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Abstract 
Typically, active control systems either have a priori complete information 
about the boundary-value problem and damped waves before switching on, 
or get it during the measurement process or accumulate and update informa-
tion online (identification process in adaptive systems). In this case, the 
boundary problem is completely imprinted in the information arrays of the 
control system. However, very often complete information about a boun-
dary-value problem is not available in principle or this info is changing in 
time faster than the process of its accumulation. The article considers exam-
ples of boundary control algorithms based almost without any information. 
The algorithms presented in the article cannot be obtained within the frame-
work of the harmonic representation of the problem by complex amplitudes. 
And these algorithms carry out fast control in microstructured boundary 
problems. It is shown that in some cases it is possible to find simple solutions 
if we remove restrictions: 1) on the spatio-temporal resolution of controlling 
elements of a boundary-value problem; 2) on the high-frequency radiation of 
the controlled boundary. 
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1. Introduction 

With constant (in time) parameters (or without frequency conversion) devices 
for wideband non-resonant sound suppression (or other types of waves) should 
have large wave sizes (thickness D , see Figure 1(a)) of the order of the maxi-
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mum wavelength Wλ  of the frequency range of suppression min W maxλ λ λ< <  
(where min max/ 1λ λ << ) i.e. D maxλ≥ . The goal of this work is to reduce the 
dimensions of broadband (non-resonant) suppression devices (for cancellation, 
damping, absorption, suppression of reflections, …) at minimum information 
on the boundary problem and on the wave to be damped. If we allow the arbi-
trary power of high-frequency sound radiation (technological radiation on the 
technological frequencies f 1/ T≥ ) and a rapid (on time scale T) change of pa-
rameters of a boundary value problem, then in several cases the goals set above 
can be achieved jointly. Below we will consider some simple applications of this 
approach. The examples of boundary control considered in the one-dimensional 
wave problem considered below are reduced to the alternation (in time) of two 
different types of the boundary-value problem. Jumping (switching) from one 
boundary-value problem to another and the connection between them provides 
a certain “breaker” controlled by the algorithm. 

We mean breaking as a very quick and microscopic hop (jump) from one 
boundary value problem to another. Below we want to obtain: (a) effective sup-
pression of long wave reflections (Figure 1(a), Figure 1(b)) from a controlled 
boundary bx x=  (and suppression of sound propagation in a gas stream too 
(Section 5), see Figure 1(c)); (b) in a wide band min maxλ λ<<  of wavelengths; (c) 
without accumulation of information about the damped wave and the boundary 
value problem; (d) at small wave sizes of the suppressing device, i.e. D minλ<< , 
due to relaxation (dissipation) of the technological waves on high frequencies 
f 1/ T≥  (i.e. D D D(f) (1/ )T= =   ) is length of damping. 

2. Algorithm of Half-Return of the Boundary (AHRB) 

The goal of the algorithm is to suppress reflections from boundary bx . We con-
sider a semi-infinite ( bx x≤ < ∞ ) elastic rod, with longitudinal impedance Z,  

 

 
Figure 1. General statement of the problem and goals of approach: black area means 
suppressing layer of thickness D  (traditional thick wideband suppressing layer with 
parameters constant in time (a) and thin wideband suppressing layer with high frequency 
operations (b)); white-black wave (b) means reflected high frequency waves conversed 
from incident one (gray wave means incident wave); (c) small size muffler for gas stream 
with long sound waves. 
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sound speed c of waves and the field ( , )U x t  of longitudinal displacement of 
particles (Figure 2(a)). The boundary condition at the end bx  has the form 

b b( )[ ( , ) / ] ( )x xS U x t x F tε =∂ ∂ = , where b ( )F t  is the force applied to end bx , S is 
the cross-section of the rod, ε  is Young’s modulus. A smooth incident wave 

W( , ) ( )U x t U x ct= +  (temporal scale Wτ ) runs from the right. On the free end 

bx  (at b 0F = ) we have b W b( ) 2 ( )U t U x ct= +  and  
/

b b W b( ) ( ) 2 [ ( )]tU t U t U x ctτ τ− − ≈ +  for any interval Wτ τ<< . 
The boundary-value problem can be represented as the sum of two partial li-

near problems: (a1) reflection of the incident wave (IW) W 0U ≠  from the free 
(at b 0F = ) the end of the rod; (a2) wave generation by force b 0F ≠  in the ab-
sence of an incident wave (at W 0U = ). The “breaker” jumps ((a1) ↔  (a2)) in 
accordance with the control algorithm: measurement in (a1), action in (a2). We 
assume that the force bF  has a compact support: b 0F >  at F[0, ]t τ∈ , 

