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Abstract 
Singly connected Hall plates with N peripheral contacts can be mapped onto 
the upper half of the z-plane by a conformal transformation. Recently, Ho-
mentcovschi and Bercia derived the General Formula for the electric field in 
this region. We present an alternative intuitive derivation based on conformal 
mapping arguments. Then we apply the General Formula to complementary 
Hall plates, where contacts and insulating boundaries are swapped. The resis-
tance matrix of the complementary device at reverse magnetic field is ex-
pressed in terms of the conductance matrix of the original device at non-reverse 
magnetic field. These findings are used to prove several symmetry properties 
of Hall plates and their complementary counterparts at arbitrary magnetic 
field. 
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1. Introduction 

The purpose of this work is to derive relations between Hall plates and their 
complementary counter-parts. A Hall plate is assumed to be a plane conductive 
region with thickness much smaller than its lateral dimensions. We discuss only 
singly-connected Hall plates without holes. An arbitrary number of at least two 
extended contacts are on the perimeter. Between neighboring contacts there is a 
unitary piece of insulating boundary. Thus the number of contacts equals the 
number of unitary pieces of insulating boundary. The complementary Hall plate 
comprises the very same conductive region, but contacts and insulating bounda-
ries on the perimeter are swapped. A complementary Hall plate has the same 
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number of contacts as the original Hall plate. If the contacts of the original Hall 
plate are small, the complementary Hall plate has large contacts. Therefore a 
high impedance original device will generally have a low impedance comple-
mentary device. The first question is if there is a more precise quantitative rela-
tion between both devices. The ultimate question is if we can obtain all electrical 
parameters of the complementary device from the parameters of the original 
Hall plate.  

Several properties of complementary Hall plates at zero or weak applied mag-
netic field have already been studied in the past. We found the following ones. 

Plain distributed resistive structures with complementary peripheral electrode 
geometries were studied at zero magnetic field in [1]. The number of extended 
electrodes was N > 1. The authors called the complementary device the dual de-
vice. They defined a first resistance between two non-neighboring contacts in 
the original device and a second resistance between two terminals in the dual 
device (see their Figure 2). The first terminal was connected to all contacts of the 
dual device, which are left of the two non-neighboring contacts in the original 
device. The second terminal was connected to all contacts of the dual device, 
which are right of the two non-neighboring contacts in the original device (see 
Figure 5 in this work). Finally, the product of these two resistances equals the 
square of the sheet resistance sheet HR tρ= , with the specific volume resistivity 
ρ  and the thickness of the Hall plate Ht . In [1] the authors also gave a general 
relation between indefinite impedance matrix ( )N N×Z  and indefinite admittance 
matrix ( )N N×Y  of original and dual devices at zero magnetic field. Thereby, the 
impedance matrix of the complementary Hall plate is fully given by the admit-
tance matrix of the original Hall plate. The goal of the current paper is to find an 
analogue relation that also holds in the presence of applied magnetic field of ar-
bitrary strength. The arguments in [1] were based on the idea that potential and 
stream function are swapped if contacts and insulation boundaries are swapped. 
This naturally raises the question of what happens in cases where no stream func-
tion exists [2]. Further insight into the symmetry of such devices is given in [3].  

Van-der-Pauw measurement on Hall plates with 90˚ symmetry at zero mag-
netic field was discussed in [4]. There the authors focused on Hall plates with 
point-sized contacts and on their complementary counterparts of large contacts 
with no insulating boundaries in-between. Both cases can be readily computed 
in closed form. Then the authors found a smart power law, which interpolates 
the sheet resistance up to an astonishing accuracy of ±0.02% for all contact sizes 
((7) in [4], also (24) in [5]). 

In [6] Van-der-Pauw measurement on rectangular Hall plates was studied at 
zero magnetic field. The devices had four extended contacts with two orthogonal 
symmetry axes. There the original device was labeled with “even symmetry” and 
the complementary device with “odd symmetry”. If opposite contacts are short-
ed each device has only two terminals with the so-called cross resistance between 
them. It was found that the sheet resistance at zero magnetic field is twice the 
square-root of the product of cross resistances of original device and comple-
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mentary device (see (13a) in [6]).  
In [7] plane singly-connected Hall plates with four peripheral contacts and 

equal input and output resistances were considered. If magnetic field is im-
pressed on such a device, it has the same output voltage as its complementary 
device, provided both are supplied by the same voltage source (see Figure 7 in 
this work). This was conjectured in [8] and proven in [7] and [9] for weak ap-
plied magnetic field (see (50) in [8], see Section 4, Appendix B, and Figure 8, all 
in [7]). Numerical inspection suggests that this also holds for strong magnetic 
field, but a rigorous proof has not been given so far. In [8] it was also implicitly 
mentioned that the product of input resistances of original and complementary 
Hall plates of that particular symmetry (i.e., input resistance equals output resis-
tance) at zero magnetic field equals twice the square of the sheet resistance (see 
the paragraph after (50) in [8]). 

Complementary Hall plates with three extended contacts on the perimeter 
were studied in [10]. If such a device has single mirror symmetry, also its com-
plementary device has single mirror symmetry. Then—analogous to above—the 
change of the potentials on the output contacts due to reversal of magnetic field 
polarity are identical in both original and complementary devices, if both devices 
are supplied with the same supply voltage on the other two contacts, and if the 
magnetic field is weak (see also Figure 6 in this work). This property also means 
that the ratio of Hall output signal over thermal noise under the constraint of 
fixed supply voltage and fixed input resistance is the same in the original Hall 
plate and in the complementary Hall plate [10] [11]. 

In Section 2 we reconsider the General Formula of [12] for the electric field in 
the upper half of the z-plane with N contacts on the real axis. Thereby, we 
present a different derivation than the one given in [12]. This new approach 
shows how the stagnation points are linked to the electric field in the Hall plate. 
From this result we derive the resistance matrix of a general device at arbitrary 
magnetic field in Section 3. This is similar to [12]. In Section 4 we link the re-
sistance matrices of original device and complementary device at reverse mag-
netic field. We call this the Reverse Magnetic Field on Complementary Device 
theorem (RMFoCD)—it is the core result of this work. In Section 5 we general-
ize the impedance relation in [1] for Hall plates at arbitrary magnetic field. In 
Sections 6 and 7 we prove that voltage supplied complementary Hall plates with 
three and four contacts have the same magnetic field sensitivities as the original 
Hall plates, if they are sufficiently symmetric. In Appendix A we evaluate an 
integral with the calculus of residues. Appendix B defines several matrices and 
matrix manipulations used throughout this work. Appendix C gives a numerical 
example, where the theory is compared to results of finite element simulations. 

2. The General Formula for the Electric Field 

Recently Homentcovschi and Bercia found a closed form analytical solution for 
the electric field in the upper half plane with an arbitrary number of extended 
contacts on the real axis [12]. The geometry of the problem is shown in Figure 1. 
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The Hall plate has N contacts with end points ,n na b  with the sequential order 

1 2 2 3 1 1N N Nb a b a a b a a+< < < < < < < = . Thus, contacts 2 to N are lined up 
from left to right and contact 1 is at infinity. According to [12] the complex 
electric field ( )E z  in the point z x iy= +  with 0y ≥  (i being the imaginary 
unit) is given by 

( ) ( )
1

1
with

N
n

x y n n
n

iE z E iE c z c
L z

−

=

= − = ∈∑ R             (1a) 

with 

( ) ( ) ( )1

1

N

n n
n

L z z a z bγ γ−

=

= − −∏                   (1b) 

1 with 0 1
2

Hθγ γ= + < <
π

                    (1c) 

In (1c) Hθ  is the Hall angle defined by ( )tan H H Bθ µ ⊥= . We define the Hall 
mobility 0Hµ >  for negative charge carriers and 0Hµ <  for positive ones. 
This is opposite to the definition in [12] and therefore a different sign shows up 
in (1c). The applied magnetic flux density B⊥  perpendicular to the Hall plate is 
counted positive, when it points out of the drawing plane.  

In [12] Homentcovschi and Bercia derived their General Formula (1a) in a 
formal, “mathematical” way. Here we present a more intuitive derivation, which 
also sheds light on the physical meaning of the coefficients nc . Figure 2 shows a 
Hall plate in the w-plane with the shape of a skewed parallelogram according to 
the method of Wick [13]. It is obtained from the Hall plate in Figure 1 by con-
formal mapping (after Schwartz-Christoffel). The skew angle is identical to the 
Hall angle. If the top and bottom contacts are supplied with electric energy, the 
current streamlines will be homogeneous and parallel to the left and right edges 
of the parallelogram, and the equipotential lines will be horizontal and evenly 
spaced. Thus the electric field will be vertical and homogeneous. As for any Hall 
plate the angle between the current density ( )S w  and the electric field ( )E w  
is identical to the Hall angle for all points in the Hall plate:  

( ) ( ) ( ) ( )1 cos expu v H HS w S iS i E wθ θ
ρ

= − = −             (2a) 

 

 
Figure 1. Hall plate in the infinite upper half of the z-plane with N 
peripheral contacts on the real axis. The magnetic field points out of the 
drawing plane. Current is injected at contact j and extracted at ground 
contact N. Contact 1 is at infinity. Points dn are stagnation points on all 
N-2 output contacts (supply contacts j and N have no stagnation points). 
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Figure 2. Hall plate as a skewed parallelogram in the w-plane with N peripheral contacts 
on the perimeter. Current is injected at contact j and extracted at contact N. Contact N is 
grounded. If the Hall angle is equal to the skew angle, the current density is homogeneous 
and parallel to the left and right edges, and the electric field is also homogeneous and 
vertical. Figure 2 is obtained by conformal transformation of Figure 1. The points Dn are 
the tips of the N-2 folded output contacts. They correspond to the stagnation points dn in 
the z-plane of Figure 1. The sign of the skew angle is important: according to (2a) the 
vector S  is obtained by counter-clockwise rotation of E  (for 0Hθ > , i.e., for B⊥  
pointing out of the drawing plane and negative majority charge carriers). 

