m*=m then 
(πkB/2m*)1/2 = 48.79 for electrons. Equation (76) yields 1 290.27 m secBv Tµ× = ± . 

Appendix D. Entropically Driven ∇ μ × B Drift 

Drift velocity Bvµ×  corresponding to kinetic energy ( )2*1
2 BU m vµ×∆ =  is im-

parted to the particle along the X axis by the magnetic field. Using Bvµ×  from 
Equation (18), one gets:  

( )2
BU k Tπ∆ = ∇ ×Bµ .                     (77) 

However, this energy is dissipated by the collision at the end of the mean free 
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path (i.e., Boltzmann’s Stosszahlansatz) which results in the production of en-
tropy, and can be expressed as 

U T S∆ = ∆ .                        (78) 

Therefore, from Equation (77), the entropy generated by the dissipation of the 
drift energy is 

( )2
BS k∆ = ∇π ×Bµ .                    (79) 

Since an entropic force generated by a change ΔS in entropy occurs along the 
entropy gradient and is given by [41] 

( )F T S= ∇ ∆ .                       (80) 

Inserting the entropy gradient from Equation (79) into Equation (80) yields 

2 BF k Tπ= ∇ ×Bµ ,                         (81) 

which is a force along the Bµ×v  vector. 

Appendix E. E × B Drift Detailed Analysis 

This appendix follows the well-known Drude model [42]. A particle carried in 
an E × B drift follows a cycloid path described by the equation of motion 

( )d 1
d

m q
t τ

 = + = + × 
 

F v E v B ,                  (82) 

where v is the particle’s velocity, and τ is the average time between collisions 
with neutral atoms also assumed present in the chamber. This equation can be 
simplified by considering two ranges of applicability. First for very small values 
of τ, collision frequency dominates, and we can write 

( )m q
τ

= + ×
v E v B .                      (83) 

Second, for very large values of τ for which cycloid behavior dominates, we 
can eliminate the differential term d/dt by averaging the movement of the par-
ticles over one cycloid. This average is in fact the motion of the guiding centers. 
Rewriting the above equations in term of the velocity of the guiding center v  
averaged over one cycloid yields 

( )m q
τ

= + ×
v E v B .                     (84) 

Particle motion expressed at the microlevel by Equations (84) can be 
represented at the macrolevel by substituting: 

nq=J v ,                          (85) 

yielding: 
2nq q

m m
τ τ

= + ×J E J B .                    (86) 

If the particles have mobility μ and an effective mass m* in a given material, 
then the mean free time is: 
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*m
q

µτ = .                          (87) 

Applying Equation (87) into Equation (86) yields: 

nqµ µ= + ×J E J B .                     (88) 

For simplicity, let the E vector span the XY plane and the B vector be in the Z 
direction. Rewriting Equation (88) in terms of Ex, Ey and Bz for the Jx and Jy 
component of J  produces: 

x x z yJ nq E B Jµ µ= + ,                      (89) 

and 

y y z xJ nq E B Jµ µ= − .                     (90) 

Solving for Jx and Jy in terms of Ex/Bz results in 

( )( )21
xz

x y
zz

Enq BJ E
BB

µ
µ

µ

 
= + 

+  
,                 (91) 

and 

( )( )21
yz

y x
zz

Enq BJ E
BB

µ
µ

µ

 
= − 

+  
.                (92) 

Equations (91) and (92) indicate that mobility can be used to vector the E × B 
Drift. The angular direction θE × B of the current vector J  is 

1 1tan = tany y z x
E B

x x z y

J E B E
J E B E

µ
θ

µ
− −

×

 − 
=     +   

.            (93) 

Defining α = Ex/Ey, the equation above can be written as 

1 11tan  
1

z
E B

z z

B
B B

αµ
θ

µ α µ
−

×

 −
=  + 

.               (94) 

The magnitude of the current ( )0.52 2
x yJ J= +J  can be calculated from Equa-

tions (91) and (92) as: 

( )

2 2

21

x yz

zz

E Enq B
BB

µ

µ

+
=

+
J .                 (95) 

When Ex = 0 the magnitude of the drift current is: 

( )21

yz

zz

Enq B
BB

µ

µ
=

+
J ,                    (96) 

and the direction of the drift is determined by the mobility of the particles: 

1 1tanE B
zB

θ
µ

−
×

 
=  

 
.                    (97) 

Under an ideal, no-collision and infinite mobility, all particles drift in the 
same direction along the X axis, i.e., θE × B = 0, Jx = 0, and Jx = nqEy/Bz. However, 
when mobility is finite, it can be negative for particles with negative charge (as it 
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is defined in Equation (87)), which implies that particles with different charges 
drift in different directions. 

Furthermore, as indicated by Equations (94) and (97), two factors contribute 
to redirecting or vectoring the drift away from the X direction. The first is α = 
Ex/Ey which becomes significant when space charges accumulate downstream 
causing a back emf Ex ≠ 0. The second is the product μBz. 

It is instructive to note that the E × B drift and the Hall Effect are two reci-
procal perspectives of the same electromagnetic transport phenomenon. Both 
require a magnetic field. In the E × B drift, the input is an electric field and the 
output is a current. In the Hall Effect, the input is a current and the output is an 
electric field. 
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