b 0F =  at F[0, ]t τ∉ . For a clear distinction between the causes and conse-
quences in the work of AHRB, it is extremely important that after the termina-
tion of the force bF  (at Ft τ> ), the displacement F 1

b0
( )Z F d

τ
ξ ξ−∫  of the 

boundary bx caused by this force is saved indefinitely long [1] after its switching 
off. Now we will directly consider AHRB, which is a sequence of time cycles (see 
Figure 2(c)) of the boundary control. Each n-th cycle n 1 n 1 nt t t T− −≤ < +  of du-
ration nT  ( n 0,1,2,...= ) consists of two parts: (a) smooth displacement of the 
free (i.e. at b 0F = ) end bx  over a time interval n 1 n 1 f n( )t t t τ− −≤ < + , we set 
the duration f n( )τ  of this interval arbitrary under condition f n W( )τ τ<< , and 
we measure the corresponding displacement b n 1 f n b n 1[ ( ( ) ) ( )]U t U tτ− −+ −  of 
boundary bx ; (b) the rapid return of the border bx  during the interval 

n 1 f n n 1 f n r n( ) ( ) ( )t t tτ τ τ− −+ ≤ < + +  under the action of force bF . Force b ( )F t  
is switched off at the moment n 1 f n r n( ) ( )t t τ τ−= + +  when the level  

b n 1 f n b n 1[ ( ( ) ) ( )] / 2U t U tτ− −− + −  becomes crossed by function  
n 1 f n

n 1 f n

( ) 1
b( )

[ ] ( )
t

t
Z F d

τ ξ

τ
ϕ ξ η η−

−

+ + −

+
= ∫  for the first time (at the value r n( )ξ τ= ) beginning  

from the moment n 1 f n( )t t τ−= + . It is easy to see from the Figure 2(c) than 
when the scale T of control cycle, scale fτ  ( f n f( ) ~τ τ ) of free drift, scale rτ  
( r n r( ) ~τ τ ) of half-return, scale Wτ  of IW are satisfying the condition 

r f Wτ τ τ<< << , we get the weakness of reflections on the frequencies Wf ~ 1/τ  
or b W b( ) ( )U t U x ct→ +  and b W b W( ) ( ) / 0U t U x ct U− + → , where  

 

 
Figure 2. To AHRB: (a) geometry of control problem; functional intervals of AHRB (b), 
(c). 
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W
W W W0

(1/ ) ( )
c

U c U d
τ

τ ξ ξ= ∫ . The peak hfP̂  and average hfP  (on the cycle ~T) 
power of the high-frequency radiation, generated by the impact force bF , and 
time averaged power flux WP  in the low frequency IW are satisfying to the fol-
lowing relations 2

hf W f r
ˆ / ( / ) 1P P τ τ≈ >>  and hf W f r/ / 1P P τ τ≈ >> . About 

impedance: Z is unknown and can slowly change in time ( )Z t . About impact 
force: b ( )F t  can be of arbitrary pulse shape, but with constant sign and at any 
moment of impact satisfies the condition b WF >> Ψ , where  

W
b W b0

(1/ ) ( )F F t dt
τ

τ= ∫ , W1 /
W W W0

( / ) ( ( ))
c

xS U x сt dx
τ

ε τ −Ψ = +∫ . About linearity: 

the returning path scale is f W W( / )h Uτ τ= , velocity scale is r/h τ , so the condi-
tion r/h cτ <<  ensures linearity. 

3. Algorithm of Maximum Instant Power Absorbed (AMIP) 

The goal of the algorithm AMIP is to maximize the instantaneous power ab-
sorbed by the boundary bx . Consider above rod problem: some electric drive 
(as above “breaker”) can ensure any constant velocity bV  of edge bx  inde-
pendently of any incident wave (IW). Wave problem can be represented as the 
sum of two linear problems: (a1) reflection of IW from a fixed ( b b / 0V dU dt= = ) 
boundary bx ; (a2) the radiation of waves by a boundary bx  at a given velocity 

bV  in the absence of IW. The breaker jumps: (a1) ↔  (a2). Velocity bV  takes 
discrete levels b n n( )V t V=  at discrete time intervals (n 1) nT t T− < <  ( n 1,2,...= ), 
where T is the period of velocity switching (and measuring between switching). 
Steps nV  are multiples of the tuning step V , n / 0, 1, 2, 3,...V V = ± ± ±  (integer). 