 
(2a) is the complex notation of the general Ohm’s law in vector form 

Hρ ρµ ⊥= + ×E S S B                      (2b) 

In many materials ρ  and Hµ  do not depend on B⊥  as long as B⊥  is suffi-
ciently small (see (11.19) in [14]). However, at strong magnetic field and/or for cer-
tain doping concentrations ρ  and Hµ  may well change versus B⊥  (see Chap-
ter 1.1c in [14], see also Chapter 3.3 in [15], also [16]). 

In (2a)， the conjugate complex of ( ) ( ),S w E w  point in the directions of the 
vectors ,S E , respectively. Thus, taking the conjugate of both sides of (2a) we 
obtain S  by counter-clockwise rotation of E  (for 0Hθ > ). All 2N −  output 
contacts must be horizontal and folded in exactly such a way that the outer 
boundary becomes a smooth parallelogram (without steps in its left and right 
edges). Only if all folded output contacts are horizontal they are compatible to 
homogeneous electric and current density fields in the parallelogram. Then the 
complex potential in the skewed parallelogram is given by (see (29) in [17]) 

( )
( )supply sheet 22cos

I
H

wF w I R
θ

=                   (3a) 

The complex electric field in the parallelogram is (see left equalities in (25) in 
[17]) 

( ) ( )
( )supply sheet 2

d
d 2cos

u v I
H

iE w E iE i F w I R
w θ

= − = =         (3b) 

and the complex current density in the parallelogram is with (2a) 

( ) ( )( )supply
1 tan

2u v H
H

S w S iS I i
t

θ= − = +                (4) 
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( )E w  and ( )S w  are homogeneous inside the parallelogram—they do not 
depend on w. The current flowing out of the Hall plate via the lower supply con-
tact in Figure 2 becomes 

( )
1

supply
1

1 dH v
w

t S w I
=−

− =∫                       (5) 

The supply voltage is given by  

{ }

{ } { }
( )

supply Im

supply supply sheet 2
0 Im

Im
d d d

2cos

jj

N N

AV A
j N

v
B v B H

A B
V E v I R

φ

φ φ
θ= =

−
= = ∇ ⋅ = − =∫ ∫ ∫w   (6) 

where φ  is the electric potential inside the Hall effect region (the potential on 
the contacts is denoted by 1 2, , , NV V V ). We are free to choose the ground po-
tential and so we ground the N-th contact ( { }0 Im 0N NV B= ⇒ = ). The current 
flows out of the Hall plate through the lower contact N of the parallelogram, and 
it flows into the Hall plate through the upper contact j. The electric field in the 
upper half of the z-plane is given by 

( ) ( ) ( )
( )supply sheet 2

dd d d
d d d d2cos

I
x y I

H

F w w i wE z E iE i F z i I R
z w z zθ

= − = = =   (7) 

whereby we used the fact that due to the conformal mapping between w-plane 
and z-plane it holds ( ) ( )I IF z F w= . With the Schwartz-Christoffel formula [18] 
we immediately get the General Formula  

( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2

supply sheet 1 2 22

2 2 22

2 1

2 2

1 1

2cos

H H

H H HH

H H

H

j j j

j j N

iE z I R K z b z a z d

z b z a z b z a

z d z b z a z

θ θ

θ θ θθ
π

θ θ

θ

π + π − −π     − − −     π π π    

π − π + π −     π +  − − −−        π π     π  +

π +−π    π − − − −    π π    π + +

= − − −

× − − − −

× − − −



 ( )

( ) ( ) ( )

( ) ( ) ( )

2 2

1 1

1

supply sheet 2
12cos

H H

N

N

N

n
nH n j

d

z b z a z d

i KI R z d
L z

θ θ

θ

−π − π 

π + π − −π     − − −     π π π    

−

=
≠

−

× − − −

= −∏

(8a) 

hereby K is a scaling constant of the Schwartz-Christoffel mapping, contact N is 
the current drain contact at ground potential, and contact j is the current input 
contact at supply voltage. All output contacts—i.e., floating contacts with zero 
current—are folded. Points nD  are inner pointed tips of these folded contacts 
inside the parallelogram in the w-plane. They are mapped onto the stagnation 
points nd  on the real axis in the z-plane with n n na d b< <  for  

( )2,3, , 1;n N n j= − ≠ . At contact 1, it holds 1 1 1 1a d b d< ∨ > . Hence, all nd  
are real numbers. K is a real number, because for points on the grounded contact 
N the product ( )nz dΠ −  in the numerator of (8a) is a real number and ( )L z  
is a negative real number (see Table A1 in Appendix A), while the electric field 
must be perpendicular to contact N with 0yE <  (the electric field is directed 
towards the ground node) and therefore ( ){ }Im 0E z > . Thus 0K >  for 1 1a d<  
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and 0K <  for 1 1d b< . 
In the most general case currents are flowing through all contacts. Then the 

electric field is the following linear superposition: 

( )
( ) ( )

( )
11

sheet
,2

1 12cos

NN

j j n j
j nH n j

R i
E z I K z d

L zθ

−−

= =
≠

= −∑ ∏              (8b) 

whereby the real-valued scaling constant jK  and the stagnation points ,n jd  
depend on the number j of the contact at which current jI  was supplied in 
Figure 2. Equating the numerators of (1a) and (8b) gives the real constants nc  
as functions of ,n jd . This shows that the nc  are determined by the stagnation 
points ,n jd  of the output contacts. Moreover we see that the highest power in 
the numerator of (8b) is of order 2Nz − , because the two supply contacts are not 
folded and therefore they do not contribute to the numerator. Comparison with 
(1a) gives  

0Nc =                             (9) 

It means that for z →∞  the electric field declines with the dominant term 
2

1Nic z−− . 
The current density in the z-plane is given by (2a) if we replace w u iv= +  by 

z x iy= + . Integration over the electric field and the current density gives the 
voltages between the contacts and the currents through the contacts. This was 
done in [12] with the following results: The real constants nc  are linked to the 
currents nI  into the Hall plate through the n-th contact  

,
1

N

n n k k
k

I N c
=

= ∑                        (10a) 

( ) ( )
( )

2 1

,
sheet

cos
1 d for 2, ,

n

n

b k
N n H

n k
a

xN x n N
R L x
θ −

+= − =∫          (10b) 

( ) ( )
( )

( )
( )

1

1

2 1 1
1

1,
sheet

cos
1 d 1 d for

b k k
N NH

k
a

x xN x x k N
R L x L x
θ ∞− −

+

−∞

 
= − + − <  

 
∫ ∫   (10c) 

( ) ( ) ( )
( )

( )
( )( )

( )
( )

( )
( )

1

1

1
1 1

1

1

1 12 11
1

1, 1
sheet max ,

1 1

d ;
cos 1

1 d for
1

d ;

ka

N kk
bN H

k N kb
a b

a

x
x b a

L xx x
N x k N

R L x L x x
x a b

L x

θ

−

−−∞
−+

−−
−

  −
 − <

− − − = − + + = 
− −

< −   

∫
∫

∫
(10d) 

and to the potentials nV  at the contacts 

1 , 1 1
1

for 1 with
N

n n n n k k N
k

U V V M c n N V V+ +
=

= − = ≤ ≤ =∑      (11a) 

( ) ( )
( )

1 1

, 1 cos d
n

n

a k
N n

n k H
b

xM x
L x

θ
+ −

+= − ∫               (11b) 

Note that ,n kN  has opposite sign than in [12], because we define 0nI >  if it 
flows into the Hall plate through the n-th contact. This definition is in accor-
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dance with the general rule for passive N-poles in electrical network theory. The 
sums in (10a), (11a) still comprise the term Nc  because we want to prove (9) 
with the following alternative argument: Obviously, the sum of all voltages 
around the Hall plate must vanish 

,1 1 ,2 2 , 1 1
1 1 1 1

,
1

0

0

N N N N

n n n n N N
n n n n

N

n N N
n

U M c M c M c

M c

− −
= = = =

=

     = ⇒ + + +     
     
 + = 
 

∑ ∑ ∑ ∑

∑



   (12a) 

In the appendix we prove with the calculus of residues that the sums in front 
of 1 2 1, , , Nc c c −  vanish, however, the sum in front of Nc  does not vanish. There-
fore (12a) leads again to (9). Moreover, also the sum over all currents must va-
nish due to Kirchhoff’s current law 1 2 0NI I I+ + + = . 