Absorbed power (work of IW with a border bx ) is square function  

b W b b( ) ( )[2 ( ) ( )]W t V t E x ct ZV t= + −  of ( )V t  with the unique maximum at 

b W b W b( ) ( ) ( ) /V t V x ct E x ct Z= + = + , where ReZ Z= , W b( )V x ct+  and 

W b( )E x ct+  are longitudinal particle velocity and stress in IW in infinite rod. 
AMIP is expressed by the iterative (recurrent) relation n n 1 sgn( )V V V W−= +  
(for n 2≥  with initial condition 1 0V = , 1V V= ), where: n 1 n 2W W W− −= − , 

n 1 n 1 n 1W F V− − −= , n 2 n 2 n 2W F V− − −= ; n 1F − , n 2F −  are measured values of the force 
applied to boundary bx  by the medium of rod from bx x≥  at the moments 

n 1t a− − , n 2t a− −  correspondingly ( 0 a T< << ); sgn( ) 1ξ = +  at 0ξ > , 
sgn( ) 1ξ = −  at 0ξ < . If at the previous step the velocity increase causes the de-
crease ( 0W < ) of the absorbed power, at the next step the velocity increase will 
change its sign and will not change it in the opposite case. In above one dimen-
sional statement of the problem absorption maximum corresponds to the min-
imum of reflection and radiation too. AMIP does not need to know either rod 
impedance Z and IW. AMIP effectively traces IW if the following conditions are 
satisfied: Wmax /V U t<< ∂ ∂ , 2 2

W/ max / ( )V T U t>> ∂ ∂  or  
2 1

W W W( )V U T Vτ τ −<< << , AMIP resembles the algorithm of random search, 
considered in [2]. Weak boundary radiation on frequencies f n / T=  ( n 1,2,3,...= ) 
is defined by the scale of the velocity-tuning step T. The average power hf TP< >  
over the interval T of high-frequency (at frequencies 1/ T , 2 / T , 2 / T , …) 
radiation of the boundary bx x=  is of the order 2

hf T ( )P V Z< > ≈ . AMIP can 

https://doi.org/10.4236/jamp.2019.711198


V. Arabadzhi 
 

 

DOI: 10.4236/jamp.2019.711198 2895 Journal of Applied Mathematics and Physics 
 

also be applied in the problem of IW absorbing in a thin infinite elastic plate (see 
Figure 3(b)), since in this case the impedance of the plate with respect to a point 
source of normal velocity is also purely real ( ReZ Z= , [1]). Thus, by adjusting 
the normal velocity b ( )V t  of the point br  of application of external force to the 
maximum instantaneous absorbed power, it is possible to achieve the maximum 
absorption cross section W / 2σ λ π=  for a point source of the normal plate ve-
locity at the point br . 

4. Algorithm for Boundary Condition Modulation (ABCM) 

The goal of the algorithm is to suppress reflections from boundary bx  in the 
above one-dimensional problem and in layer (or distance from bx ) of small 
thickness at minimum info on IW and boundary problem. The ABCM is based 
on two main states of a controlled boundary bx  (Figure 4(a)): (a1) rigid state 

b

/[ ( , )] 0t x xU x t = =  with a fixed boundary bx  and velocity reflection coefficient 
1= −R ; (a2) soft state 

b

/[ ( , )] 0x x xU x t = =  with a free boundary bx  and velocity 
reflection coefficient 1= +R . Binary breaker ( )tB  jumps ((a1) ↔  (a2)) with 
period WT τ<<  and without doing work (without radiation or absorption) and 
without any measurements. ABCM algorithm controls the boundary condition 

b b

/ /( )[ ( , )] ( )[ ( , )] 0x x x t x xt U x t t U x tα β= =+ =  via the coefficients α , β  (Figure 
4(b)): [ 1=B , 0α = , 1β = , 1= −R ] ↔  [ 0=B , 1α = , 0β = , 1= +R ]. 
As a result of such control (see Figure 4(c)), we obtain an oscillogram b ( )V t  of 
the velocity of the boundary b ( )V t , which on average (over a period T) tends to 
the velocity of particles in the incident wave (i.e., in an infinite rod without ref-
lections) or b W b( ) ( )V t V x ct→ +  [3], as was required above. An experimental 
verification of the ABCM algorithm is presented below in Section 6. In this case, 
the boundary bx  converts the low-frequency (with a spatial scale Wcτ ) IW  

 

 
Figure 3. To the algorithm AMIP: boundary velocity and particle velocity in incident wave 
(a); on the absorption of bending wave in thin infinite elastic plate (b). 

 

 
Figure 4. To the algorithm ABCM: breaker and boundary problem statement (a). States of 
breaker and reflection coefficient (b) boundary condition control (b). Velocity of controlled 
boundary and particle velocity

 
in the incident wave (c).
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wave into reflected high-frequency waves at frequencies f 1/ , 2 / ,3 / ,...T T T=  
that dissipatively attenuate in Dexp[ / (f)]−   times at a distance 


 from the 

boundary bx , where D D (f)=   is the frequency dependent dissipative atten-
uation length or equivalent damping device size (see Figure 1(b)). 

Thus, having fulfilled the condition D W D W(1/ ) (1/ )cT T cτ τ<< << <<  , it is 
possible to ensure the smallness of the attenuation length and smallness of effect 
of dissipation on the above boundary condition. 

5. Algorithm for Sound Blocking in the Gas Stream (ASBG) 

The goal of ASBG is to block the sound propagation in a gas stream with average 
velocity cυ << . This problem arises in the design of automobile silencers (Fig-
ure 1(c)): we need a device that transmits a gas stream, but does not allow sound 
propagation in the gas. Traditionally (with parameters constant in time), there 
are two directions in this problem. On the one hand, pushing of gas through a 
grid of holes in a rigid plane. The smaller the diameters of the holes, the lower 
the sound transmission. This approach allows a small size D minλ<<  of the si-
lencer. But energy losses due to pushing gas through holes increase too much. 
On the other hand, passing a gas stream with sound through a low pass filter 
(Helholtz resonator) with resonance at wavelength maxλ λ>  (with dimensions

D maxλ> ). This approach doesn’t require power losses for gas pushing, but re-
quires too large dimensions of muffler. Known silencers are usually a combina-
tion of approaches (a), (b) or a complicated combination of tubes, perforated 
plates and resonators. An approach below (based on a quick switching of para-
meters) allows dimensions D minλ<<  with small power losses for pushing gas 
through silencer. 

Consider the 1D case (Figure 5(a1)) of a gas stream (together with sound 
waves in it) from left to right between two rigid planes (waveguide). The binary 
breaker ( )tB  jumps (without doing any work with flow or wave field) from 
one boundary problem (state 0=B ) to another (state 1=B ) in accordance 
with the control algorithm periodically in time (without any measurements). 
Here 2T is the period of states repetition, and T is the period of states change, 
respectively. In even time intervals (of duration T) between two sections at a 
distance L from each other, rigid thin flat walls arise instantaneously and simul-
taneously (state 1=B ) and block the flow and sound. In odd intervals (over 
time /T L c= ) of time, these walls also instaneously and simultaneously disap-
pear (state 0=B ). At the same time, a segment of a sound of length L that is in 
a closed segment of length L manages fully reverses (this is the goal of inver-
ter-breaker ( ) [0,1]t =B  works) just before the opening of the space interval. 
Thus, the inverter-breaker ( )tB  during half-time reflects (blocks sound) the sound 
back, and during another half time the stream passes or doesn’t pass through itself 
disturbances propagating with the speed c of sound. The disadvantages of this op-
tion are: (a) large power losses due to the production of sound from hydraulic im-
pact; (b) the possibility of not a 1D sound propagation in waveguide. 
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Figure 5. On the action of ASBG: (a) temporal sequence of states (“1”—closed state and 
“0”—opened state) of breakers-inverters at their growing amount ((a1), for 1 waveguide), (a2) 2 
waveguides, (a3) 4 waveguides), (a4) 8 waveguides); (b) complementary breakers for the cross 
section of 3-D problem; (c) running acoustic blades (petals) and spinner. 