,1 1 ,2 2 , 1 1
1 1 1 1

,
1

0

0

N N N N

n n n n N N
n n n n

N

n N N
n

I N c N c N c

N c

− −
= = = =

=

     = ⇒ + + +     
     
 + = 
 

∑ ∑ ∑ ∑

∑



    (12b) 

Indeed, in the appendix we can show that the sums in front of all nc  with 
n N<  vanish. 

3. The Resistance Matrix of a Hall Plate 

From (12a) we see that we can skip the last equation in (11a) for n N= . With 
(9) it follows that ,n kM  is a square matrix with 1N −  columns and rows. With 
(12b) we can also skip one equation in (10a). Consequently, also ,n kN  is a square 
matrix with 1N −  columns and rows. Since contact N is the grounded supply 
contact we prefer to skip the last equation in (10a) for n N= . This leads to the 
matrix solution proposed in [19] 

1,1 1,2 1, 11 1

2,1 2,2 2, 12 2

1,1 1,2 1, 11 1

N

N

N N N NN N

N N NI c
N N NI c

N N NI c

−

−

− − − −− −

    
    
    = = ⋅ = ⋅    
         

I N c





   
 



    (13a) 

and 

1,1 1,2 1, 11 2 1

2,1 2,2 2, 12 3 2

1,1 1,2 1, 11 1

N

N

N N N NN N N

M M MV V c
M M MV V c

M M MV V c

−

−

− − − −− −

−     
    −     = = ⋅ = ⋅    
     −    

U M c





   
 



 (13b) 

with the ground node 0NV = . Eliminating c  in (13a) and (13b) gives  
1−= ⋅ ⋅U M N I                        (14) 

Inserting (B7a) into (14) gives the contact potentials ( )T
1 2 3 1, , , , NV V V V −=V   

(the index T denotes the transpose of a vector or a matrix).  

= ⋅V R I                         (15a) 
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In (15a) the resistance matrix R  is given by 
1 1

1 1 1

1,1 ,2 , 1
1 1 1 1,1 1,2 1, 1
1 1 1

2,1 2,2 2, 1
,1 ,2 , 1

2 2 2

1,1 1,2 1, 1

1,1 1,2 1, 1

N N N

N
N

N N N
N

N

N N N N

N N N N

M M M
N N N
N N N

M M M

N N N
M M M

− −

− − −

−−
= = = −

− − −
−

−
= = =

− − − −

− − − −

= ⋅ ⋅

 
         = ⋅           
 

∑ ∑ ∑

∑ ∑ ∑

R M N

  

  

  

  









   

   





∆

(15b) 

In (15b) the matrix ∆  is defined in Appendix B. The conductance matrix 
G  is given by = ⋅I G V . It follows from inversion of (15b). Note that (15b) is 
computationally not very efficient, because we need to compute two matrices, 
invert one, and multiply two matrices. Another method is to determine the 
points nd  in (8a) by solving n nA B=  on all folded contacts in the parallelo-
gram. This was done in (41) and (42) in [20], but for larger numbers of contacts 
the higher order algebraic equations for nd  apparently cannot be solved in 
closed form. Conversely, (15b) solves the conduction problem in Hall plates with 
an arbitrary number of contacts in a straightforward manner—and this is the 
true achievement of [12] [19]. 

4. The Resistance Matrix of the Complementary Hall Plate 

Figure 3 shows a Hall plate which is complementary to the original Hall plate in 
Figure 1. All contacts and insulating boundaries are swapped. This means 

1and for 1,2, ,n n n na b b a n N+= = =                 (16) 

whereby the quantities of the complementary device are denoted by an overbar. 
Note that in the complementary device all indices rotate by one instance to the 
right. If the device is mapped onto a circular Hall plate, the indices in the com-
plementary circular device rotate one instance in positive mathematical sense 
(counterclockwise). If we walk along the boundary in the direction of increasing 
indices the conductive region is at the left hand side. Therefore, in Figure 3 the 
complementary Hall plate has an insulating boundary at infinity and the rightmost 
contact is grounded. 

(16) states that in a complementary Hall plate na  and nb  are swapped. Com-
parison with (1b) shows that ( )L z  remains unchanged if we additionally swap 

1γ γ↔ −  in the complementary device, which means that the applied magnetic 
field acting on the complementary Hall plate has opposite polarity. However, in 
the theory of Homentcovschi and Bercia we see that identical ( )L z  in the com-
plementary Hall plate would give wrong boundary conditions, because the roles 
of insulating boundaries and contacts are swapped (see (6) in [12]). Therefore 
we have to construct a new ( )L z  for the complementary Hall plate and repeat 
the calculation of [12]. We use 

( ) ( ) ( ) ( )1

1
exp

N

n n
n

L z i z a z b
γγγ −

=

= − π − −∏              (17a) 
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Figure 3. Hall plate in the infinite upper half of the z-plane. The device is comple- 
mentary to the Hall plate in Figure 1 and it is exposed to reverse magnetic field 
(denoted by ⊗ ). The complementary Hall plate has also N peripheral contacts on 
the real axis. Contact N is grounded. An insulating boundary is at infinity. 

 
where γ  denotes the applied magnetic field on the complementary Hall plate 

1 with 0 1 and tan
2

H
H H Bθ

γ γ θ µ ⊥= + < < =
π

          (17b) 

Now the new product ( ) ( )L z E z  has to fulfil the homogeneous boundary 
conditions ( ) ( ){ }Re 0L z E z =  on the entire real axis. Thereby ( )E z  is the 
electric field in the complementary Hall plate. Following the same arguments as 
in [12] we get 

( ) ( )
1

1

1
with

N
n

x y n n
n

iE z E iE c z c
L z

−
−

=

= − = ∈∑ R             (18) 

If the magnetic field is reversed on the complementary Hall plate B B⊥ ⊥= −  
it holds 1γ γ= −  and this gives 

( ) ( ) ( ) ( ) ( ) ( )( )1

1
exp exp

N

n n BB
n

L z i z a z b L z iγ γγ γ
⊥⊥

−

−−
=

= − π − − = × − π∏  (19a) 

Comparison of (19a) and (1b) gives the important result 

( ) ( ) BB
L z L z

⊥⊥−
=                      (19b) 

Computing the voltages gives with (11a) and Table A1 in Appendix A 

( ) ( ) ( )

( ){ }

( ) ( ) ( )

( ) ( ) ( )

1

1

1

contact 1 contact 1

1
contact contact

contact 1

contact

1
1

1

1
sheet

1, ,
1

d d

d Re d

Re d
1 exp

cos

n

n

n

n

n n

n n n
n n

an

x
n b

N
k

b k
k

n
a

N

n k k n k k
k kH

U B V B V B

E x E z x

i c x
x

i L x

R
N B c M B c

φ φ

γ

θ

+

+

+

+ +

⊥ ⊥ + ⊥

+

−
−

=

−

+ ⊥ ⊥
=

− = − − − = − = − ∇ ⋅

= =

 
  =  
− − π 

  

= ≡ −

∫ ∫

∫ ∫

∑
∫

∑

x

1

1

N −

=
∑

   (20) 

whereby the rightmost equation in (20) defines ( ) ( ) ( )B B B⊥ ⊥ ⊥− = − ⋅ −U M c  
analogous to ( ) ( ) ( )B B B⊥ ⊥ ⊥= ⋅U M c  in (13b). This means  

( ) ( ) ( ) ( ) ( )sheet sheet

cos cosH H

R R
B B B

θ θ⊥ ⊥ ⊥↑ ↑− = = ⋅M N N1          (21a) 
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( ) ( ) ( )sheet
, 1,cosn k n k

H

R
M B N B

θ⊥ + ⊥− =                 (21b) 

In (21a) we used the shift-up operation defined in Appendix B. 

( )

2,1 2,2 2, 1

3,1 3,2 3, 1

1,
1,1 1,2 1, 1

1 1 1

,1 ,2 , 1
1 1 1

2,1 2,2 2, 1

3,1 3,2 3, 1

1,1 1,2 1, 1

,1 ,2 , 1

N

N

m n
N N N N

N N N

N

N

N

N N N N

N N N N

N N N
N N N

N
N N N

N N N

N N N
N N N

N N N
N N N

−

−

↑ +
− − − −

− − −

−
= = =

−

−

− − − −

−

 
 
 
 

= =  
 
 
− − − 
 




=





∑ ∑ ∑

N

  

  





   









   












 


       (22) 

In ↑N  all rows of N  are shifted up once and the last row in ↑N  is equal 
to the negative sum of all rows in N . For the right equation in (22) we used 
(A5b) in Appendix A. We can get N  from (21a) with (B10a) 

( ) ( ) ( ) ( ) ( ), , ,
sheet sheet

cos cosH H
a z a z a zB B B

R R
θ θ

↓ ↓= − = ⋅ −N M M1      (23a) 

( )

1 1 1

,1 ,2 , 1
1 1 1

1,1 1,2 1, 1

1,

3,1 3,2 3, 1

2,1 2,2 2, 1

,1 ,2 , 1

1,1 1,2 1, 1

3,1 3,2 3, 1

2,1 2,2

N N N

N

N
m n

N N N N

N N N N

N N N N

N

N N N N

N N

M M M

M M M
M

M M M
M M M

M M M
M M M

M M M
M M M

− − −

−
= = =

−

↓ −

− − − −

− − − −

−

−

− − − −

− −

 − − − 
 
 