 
Next are a lot (Figures 5(a2)-(a4)) of inverters-breakers in the system cross 

section, now a pair of mutually complementary ( ( ) ( ) 0t t =B B ) inverter breakers 
( )tB , ( )tB  (see Figure 5(b)) with the corresponding time diagrams. The more 

elements in the cross section (Figures 5(a2)-(a4)), the weaker the hydraulic 
shock (flow energy →  sound) when switching inverters and faster this blow 
becomes blurred (spatially averaged), helping to push the gas into neighboring 
opened waveguides. The above (evolution in Figure 5(a)) model is difficult to 
implement (it is not clear how it would be possible to create rapidly appearing 
and disappearing walls of inverter-breaker). However, the model shown in Fig-
ure 5(c) is much simpler to implement. Consider a 2-D echelon of thin infinite 
parallel rigid plane strips with a length L and with a distance d L<<  between 
them. To the left, a gas flow at time averaged velocity enters this system (and ex-
its with the same time averaged velocity cυ << ). Rigid flat thin acoustic blades 
of width Λ  and on distance Λ  from each other parallel to the edges of the flat 
walls at a distance (gap) g << Λ  and run at a speed V c<< . It is easy to verify 
that each plane waveguide is open during a time interval of duration T and 
closed (inverter) during the time interval of the same duration T. The condition 
of synchronism / /V L c TΛ = = . Opening and closing of each waveguide is 
fulfilled during the time /d V  and very quickly relating to the time of inversion 
T, i.e. /d V T<< . Now it is easy to notice that for d L<<  and with a small 
thickness of the boundary layer in the flow inside the waveguide (compared to 
the waveguide width), the waves in each waveguide will be one-dimensional and 
without dispersion and with speed (this were required above). In the 
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three-dimensional version of the problem, acoustic blades can be represented by 
the petals of two spinners rotating in phase near the waveguide bundle (see Fig-
ure 5(c)). The spinner doesn’t work with the gas flow (low power for rotation), 
since its petals are normal to the flow and move parallel to themselves. The dif-
ference 0p p− >  in the mean (in time and in cross section) gas pressure at the 
inlet p  and outlet p  (Figure 5(c)) pushes the gas. Finally we can formulate 
the following hierarchy of scales for ASBG: W D L d gλ δ>> > >> Λ >> >> >> , 
where Wλ  wavelength of sound in the flow, D -dimension of muffler, 
L-length of waveguides, Λ -wideness of blades, d-cross dimension of waveguide, 
g-gap between blades and waveguides, δ -mean free path of gas molecules. 
Running blades do not produce high frequency sound (on the frequencies 
~ /V d ). Above described parametric system equally blocks the propagation of 
sound from left to right, and from right to left. 

6. Experimental Testing of the Algorithm ABCM 

The goal is to reduce the ringingness of a tank (as a resonator for surface water 
waves) without increasing the viscosity of waveguiding media (water). In the tradi-
tional case of time constant parameters (Section 1, Figure 1(a)) of wave-suppressing 
devices, their dimensions are not less than basin length 


. The algorithm 

ABCM (Section 4) was experimentally tested [3] in application to surface water 
waves in a tank with a length 1.5=  m and a filling depth 0.22h =  m (see 
Figure 6(a)). The setup was conceived as an attempt to simulate the 
above-described one-dimensional boundary acoustic problem for a boundary 
with a modulated reflection coefficient, despite the two-dimensionality and dis-
persion of surface water waves. 

6.1. Description of the Experimental Setup 

On the left edge of the tank (Figure 6(a)) there is a wall L  that can freely ro-
tate around an axis located at the bottom. The wall L  hermetically (soft corru-
gations) separates the water of the tank and the air on the left side. 

The vertical shift ( )H t  of the free surface of the water near the wall L  is 
measured by a sensor in the form of a float. The friction breaker ( )tB  is 
switching periodically (with an interval M/ 2 1/ 2fT = , where Mf  the frequen-
cy of binary modulation) between two states: (a) “stopped” state ( ( ) 1t =B , the 
breaker strongly pressing to the upper edge L  and fixes the angle of deviation  

 

 
Figure 6. Draw of experiment (a) and dispersion characteristic (b) of the waves in the 
tank. 
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of the wall L ); (b) “free” state ( ( ) 0t =B  the breaker does not touch the upper 
edge L ) states of the wall L . Hydrostatic pressure on the wall L  on the right 
is compensated by a soft elastic spring; the softness of spring is such that fre-
quency 0f  of free (at ( ) 0t =B ) oscillations of the wall L  is less than the fre-
quency of the water wavelength 2λ =   (seiche). On the right edge of the tank 
near the vertical rigid wall R  there is a weightless (compared to the weight of 
the displaced water) float, to which the electromagnetic force ( )F t  of the 
wave-generator is applied. The mechanical impedance of the electric drive of the 
wave maker is negligible compared to the impedance of the mass of water dis-
placed by the float. The force ( )F t  and speed ( )V t  of the vertical displace-
ment of the float are measured by appropriate sensors. The dispersion (frequen-
cy f [Hz] as a function f ( )k= Φ  of the wave number k [1/m]) of the propagat-
ing waves is shown in Figure 6(b). 