= =  
 
 
  
 

=

∑ ∑ ∑

M

  

  





   









   



 2, 1N N− −

 
 
 
 
 
 
 
 

    (23b) 

with the definition 0. .NM M=
 

. For the right equation in (23b) we used (A5a) 
in Appendix A. The currents flowing into the complementary Hall plate through 
the contacts are  

( ) ( )
( ) ( ) ( )

( ) ( ) ( ){ } ( )
( ) ( ) ( )

1

1

1
1

1 1

sheet

1 1

, ,
1 1sheet

cos
d 1 Im exp d

cos
1 Im exp d

cos

n n

n n

n

n

b a
H

n H y H H
a b

N
k

a k
N n H k

H
b

N N
H

n k k n k k
k k

I B t S x t i E z x

c x
i i x

R L x

M B c N B c
R

θ
θ

ρ

θ
θ

θ

+

+

⊥

−
−

+ + =

− −

⊥ ⊥
= =

  − = = − − 
  

= −

−
= ≡ −

∫ ∫

∑
∫

∑ ∑

  (24) 
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here we used (11a). The rightmost equation in (24) defines 
( ) ( ) ( )B B B⊥ ⊥ ⊥− = − ⋅ −I N c  analogous to ( ) ( ) ( )B B B⊥ ⊥ ⊥= ⋅I N c  in (13a).  

This means  

( ) ( ) ( ) ( ) ( ) ( ), ,

cos cosH H
n k n k

sheet sheet

N B M B B B
R R

θ θ
⊥ ⊥ ⊥ ⊥

− −
− = ⇔ − =N M   (25) 

for 1,2, , 1n N= −  (we do not need the case n N= ). (21) and (25) state that 
all elements of the resistance and conductance matrix of the complementary Hall 
plate at reverse magnetic field can be derived from the matrices M  and N  of 
the original Hall plate at non-reverse magnetic field. We call (21) and (25) the 
reverse magnetic field on complementary device theorem (RMFoCD). 

With the RMFoCD theorem we can predict the behavior of complementary 
Hall plates from the original ones. Figure 4 shows a circuit where currents are 
injected into the contacts of a Hall plate with ideal current sources. This is the 
usual way how Hall plates are operated, because the supply current is forced 
through the device with a current source while zero current is guaranteed at the 
output contacts when one connects ideal voltmeters there. In general, it holds 
with (14)  

( ) ( ) ( ) ( )1B B B B−
⊥ ⊥ ⊥ ⊥= ⋅ ⋅I N M U               (26a) 

Multiplying (26a) with ↑1  from left gives 

( ) ( ) ( ) ( )1B B B B−
⊥ ⊥ ⊥ ⊥↑ ↑⋅ = ⋅ ⋅ ⋅I N M U1 1            (26b) 

On the other hand, we can write for the complementary Hall plate at reverse 
magnetic field with (14) 

( ) ( ) ( ) ( )1B B B B−
⊥ ⊥ ⊥ ⊥− = − ⋅ − ⋅ −U M N I             (27a) 

 

 
(a)                                    (b) 

Figure 4. Reverse magnetic field on complementary device theorem (RMFoCD): 
The left part (a) shows a Hall plate with N peripheral contacts, where a magnetic 
field is impressed that points out of the drawing plane (denoted by the circle with 
the dot inside). The right part (b) shows its complementary Hall plate at reverse 
magnetic field (denoted by ⊗ ). If currents nI  are injected into the left Hall plate, 
voltages nU  result. If currents n sqU R  are injected into the complementary device, 

voltages sq nR I−  result. Note that ( )sheet cossq HR R θ= . 
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With (21a) and (25) this is equivalent to 

( ) ( ) ( ) ( ) ( ) ( )1 sheet

sheet

cos
cos

H

H

R
B B B B

R
θ

θ
−

⊥ ⊥ ⊥ ⊥↑

−
− = ⋅ ⋅ ⋅ −U N M I1     (27b) 

(26b) and (27b) are sets of linear equations with identical coefficient matrix 
( ) ( )1B B−

⊥ ⊥↑ ⋅ ⋅N M1 . Thus, the vectors on the right hand sides must be equal, 
if the vectors on the left hand sides are equal—and vice versa. This means  

( ) ( ) ( ) ( )1
sq

sq

B R B B B
R⊥ ⊥ ⊥ ⊥↑− = − ⋅ ⇔ − =U I I U1         (28) 

whereby we introduced the square resistance at magnetic field 

( )2 2
sheet sheet1 cossq H HR R B Rµ θ⊥= + =                 (29) 

The square resistance is the resistance of a square sample with contacts along 
two opposite edges (see [21], also (11.36) in [14], also (45) in [22]). Only at zero 
magnetic field the square resistance is equal to the sheet resistance. If we meas-
ure the sheet resistance on a sample with point-sized contacts according to van 
der Pauw [23], the result does not depend on the applied magnetic field pro-
vided ρ  is a constant. This can be proven with (16c) in [17], which shows that 
the tapped voltage in a van der Pauw measurement is constant versus applied 
magnetic field. Note that (29) differs from the definition of sqR  in [19]. 

Read (28): “if the left equation holds then the right equation follows and vice 
versa”. (28) means that at reverse magnetic field the complementary Hall plate 
has voltages between neighboring contacts, which are sqR−  times the currents 
in the contacts of the original Hall plate, if the complementary Hall plate is sup-
plied with currents, which are 1 sqR  times the voltages between neighboring 
contacts in the original Hall plate. This is shown in Figure 4. 

We can express (28) also in terms of the resistance matrix of the complemen-
tary Hall plate at reverse magnetic field. It is defined as 

( ) ( ) ( )B B B⊥ ⊥ ⊥− = − ⋅ −V R I                  (30a) 

Now we express the left hand side in terms of parameters of the original Hall 
plate. With (B7c) and the left side of (28) we get  

( ) ( ) ( ) ( )1 1sheet

cos H

R
B B B

θ
− −

⊥ ⊥ ⊥↑

−
− = ⋅ − = ⋅ ⋅V U I1∆ ∆         (30b) 

We also express the current on the right hand side of (30a) in terms of para-
meters of the original Hall plate. With the right side of (28) and (B7a) we get 

( ) ( ) ( ) ( ) ( )
sheet sheet

cos cosH HB B B
R R
θ θ

⊥ ⊥ ⊥− = = ⋅I U V∆          (31a) 

Inserting (30b), (31a) into (30a) and rearranging gives 

( ) ( ) ( ) ( ) ( )
2

1

2
sheet

cos HB B B
R

θ −

⊥ ⊥ ⊥↑

−
= ⋅ ⋅ − ⋅ ⋅I R V1 ∆ ∆         (31b) 

However, by definition (31b) can also be written as ( ) ( ) ( )B B B⊥ ⊥ ⊥= ⋅I G V . 
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Comparison with (31b) gives the final result 

( )
( )

( )
2

1 1sheet
2cos H

R
B B

θ
− −

⊥ ⊥↑

−
− = ⋅ ⋅ ⋅R G1∆ ∆              (32a) 

( )
( )

( ) ( )( )

( )
( )( )

( )
( )

( )
( )

2 1 1
1 1sheet

, 1,2 , ,1 1

2 1 1
1sheet

1,2 ,1

2 1
sheet

1,2
1

2
sheet

,2
1 1

cos

cos

cos

cos

N N

m n km n kk nH

N N

n k kk n mH

N

n k
k n mH

m

n k
n kH

R
R B G B

R
G B

R
G B

R
G B

θ

θ

θ

θ

− −
− −

⊥ + ⊥
= =

− −
−

+ ⊥
= =

−

+ ⊥
= =

⊥
= =

−
− = ∆ ∆

−
= ∆

−
=

=

∑∑

∑∑

∑∑

∑∑











      (32b) 

In the last transformation we used the identity , ,1 1 0m N
n k n kn n mG G

= = +
+ =∑ ∑ . 

The sum over all N elements per row or column in the indefinite conductance 
matrix vanishes [24]. To give an illustrative example: A complementary Hall 
plate with four contacts at reverse magnetic field has the following resistance 
matrix 

( )
( )

2
sheet

2

1,1 1,1 1,2 1,1 1,2 1,3

1,1 2,1 1,1 1,2 2,1 2,2 1,1 1,2 1,3 2,1 2,2 2,3

1,1 2,1 3,1 1,1 1,2 2,1 2,2 3,1 3,2 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3

cos H

R
B

G G G G G G
G G G G G G G G G G G G

G G G G G G G G G G G G G G G G G G

θ
⊥− =

 + + +
 

× + + + + + + + + + 
 + + + + + + + + + + + + + + + 

R

(32c) 

whereby all ,m nG  of the original Hall plate are at non-reversed magnetic field 
( ), ,m n m nG G B⊥= . Matrix inversion of both sides of (32a) gives with (B10a) 

( ) ( ) ( )
2

2
sheet

cos HB B
R

θ
⊥ ⊥ ↓

−
− = ⋅ ⋅ ⋅G R 1∆ ∆                (33) 

On the other hand we can multiply both sides of (32a) first with ∆  and then 
with ( ) 1−

↑1  from left and with ∆  from right to get 

( ) ( ) ( )
2

2
sheet

cos HB B
R

θ
⊥ ⊥↓

−
= ⋅ ⋅ − ⋅G R1 ∆ ∆                (34) 

Matrix inversion of both sides of (34) gives with (B10a) 

( )
( )

( )
2

1 1sheet
2cos H

R
B B

θ
− −

⊥ ⊥ ↑

−
= ⋅ − ⋅ ⋅R G 1∆ ∆              (35a) 

With (B10c) and (B7d) we can write this 

( )
( )

( ) ( )( )

( )
( )

2 1 1
1 1sheet

, ,2 , ,1 1

2 1 1
sheet

,2

cos

cos

N N

m n km n kk nH

N N

n k
n m kH

R
R B G B

R
G B

θ

θ

− −
− −

⊥ ⊥
= =

− −

⊥
= =

= ∆ − ∆

= −

∑∑

∑∑







       (35b) 
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5. Impedance Relation between Complementary Hall Plates  

In the introduction we have already stated that there is a relation between im-
pedances of original and complementary Hall plates at vanishing magnetic field 
[1]. With our findings above we can readily give a more general relation at arbi-
trary magnetic field. Both circuits are sketched in Figure 5. In the original Hall 
plate we choose the m-th contact to inject current. It holds 

( )supply , supplym mV R B I⊥=                      (36) 

In the complementary Hall plate we short all contacts left of a line through 
m-th and N-th contacts of the original device, and we ground all other contacts. 
Then we inject current at reverse magnetic field. It holds 

( )

( )
( )

( )

( ) ( )

( )

1

1

supply

supply1

0

0m

m

N

I B

I B
B

V BI B

V BI B

⊥

− ⊥
⊥

⊥⊥

⊥− ⊥

   −
   
   
   −
  = − ⋅ 

−−   
   
      −−   

G









               (37) 

From which we get 

( ) ( ) ( ) ( )
1 1 1

supply , supply

N N N

n n k
n m n m k m

I B I B G B V B
− − −

⊥ ⊥ ⊥ ⊥
= = =

− = − = − −∑ ∑ ∑       (38) 

Inserting (35b) into (38) gives 

( ) ( ) ( ) ( )
2

supply , supply2
sheet

cos H
m mI B R B V B

R
θ

⊥ ⊥ ⊥− = −            (39) 

Comparison of (39) with (36) gives the result 

( )
( )

( ) ( )
( )

2
supply supply

2
supply supplysheet

cos HI B V B
V B I BR

θ⊥ ⊥

⊥ ⊥

−
=

−
              (40a) 

which we can re-write with (29) 
 

 

Figure 5. Relation of impedances between complementary Hall plates at opposite 
magnetic field: The product of resistances supply supplyV I  and supply supplyV I  equals 

( )2 2 2
sheet 1 HR Bµ ⊥+ . This holds also if the magnetic field is not reversed. 

https://doi.org/10.4236/jamp.2019.711195


U. Ausserlechner 
 

 

DOI: 10.4236/jamp.2019.711195 2851 Journal of Applied Mathematics and Physics 
 

( )
( )

( )
( )

supply supply

supply supply

1 1 1
sq sq

V B V B
R I B R I B

⊥ ⊥

⊥ ⊥

   −
× =      −   

             (40b) 

It means: The product of the numbers of squares of both resistances is equal 
to 1. Thereby the number of squares of a resistance is defined as the ratio of this 
resistance over the square resistance—not over the sheet resistance (see (29)). 
(40b) also means that the product of both measured resistances is equal to the 
square of the square resistance:  

( )
( )

( )
( ) ( )supply supply 2 2 2 2

sheet
supply supply

1sq H

V B V B
R R B

I B I B
µ⊥ ⊥

⊥
⊥ ⊥

−
× = = +

−
         (40c) 

This opens up a way to measure the sheet resistance and the Hall mobility of 
an unknown material. Note that we are free to choose contact m in Figure 5. 
Hence, for large N we have a large number of possibilities to adjust the imped-
ance level of the circuit to the limitations of our measurement equipment. We 
only need two Hall plates of identical material with complementary contact 
geometries. Thereby, reversal of the magnetic field polarity is not necessary here, 
because the impedance does not depend on the sign of the applied magnetic field. 
Consistency of measurements with various contact combinations may be used to 
check for contact quality. 

It seems possible to extend this scheme for ( ),mR B⊥

 with m ≠   in (36), 
but we do not pursue this further. 

6. Complementary Hall Plates with Three Contacts 

Let us consider general Hall plates with three peripheral contacts. Current is in-
jected into contact 1, voltage is tapped between contact 2 and 3, whereby contact 
3 is the current sink and ground node at zero volts (see Figure 6). In practice, 
these devices are not the first choice, but sometimes one is obliged to work with 
them, e.g., for Vertical Hall effect devices [25].  
 

 

Figure 6. Hall plates with three contacts and a single mirror symmetry: original device at 
positive magnetic field (left) and complementary device at negative magnetic field (right). 
Both Hall plates are supplied by the same voltage source. It holds 2 2 supplyV V V+ =  and 

therefore 2 2H HV V= − , i.e., the Hall voltages of both Hall plates are equally strong at 
arbitrary magnetic field. This is a consequence of the RMFoCD theorem. 
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If such Hall plates have a single mirror symmetry, and if we supply the origi-
nal and the complementary Hall plate with the same supply voltage, their output 
voltages are identical. This was proven for weak magnetic field in [10] [11] with 
considerable mathematical effort, and with the above theory we will prove it also 
for strong magnetic field. For the original Hall plate in Figure 6 we write 

11 12 supplysupply

21 22 20
G G VI
G G V
    

= ⋅    
     

                 (41a) 

which gives the output voltage 

21
2 supply

22

GV V
G
−

=                        (41b) 

At zero magnetic field the voltage 2V  does not vanish—this is called the off-
set voltage. Therefore 2V  is of little use in practical sensor applications. How-
ever, if one subtracts the voltage 2V  at positive and negative magnetic field, this 
procedure cancels out the offset voltage and renders the so-called Hall voltage 

2HV . 

( ) ( )2 2
2 2H

V B V B
V ⊥ ⊥− −

=                     (42) 

In other words, the voltage 2V  may be decomposed into even and odd func-
tions versus B⊥  and the odd one is the Hall voltage (see also [2] [17]). With the 
principle of reverse magnetic field reciprocity (RMFR, see [26]) it holds 

( ) ( ), , for 1 , 1m n n mG B G B m n N⊥ ⊥− = ≤ ≤ −              (43) 

Using (43) in (42) we get 

12 21
2 supply

222H
G GV V

G
−

=                      (44) 

where the ,m nG  refer to non-reversed magnetic fields ( ), ,m n m nG G B⊥= . For the 
complementary Hall plate in Figure 6 we have 

( ) ( )
( ) ( )

supply 11 12 supply

2 21 22 0
V R B R B I

V R B R B
⊥ ⊥

⊥ ⊥

 − −   
= ⋅      − −    

           (45a) 

where the quantities with overbar are at reverse magnetic field. It follows 

( ) ( )
( )

21 11 21
2 supply supply

11 11

R B G GV B V V
R B G

⊥
⊥

⊥

− +
− = =

−
           (45b) 

For the right equation in (45b) we used (32c). The Hall voltage for the com-
plementary Hall plate is given by 

( ) 21 12
2 supply

112H
G GV B V

G⊥
−

− =                    (45c) 

where 2HV  is the Hall voltage of the complementary device at reverse magnetic 
field, yet 11 12 21, ,G G G  are the conductances of the original device at non-reverse 
magnetic field. Thus, for asymmetric Hall plates neither the voltages nor the Hall 
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voltages are identical for the original and for the complementary devices: 

2 2V V≠  and 2 2H HV V≠ . However, if the original Hall plate has a single mirror 
symmetry with the symmetry line through the grounded reference contact 3, it 
holds 1,1 2,2G G= . Then it follows 

( ) ( ) ( ) ( )2 2 supply 2 2 1,1 2,2and forH HV B V B V V B V B G G⊥ ⊥ ⊥ ⊥+ − = − = − =   (46) 

Note that the complementary device also has a single mirror symmetry, but 
this symmetry line does not go through the grounded reference contact 3 . Swap-
ping the roles of original and complementary Hall plate we conclude that (46) 
holds also if the symmetry line does not go through the grounded reference 
contact. Thus, our proof is complete: Hall plates with three contacts and single 
mirror symmetry have identical Hall output voltages as their complementary 
Hall plates when they are supplied by voltage sources—and this holds for all Hall 
angles. 