6.2. Pulse Drive Excitation 

There two experiments with pulsed excitation (Figure 7(a)) were made: 1) exci-
tation of the tank (at moment 0t t= ) by the pulse of the waveproducing force 

( )F t  with the breaker switched off ( ( ) 0t =B ) and with the registration of 
damped oscillations 0( ) ( )H t H t=  of the free surface of the water near the wall 
L  (Figure 7(b)); 2) excitation of the tank (at the moment 0t t= ) by the same 
impulse of the wavemaker force ( )F t , but with the breaker switched on 
( ( ) (0 /1)t =B ) and with the recording of damped oscillations 1( ) ( )H t H t=  
(Figure 7(b)). As can be seen from Figure 7(b), modulation ( ( ) (0 /1)t =B ) of 
the wall L  parameters leads to a significant decrease in the wave damping. 
Since the waves in the tank have dispersion characteristic f ( )k= Φ  of propa-
gating waves, the time of one run of wave along the tank (Figure 6(a)) is esti-
mated using the maximum group velocity g (2 )[ / k]c d dπ= Φ  of the waves as 

g max/ [ ] 0.65c =  s according to the graph presented in Figure 6(b), where 

g max[ ] 1.88c ≈  m/s (i.e. at 0k = ). 

6.3. Sinusoidal Excitation of the Tank 

The wavemaker on the right wall R  (Figure 7(c)) turns on at the moment 
0t =  and produces a sinusoidal force ( )F t  (at a frequency Wf ), which is ap-

plied to the float, and the breaker ( )tB  remains off ( ( ) 0t =B , the wall L  is 
free). By the moment 0 W1/ ft t= >>  the stationary field of standing waves at a 
frequency Wf  is set in the tank and corresponds to a circular trajectory 
[ ( ), ( )]F t V t  in the plane (see Figure 7(d)). The circular impedance trajectory 
[ ( ), ( )]F t V t  corresponds to the reactive wave impedance of the wavemaker and, 
accordingly, weak radiation and weak absorption of waves in the tank (the phas-
es of force ( )F t  and velocity ( )V t  have shift / 2π  relative to each other or 
the wall L  reflection coefficient as ( ) 1t =R ). On the moment 0t t= , the 
breaker ( )tB  is switching on ( ( ) (0 /1)t =B ) at the frequency Mf . As a result 
we have frequency conversion by parametric wall into rapidly decaying  
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Figure 7. Pulse excitation ((a), (b)) of the tank: oscillations of the float near the left wall, when the modulation 
is off, oscillations of the same float when the modulation is switched on. Experiment with sinusoidal excitation 
of the tank (c). Evolution of the phase trajectory after breaker switching on (d). Scanning of the wavemaker 
frequency

 
at a constant modulation frequency (e). Scanning of the modulation frequency at a constant wave-

maker frequency
 
(f). 

 
high-frequency waves at combination frequencies M Wf f± , M Wf 2f± , … Tra-
jectory [ ( ), ( )]F t V t  evolutes into a straight line. This means that the wall L  
represents, from the point of view of the wavemaker, a purely active load ab-
sorbing the waves it produces. The fact of the frequency conversion of the wave 
field by a parametric wall L  is clearly illustrated by measurements of the mod-
ulus (f)H  of the Fourier spectrum (f)H  of the oscillations ( )H t  of the 
height of the float near the wall L . Figure 7(e) shows the value (f)H  in the 
case of scanning the frequency Wf  of the wavemaker, and Figure 7(f) presents 
the case of scanning the modulation frequency Mf . At ideal modulation of the 
wall L  reflection coefficient ( ( ) 1t ≈ ±R ), there should be no components of 
the spectrum (f)H  at the modulation frequency Mf . 

7. Conclusion 

The algorithms described in the article are constructed for the temporal repre-
sentation of a boundary value problem. The presented algorithms are based on 
the use of high spatial-temporal resolution for fast switching wave regimes and 
don’t require the accumulation of information about wave fields and the boun-
dary problem, using either only instantaneous field measurements or without 
them. The payment for smallness of information on the fields to be damped and 
the boundary problem in algorithm is high-frequency radiation. Above breaking 
algorithms cannot be reduced to either continuous representations (partial dif-
ferential equations) or traditional discrete ones (point-like wise in space or (and) 
in time). 
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