7. Complementary Hall Plates with 90˚ Symmetry 

Let us consider Hall plates with four peripheral contacts and two perpendicular 
mirror symmetries. Moreover, the contacts should be such that the resistance 
between two non-neighboring contacts equals the resistance between the other 
two non-neighboring contacts. All devices with 90˚ symmetry belong to this 
group of Hall plates. However, also rectangular shapes with properly chosen 
contact sizes have such properties. Some popular shapes are shown in Figure 5 of 
[7]. The two axes of perpendicular mirror symmetry guarantee that the average 
of the potentials of the output contacts is half of the supply potential, i.e., the 
common mode output voltage is half the supply voltage. Even if these devices are 
not 90˚ symmetric, they can be mapped with a conformal transformation to de-
vices with 90˚ symmetry. Therefore we only need to discuss devices with 90˚ 
symmetry. Then the complementary Hall plate exhibits the same kind of sym-
metry. 

If we supply the original and the complementary Hall plate with the same 
supply voltage, their output voltages are identical. This was proven for weak 
magnetic field in [7] with considerable mathematical effort, and with the above 
theory we will prove it also for strong magnetic field. The circuit is shown in 
Figure 7. Note that a different amount of current flows through both devices. 
Thus it is all the more astonishing that the short-circuiting action of the ex-
tended contacts in the device with higher resistance is reduced by exactly the 
same factor as the resistance goes up (the current goes down), so that the output 
voltage remains identical. 

The conductance matrix of a Hall plate with 90˚ symmetry has the following 
symmetry. 

11 12 11 12 21

21 11 12

11 12 21 21 11

G G G G G
G G G

G G G G G

− − − 
 =  
 − − − 

G             (47) 
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Figure 7. Hall plates with four contacts and 90˚ symmetry: at identical 
magnetic field the original device and the complementary device have 
identical output voltages, if both Hall plates are supplied by the same 
voltage source. This is a consequence of the RMFoCD theorem. 

 
This can be proven by applying general currents and voltages to the Hall plate 

and rotating them by 90˚ and 180˚. Due to the symmetry of the device the same 
currents will give the same voltages. This gives 9 equations, which can be solved 
for the 9 elements of G . The solution has the structure of (47). For the original 
Hall plate in Figure 7 we write 

1

supply supply

3

0

0

V
I V

V

  
   = ⋅  

   
   

G                       (48a) 

which gives the output voltage 

12 21
1 3 supply

11 12 212
G GV V V

G G G
− +

− =
+ +

                  (48b) 

For the complementary Hall plate in Figure 7 we have 

( )
1

supply supply

3

0

0

V
V B I

V
⊥

   
   = − ⋅   

     

R                    (49a) 

where the quantities with overbar are at reverse magnetic field. With (32c) the 
resistance matrix of the complementary device at reverse magnetic field is 

( )
( )

1,1 1,1 1,2 2,12
sheet

1,1 2,1 1,1 1,2 2,1 1,1 1,22

1,2 1,1 2,1 1,1

2
cos H

G G G G
R

B G G G G G G G
G G G Gθ

⊥

 + −
 

− = + + + + 
 − + 

R    (49b) 

which gives the output voltage 

12 21
1 3 supply

11 12 212
G GV V V

G G G
−

− =
+ +

                 (49c) 

The output voltage of the complementary Hall plate at reverse magnetic field 
in (49c) has equal magnitude and opposite sign as the output voltage of the 
original Hall plate at non-reverse magnetic field in (48b), i.e., both devices have 
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identical output voltages at identical magnetic field. In general the supply cur-
rents are different 

( )2 2 2
11 12 21 11 12 21

supply supply
11 12 21

2 2
2

G G G G G G
I V

G G G
+ + + +

=
+ +

          (50a) 

( )2

supply supply2
11 12 21 sheet

cos1
2

HI V
G G G R

θ
=

+ +
             (50b) 

If the Hall plates have no symmetry the complementary Hall plate will have 
different Hall output voltage than the original device when both are supplied by 
the same voltage source. 

Finally we compute the cross-resistances ,x xR R  of original and complemen-
tary Hall plates. We define 

1
1 3 2 4

1 3

for and 0x
VR V V V V

I I
= = = =

+
             (51) 

From = ⋅I G V  it follows with the 90˚ symmetry constraints (47) 

( )1,2 2,1

1
2xR

G G
−

=
+

                      (52) 

From ( ) ( ) ( )B B B⊥ ⊥ ⊥− = − ⋅ −I G V  it follows with ( ) ( )1B B−
⊥ ⊥− = −G R  

and (32c) and (47)  

( )
( )

2
sheet

1,2 2,1 2

1
2 cos

x
H

R
R G G

θ
−

= +                   (53) 

Note that (52) and (53) are independent of the polarity of the magnetic field, 
because ( ) ( ) ( ) ( )1,2 2,1 1,2 1,2G B G B G B G B⊥ ⊥ ⊥ ⊥+ = + −  according to the RMFR 
principle [26]. Comparison of (52) with (53) shows that the square resistance 
equals twice the square-root of the product of cross-resistances  

2 2
sheet2 1x x sq HR R R R Bµ ⊥= = +                  (54) 

(54) is more general than (13a) in [6] because it holds for arbitrary magnetic 
field. With a measurement of xR  and xR  versus B⊥  we can determine ρ  
and Hµ  as functions of B⊥  (if Ht  is known), but we cannot determine the 
sign of Hµ . 

8. Conclusion 

We gave a simple derivation of the electric field in the infinite upper half plane 
with N contacts on the real axis. The original formula has N real coefficients, but 
we could show that the N-th one vanishes. Based on these results the resistance 
and conductance matrices of an N-contact Hall plate can be expressed in terms 
of two system matrices ,M N  with N-1 rows and columns. Then we applied 
this theory to complementary Hall plates where all contacts and insulating 
boundaries are swapped. It turned out that the resistance matrix of the comple-
mentary Hall plate at reverse magnetic field can be expressed by the conductance 
matrix of the original Hall plate at non-reverse magnetic field. This Reverse 
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Magnetic Field on Complementary Device theorem (RMFoCD) was applied to 
various circuits of Hall plates to prove their symmetry properties. Hall plates 
with four contacts and 90˚ symmetry have identical Hall output voltage as their 
complementary counterparts, if they are supplied by the same voltage. Hall plates 
with three contacts and a singly mirror symmetry also have identical Hall output 
voltage as their complementary counterparts, if they are supplied by the same 
voltage. For several resistances between contacts or group of contacts in the 
original and complementary devices, it was shown that their product relates to 
the square of the square resistance. These findings can be used to determine the 
resistivity and the magnitude of the Hall mobility of Hall plates with extended 
contacts as functions of the applied magnetic field. This is an alternative method 
to van-der-Pauw’s method. With due diligence, one might find more relations 
between Hall plates and their complementary Hall plates with less or no symme-
try at all. 
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Appendix A 

From (1b) we get Table A1. With (10b-d) and (11b) this gives  

( ) ( )
( )( )

1
sheet

, ,2
1 1

d tan
cos

k N N

k H k
x H

Rx x N i M
L x

θ
θ

+∞ −

= ==−∞

−
= + −∑ ∑∫  

 

        (A1) 

For the integral in (A1) we use the calculus of residues [27]. We integrate along 
a closed path, which comprises the real axis and a large semi-circle with radius 
R →∞  in the upper half of the z-plane. The ends of the contacts represent 2N 
isolated singular points, which we cut out of the contour integral as shown in 
Figure A1: we draw a small semi-circle of radius 0ε →  around each singular 
point. The integrals along the small semi-circles vanish as the following example 
on semi-circle n (denoted by s.c.n) around na  shows 

( )
( )( ) ( )

( )( ) ( )( ) ( )( )

1

0
. .

10

0
11

1 1

1

0

lim d

exp 1 exp d
lim

exp 1 exp exp

lim 0 for 1,2, , ; 0

k

s c n

k

N N

n m n m
m m
m n

k

z z
L z

i k i i

i a i a a i b

k N

ε

ε
ϑ

γ γγ

γ

ε

ε ϑ ε ϑ ϑ

ε γ ϑ ε ϑ ε ϑ

ε γ

−

→

−

→
=π

−−

= =
≠

− +

→

−
=

 
  − + − + −    

 
= = = >

∫

∫
∏ ∏



 
(A2) 

where we used ( )expnz a iε ϑ= + . For the integral along the large semi-circle 
(denoted by l.s.c.) we get with ( )expz R iϑ=  and for 1 k N≤ ≤   

( )
( )( ) ( )

( )( )

( )( )

11

. . . 0

,
0

exp 1 exp d
lim d lim

exp

lim exp d

kk

R R
l s c

k N
k NR

R i k R i iz z
L z L R i

i R i k N i

ϑ

ϑ

ϑ ϑ ϑ

ϑ

ϑ ϑ δ

−π−

→∞ →∞
=

π
−

→∞
=

−
=

= − = π

∫ ∫

∫
       (A3) 

The integral along the closed contour is proportional to the sum of all enclosed 
residues. However, this sum is zero, because we cut out all singular points. 
Therefore we get with (A1), (A2), and (A3) 

( ) ( ) ( )

( )
( )( )

1 1 1

01. . . . .

sheet
, , ,2

1 1

0 d lim d lim d

tan
cos

k k kN

R nx l s c s c n

N N

k H k k N
H

x z zx z z
L x L z L z

R
N i M i

ε

θ δ
θ

+∞ − − −

→∞ →==−∞

= =

= + +

−
= + − + π
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∑ ∑
 

 

          (A4) 

The imaginary part of both sides in (A4) gives 

, ,
1

N

k k NM δ
=

= π∑




                         (A5a) 

with Kronecker’s delta ,k Nδ . With (A5a) the real part of both sides in (A4) gives 

( )
, ,

1 sheet

sin 2
2

N
H

k k NN
R
θ

δ
=

= π∑




                    (A5b) 

Inserting (A5a) into (12a) and (A5b) into (12b) gives (9).  
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Table A1. Phase of the functions ( ) ( ),L x L x  on the real axis (cf. Figure 1 and Figure 3). 

Location of test point x ( ) ( )L x L x  at B⊥  ( ) ( )L x L x  at B⊥−  

1x b<  ( )1 N
−  ( ) ( )11 expN i γ+

− π  

1 2b x a< <  ( ) ( )1 expN i γ− − π
 

( ) 11 N+
−  

2 2a x b< <  ( ) 11 N−
−  ( ) ( )1 expN i γ− π  

2 3b x a< <  ( ) ( )11 expN i γ−
− − π  ( )1 N

−  

      

N Na x b< <  −1 ( )exp i γπ  

1 1N Nb x a a+< < =  ( )exp i γ− − π  1 

1a x<  1 ( )exp i γ− π  

 

 

Figure A1. Contour integral along large semi-circle (l.s.c.), 
real axis, and small semi-circles (s.c.1, s.c.2, …). 

Appendix B 

Here we summarize the mathematics to describe Hall plates with numerous con-
tacts via impedance and conductance matrices. Let us consider a Hall plate with 
N contacts on the perimeter (see Figure B1). Due to Kirchhoff’s nodal current 
law it holds 

1
0

N
I

=

=∑




                         (B1a) 

which gives 
1

1

N

NI I
−

=

= −∑




                        (B1b) 

It is common practice to define the potential on one contact as reference po-
tential and to set it equal to zero volts (=ground). We use the potential on the 
N-th contact as reference potential:  

0NV =                            (B2) 

The voltages between neighboring contacts are defined as 

1 for 1 1U V V N+= − ≤ ≤ −
  

 .                (B3a) 

According to Figure B1 the N-th voltage is 
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Figure B1. Hall plate with N peripheral contacts. The N-th contact is at 
reference potential (=ground) 0NV = . Definition of potentials nV , 
currents nI , voltages nU , and loop currents nJ . 0NJ = . 

 
1

1
1

N

N NU V V U
−

=

= − = −∑




                   (B3b) 

which gives 

1
0

N
U

=

=∑




                         (B3c) 

According to Figure B1 the loop currents J


 are linked to the currents I


 
via 

1 for 2I J J N−= − ≤ ≤
  

                  (B4a) 

with the first current as 

1 1 NI J J= −                        (B4b) 

If we add the same current to all loop currents this will not change the currents 
I


. Therefore, we are free to choose one loop current. We define  

0NJ =                          (B5a) 

With (B1a) it follows 

1
0

N
J

=

=∑




                        (B5b) 

Thus, the loop current mJ  flows from terminal m through the Hall plate to-
wards terminal m + 1, and the voltage mU  drops between the same terminals. 
This definition is in accordance with [28] and it is also shown in Figure B1. To 
sum up, a Hall plate with N contacts has N − 1 independent quantities 

, , ,I V U J
   

 each. We define vectors with N − 1 components  

( )T
1 2 1, , , NI I I −=I                         (B6a) 

( )T
1 2 1, , , NV V V −=V                        (B6b) 

( )T
1 2 1, , , NU U U −=U                        (B6c) 

( )T
1 2 1, , , NJ J J −=J                        (B6d) 

whereby the index T denotes the transpose. Then, we can write (B3a) as a matrix 
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formula 

, , 1,with , 1 , 1m n m n m n m n Nδ δ += ⋅ ∆ = − ≤ ≤ −U V∆          (B7a) 

1 1 0 0 0
0 1 1 0 0
0 0 1 0 0

0 0 0 1 1
0 0 0 0 1

− 
 − 
 

=  
 
 −
  
 







     





∆                   (B7b) 

∆  has N − 1 rows and columns. In (B7a) we used the Kronecker delta ,m nδ , 
which equals 1 if both indices are identical—otherwise it vanishes. The inverse 
of (B7a) is given by 

( )1 1

,

1 for
with

0 form n

n m
n m

− − ≥
= ⋅ ∆ =  <

V U∆              (B7c) 

1

1 1 1 1 1
0 1 1 1 1
0 0 1 1 1

0 0 0 1 1
0 0 0 0 1

−

 
 
 
 

=  
 
 
  
 







     





∆                    (B7d) 

We define shift-up and shift-down manipulations of vectors: 
1

2
1

3 1

1 3
1

21

and

N

N N
N

N

I I
I I

I I
I I

−

=

↑ ↓

− −
−

−=

   −
   
   
   = =
   
   
   −   

∑

∑

I I













               (B8) 

With these manipulations we shift all elements by one place, kick top or bot-
tom elements out, and receive a new element, which is equal to the negative sum 
of all former elements. Due to (B1b) the new element is equal to NI , and the 
manipulations (B8) do not destroy information. We can apply shift-up and shift- 
down to arbitrary vectors. In particular, we can use U  instead of I . We can 
shift-up and shift-down also J  and V  but there the new element  

1 2 1NV V V −− − − −  is not equal to NV  (the same applies to J ). This is a con-
sequence of our definitions (B2, B5a), which differ from (B1b, B3b). We could 
also redefine the reference potential NV  analogous (B1b) but this would give 
more complicated matrices in (B7b) and (B7d). We can describe the shift-up 
procedure by a matrix multiplication: 

2 1

3 2

1 2
1

11

0 1 0 0
0 0 1 0

0 0 0 1
1 1 1 1

N N
N

N

I I
I I

I I
II

↑ ↑

− −
−

−=

    
    
    
    = = ⋅ = ⋅
    
    
     − − − −−     ∑

I I











    





1     (B9a) 
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where 1  is the ( ) ( )1 1N N− × −  identity matrix, and ↑1  is obtained from 1  
by shifting all rows up once and setting the elements of the bottom row equal to 
the negative sum of all elements per column in the original matrix 1 . In other 
words, we apply the shift-up procedure not only to vectors but also to matrices. 
The shift-down manipulation is also equivalent to a matrix multiplication: 

1
11

21

23

12

1 1 1 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0 1 0

N

NN

NN

II
II

II
II

−

=

↓ ↓

−−

−−

− − − − −    −             = = ⋅ = ⋅                   

∑

I I

















     



1    (B9b) 

It holds 

( ) 1−

↓ ↑=1 1                         (B10a) 

Therefore, shift-up and shift-down annihilate each other 

↑ ↓ ↑ ↓⋅ = ⋅ ⋅ = ⋅ =I I I I1 1 1 1                  (B10b) 

However, we are not allowed to reverse the order: ( ) ( )1 1− −
↓ ↓

≠1 1 . Moreover, it 
holds 

( )T1 1− −
↑⋅ = −1∆ ∆                      (B10c) 

We can also write (B4a), (B4b) with (B5a) as a matrix relation 
T= ⋅I J∆                          (B11) 

Throughout this paper we use the following definitions of resistance matrix R , 
impedance matrix Z , and conductance matrix =G Y : 

= ⋅V R I                         (B12a) 

= ⋅U Z J                         (B12b) 

= ⋅ = ⋅I G V Y V                       (B12c) 

All these matrices have N-1 rows and columns, whereby N is the number of 
contacts of the Hall plate. In [1] the authors used indefinite matrices 

( ) ( ),N N N N× ×Y Z , which are defined like in (B12b,c), but which have N rows and 
columns. Due to (B1a) and (B3c) the indefinite matrices have no inverse, but if 
we delete the last row and the last column we get the definite matrices ,Y Z  
which can be inverted. From (B12a,c) it holds 

1− = =R G Y                          (B13a) 

but 1− ≠Z Y  because ≠Z R . The correct relation between 1−Z  and Y  is 
obtained by inserting (B7a) and (B11) into (B12b): 

T= ⋅ ⋅Z R∆ ∆                          (B14a) 

( ) 11 T 1−− −= ⋅ ⋅Z Y∆ ∆                       (B14b) 

For the complementary Hall plate at reverse magnetic field it follows  
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( ) ( )
( )

( ) ( )
2

TT sheet
2cos H

R
B B B

θ
⊥ ⊥ ⊥↑ ↑− = ⋅ − ⋅ = ⋅ ⋅Z R G1 1∆ ∆      (B15a) 

where we used (32a), (B10c), and (B14a). This can be re-written as 

( )
( )

( )
2
sheet

, 1, 12cos
m n m n

H

R
Z B Y B

θ
⊥ + + ⊥− =               (B15b) 

with , ,m n m nY G= . At zero magnetic field (B15b) differs slightly from (21) in [1] 
(in the second indices). There are two reasons for this discrepancy: 1) the contacts 
of the complementary device are shifted in the direction of lower indices in [1] 
(whereas they are shifted in the direction of larger indices in this paper), and 2) in 
Figure 2(a) and Figure 2(b) of [1] it should read md  instead of 1md − , 1md +  in-
stead of md , d



 instead of 1d − , 1d +  instead of d


 according to their own 
definition.  

Here is another argument which proves that ( ),mZ B⊥−


 is not proportional 
to ( )1,mY B+ ⊥

 as claimed for 0B⊥ =  in (21) of [1]: The RMFR principle means 
( ) ( )TB B⊥ ⊥− =R R  and ( ) ( )TB B⊥ ⊥− =Y Y  [26]. With (B14a) this gives 
( ) ( )TB B⊥ ⊥− =Z Z  and therefore ( ) ( )TB B⊥ ⊥− =Z Z . Thus,  
( ) ( ), ,m m m mZ B Z B⊥ ⊥− = , however, ( ) ( )1, 1,m m m mY B Y B+ ⊥ + ⊥− ≠ . In other words, an 

element on the main diagonal of the Z -matrix of the complementary Hall plate 
cannot be proportional to an off-diagonal element of the Y -matrix of the origi-
nal Hall plate, because this contradicts the RMFR principle (as long as the con-
stant of proportionality is even in B⊥ ). 

In Appendix C we check our formulae against finite element simulations to 
guarantee their correctness. Moreover, we emphasize that all our equations work 
only if the following rules are applied: 

1) The contacts are labeled in ascending order 1 to N. 
2) If we walk along the perimeter of the Hall plate in the direction of rising 

contact labels, the conductive region lies at the left hand side. 
3) The N-th contact is grounded and the N-th loop current vanishes. 
4) The complementary Hall plate is obtained from the original one, by ex-

changing all contacts with insulating boundaries and vice versa, whereby the 
contacts of the complementary device are shifted into the direction of rising con-
tact labels against the respective contacts of the original device (compare Figure 1 
with Figure 3). 

Appendix C 

Here we give numerical examples, where we compare the results of our theory 
with finite element simulations (FEM). The FEM was conducted with the 2D 
conduction model emdc of COMSOL MULTIPHYSICS with the following con-
ductivity matrix:  

x x

y y

E S
E S

   
=   

   
ρ  with 

1
1

H

H

B
B

µ
ρ

µ
⊥

⊥

 
=  − 

ρ            (C1) 
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We use realistic values for silicon at room temperature with a phosphorus dop-
ing of 2 × 1016/cm3: 0.11 THµ =  and 0.002924 mρ = Ω⋅ . The thickness of the 
Hall plates was assumed to be 0.9 mHt = µ . This gives a sheet resistance  

sheet 3248.89R = Ω  at zero magnetic field. We assume that ρ  and Hµ  are con-
stant with B⊥ . We consider semi-infinite Hall plates according to Figure 1.  

The first example has the following parameters: N = 4, 1 10 2 ma = µ ,  

2 10 ma = − π µ , 3 10 ma = − µ , 4 10 3 ma = µ , 1 50 mb = − µ , 2 20 mb = − µ , 

3 0 mb = µ , 4 10 11 mb = µ . The Hall angle was 6 30Hθ = π =  , which means a 
strong magnetic flux density 5.24864 TB⊥ = . With (10b), (10c), and (11b) we 
get the following system matrices 

10

10 6

11

2.068966952 10 14226.81805 29.30524564
4.920031176 10 1 129662241 10 26.53209581
1 376581519 10 389605.9384 2.518997254

.
.

 − × −
 

= × − × 
 − × − 

N   (C2a) 

13 9

14 9

14 8

5.923279984 10 2 370993550 10 97557.41642
2.715479249 10 4 330425950 10 72482.27809
4.514465398 10 5.196538114 10 1171.994832

.
.

 − × × −
 

= × − × 
 − × − × − 

M   (C2b) 

(A5a) and (A5b) also hold for k = 1, 2, 3, and 4. If we inject the currents (in 
units of amps) 

( )T0.001 0 0.001 7= −I                 (C3a) 

i.e., 1 1 mAI = , 2 0 mAI = , and 3 1 7 mAI = − , we get from (13a) 

( )T16 10 56.868102436 10 8.294336001 10 3.404135684 10− − −= − × − × − ×c (C3b) 

With (C3b) we may compute the electric field inside the Hall region (Table 
C1). From (13b) and (B7c) we get (in units of volts) 

( )T1.395086802 0.9379037967 0.7809727339=U       (C4a) 

( )T
theory 3.113963333 1.718876531 0.7809727339= =V V     (C4b) 

With (15b) we get the resistance matrix (in units of Ohms) 

3443.026651 3032.326444 2303.443227
2131.222364 5315.718944 2886.420836
1310.983587 1756.075838 3710.075970

 
 =  
 
 

R          (C5) 

In the FEM model the upper half of the z-plane was modeled as a semi-disk 
with 40 cm diameter. The FEM simulation used Lagrange multipliers. The mesh 
had 10.14 million elements, the equation system had 20.29 million degrees of 
freedom. The solution time was 2 hours 30 minutes on a desktop computer with 
Intel Core i7-4930K CPU, ASRock X79 Extreme 6 main-board, 64 GB RAM, and 
3.4 GHz clock cycle. The solution of the potentials was (in units of volts) 

( )T
FEM 3.11298544 1.718219614 0.780452059=V         (C6a) 

and the difference between (C6a) and (C4b) is 
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( )T
theory FEM 0.000977893 0.000656917 0.000520675− =V V     (C6b) 

The main reason for the difference between the FEM result and the analytical 
theory seems to come from the finite radius of the semi-disk (Figure C1). 

Next we check Figure 4. Therefore, we inject the currents (in units of amperes)  

( ) ( )T6 6 6
sheetcos 371.789 10 249.972 10 208.037 10H Rθ − − −= = × × ×I U (C7a) 

into the contacts of the complementary Hall plate, and the sign of the magnetic 
field was reversed 6 30Hθ = −π = −  . With (24) we get the coefficients 

 

 
(a) 

 
(b) 

Figure C1. (a) Hall plate in the infinite upper z-plane with four contacts along the 
real axis at 30˚ Hall angle. (b) Complementary Hall plate at negative magnetic field 
with −30˚ Hall angle. The figures show the potential according to the color codings 
given. The current streamlines are grey. The grey cones denote the directions of the 
current vectors. The contacts are denoted as black, thick, horizontal lines. The 
scalings on the lower and left edges of the plots denote x- and y-grids in units of 
meters. The currents through the contacts are given in (C3a) and (C7). The potentials 
at the contacts are given in (C6a) and (C8b). They match with Figure 4. 
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Table C1. Electric field vectors on several test points in the original and complementary Hall plate. The table shows numerical 
values obtained by finite element simulations (FEM) of Figure C1 and by the analytical theory of this work (THEORY). The 
coordinates of the test points are in µm, the electric field is given in V/m. The electric field vectors of FEM and THEORY match 
up to ~0.03% for both Hall plates. Near the edges of the contacts—e.g. in (x, y) = (3 µm, 0 µm)—the electric field has singularities. 
There the FEM simulation is inaccurate depending on the mesh.  

Test points (x, y): (−55, 1) (−55, 10) (−40, 3) (3, 0) (5, 7) (13, 0) (16, 13) 

Original Hall Plate at Positive Magnetic Field in Figure C1(a): 

FEM: Ex 7507.1 23185.4 41859.8 321585.8 −51865.8 −297705.8 −50851.7 

FEM: Ey 48065.3 15976.0 −20193.3 −185668.8 −101472.4 171882.0 1135.6 

THEORY: Ex 7515.7 23193.6 41851.7 321543.9 −51875.3 −297592.8 −50856.6 

THEORY: Ey 48094.4 15974.8 −20191.5 −185643.4 −101481.8 171815.3 1136.3 

THEORY FEM

THEORY

−E E
E  0.062% 0.029% 0.018% 0.013% 0.012% 0.038% 0.010% 

Complementary Hall Plate at Negative Magnetic Field in Figure C1(b): 

Ex (FEM) −45404.8 −25425.5 −3437.9 0.0 113789.4 0.0 24436.3 

Ey (FEM) −17535.4 12097.9 46326.1 371068.5 5803.1 −343419.0 −44599.2 

Ex (THEORY) −45408.8 −25431.4 −3439.5 0.0 113823.5 0.0 24,444.3 

Ey (THEORY) −17538.4 12098.9 46340.4 371286.9 5815.6 −343630.6 −44,611.3 

THEORY FEM

THEORY

−E E
E  0.010% 0.021% 0.031% 0.059% 0.032% 0.062% 0.028% 

 

( )T16 10 56.868102436 10 8.294336001 10 3.404135684 10− − −= × × × = −c c
 

(C7b) 

Inserting (C7b) into (18) gives the electric field in the complementary Hall 
plate (see Table C1). According to Figure 4 we expect the voltages 

( )( ) ( )T
theory sheet cos 0 0.53592768 3.21556607HR θ ↑= − ⋅ =U 1 1    (C8a) 

The FEM simulation returned the potentials  

( )T
FEM 3.75095275 3.750968675 3.214946154=V         (C8b) 

from which we get (in volts) 

( )T
FEM 0.000015925 0.536022521 3.214946154= −U        (C8c) 

The discrepancy is only (in volts) 

( )T
theory FEM 0.000015925 0.000094843 0.000619917− = −U U    (C8d) 
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