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Abstract

For an independent and identically distributed skew-t-normal random se-
quence, this paper establishes the limit distribution of normalized sample
range M, —m, . Based on the optimal normalized constants, the higher-order
asymptotic expansion of the distribution function of sample range M, —m,
is further derived, and its convergence rate is given. In addition, the approxi-
mate accuracy between the empirical value and the asymptotic theoretical

value is systematically compared by numerical simulation.
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1. Introduction

A random variable X is said to have a skew-t-normal distribution [1] with scale
o’ (0' > 0) , degrees of freedom v >0 and shape parameter 1€ R (written as

X ~STN (02 , /I,v) ) if its probability density function (pdf) is

ZF(VH)
2
fi(x;az,ﬁ,v):—z(ux—z] ’ d)(ixj, —00 < X < 400 (1)
G\/an“(\zlJ ov o

where @ () denotes the standard normal cumulative distribution function (cdf)

v+l

with I'(-) denoting the Gamma function. The skew-t-normal distribution is a
probabilistic model capable of capturing both heavy-tailedness and pronounced
skewness. It exhibits a substantially wider range of skewness compared to the
skew-normal distribution [2] and related families, thereby offering greater flexi-
bility in modeling data that deviates significantly from normality. These charac-
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teristics make this distribution deeply studied and widely applicable in practical
applications, for example, the study of Vanadium pollution in Shadegan Wetland
[3] and automated flow cytometry analysis [4]. Further practical applications of
the skew-t-normal distribution can be located in [5]-[7].

Let {Xn, n= 1} be a sequence of independent and identically distributed ran-
dom variables with common marginal distribution function F, following the
skew-t-normal distribution, and let M =max{X,,n> l} and
m, =min { X,,n2 1} denote the partial maximum and minimum. If G isan ex-
treme value distribution, we say a distribution F is in the domain of attraction
of G (written FeD(G)) ifthereexists a, 20, b,eR, nx1 such that

F"(a,x+b,) = G(x) (2)

weaklyas N —>o where G is of the type of one of the following classes:

Type I A(x):exp(—e‘x), —00 < X < 00,

0, X <0,
T n: o = 3
yPe «() exp(—x“’), x>0, G)

exp{—(—x)“}, x <0,
1 x>0,

Typelll: ¥, (x)=

for some « >0 (cf. [8]). In extreme value analysis, accurately determining the
domain of attraction to which a distribution belongs is a prerequisite for estab-
lishing its limiting distribution and even higher-order expansions under appro-
priate normalization.

Yang and Hu (2025)"' proved that under different values of 1, the skew-t-nor-
mal distribution belongs to the domain of attraction of different extreme value

distribution with different normalizing constants, Ze.:

lim,,, P(M, <u,(x))=A(x), 2<0; @
lim,,,, P(M, <0,(x))=®,(x), >0,
with
u, (x)=a,x+b,, A<0; d,(x)=bx, >0, (5)
and
lim,,,, P(m, <v,(y))=1-®,(-y), 1<0; ©
lim,,, P(m, <7, (y))=1-A(-y), 1>0,
with

The study by Yang, W. and Hu, S. (“Higher-order expansions of sample extremes from
the skew-t-normal distribution”) has been submitted to Communications in Statistics-The-
ory and Methods. The manuscript is currently under reconsideration by the journal, with
reviewers evaluating the revised version. It is not listed in the bibliography to prevent cir-
cular citation. A copy of the manuscript can be provided by the corresponding author,
should it be required.
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v,(y)=by, 4<0; ¥,(y)=ay-b, 1>0, ?7)
where the norming constants a,, b,, @ and b, satisfy
2 2
a, =%bn’1, 1-F,(b,)=n"" a, =%5n’1, 1-F,(b,)=n", (8)

and for fixed 1, b, and b, have a special relationship: F,(b,)=1-F, (—En) .

For independent and identically distributed (i.i.d.) random sequences, in addi-
tion to the asymptotic behavior of the normalized partial maxima and minima
and their joint distribution, the asymptotic behavior of the sample range has also
been studied. The weak convergence of the range was first discussed by De Haan
(1974) [9]. Subsequently, Barakat and Nigm (1990) [10] extended this work by
studying the weak convergence of the sample range, as well as the case where the
sample size is a positive integer random variable. Later, Tan et al (2007) [11]
proved the almost sure convergence of the sample range, and Zang (2014) [12]
derived an almost inevitable local central limit theorem for it under mild assump-
tions. Furthermore, Matula and Adler (2022) [13] proved the law of large numbers
for the sample range of the Pareto distribution. More recently, Zhang and Lu
(2023) [14] studied the higher-order expansion of the sample range for the skew
normal distribution, while Lu et al (2023) [15] established the distributional ex-
pansions of the normalized sample range from the general error distribution.

Shifting focus to the skew-t-normal distribution, Yang and Hu (2025) focused
on the skew-t-normal distribution, discussing the convergence rates of its maxi-
mum and minimum distribution functions, as well as their joint distribution and
density functions. However, the asymptotic theory for the range of skew-t-normal
samples remains unexplored. Therefore, to fill this gap in the literature, this paper
will systematically derive the higher-order asymptotic expansion of the range dis-
tribution for skew-t-normal samples. The significance of this work resides in its
capacity to utilize high-order expansions for improving the precision and conver-
gence of the limiting distribution approximation, furnishing a more dependable
theoretical framework for statistical inference concerning extreme events.

The rest of this article is arranged as follows. Section 2 presents the main results.
Section 3 compares the accuracy between the actual values and the approximate
values. Section 4 gives some auxiliary lemmas and the proofs of the main results

are given in Section 5. Section 6 concludes with a summary.

2. Main Results

In this section, we provide the limiting distribution and convergence rates of the

distribution of M, —m, and its higher-order distributional expansion under dif-

n

ferent value of A with different normalized constants.

Theorem 1. Let {Xi 1<i< n} be a sequence of independent random variables
with common distribution F, (X).Denote M, =max { X, 1<i< n} and
min={X;,1<i<n} and 0,(X) and V,(y) givenby (5)and (7). Then, we have
@i). for 1<0,
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L (Y)=P(M,-m <v,(y))-@,(y) >0, (9)
and
timb?| 621, (¥)= ] €A (), (¥)s, ()] o
= j:e’XA(x)CDV(y)rl(x)dx,
where
v+3)o’ 2 v+2)o?
sl(x):%—%xz——( /12) X+, (X) (11)
and
2(x) [ (v+3)o® o , (v+2)o?
rﬂ(X):a)i(X)—i-Kz( )+{( +12)O' _%X ——( +/12)O- X:|K'A(X)
4 4 4 4
+[v(v+3)o- +2i4_(v+3)(v4+2)o- JX_Z(V+f)G (12)
A A A A
_v(v+21)a4 +(v+1)(v:r3)a“ x2+(v+2204 x3+a—44x“
A 24 27 81
with
K (x)=Fx2+(v+3‘.)x}U—2eX (13)
g 2 2
and
262 (v(v+l)o® (v+4)o? v+3)o* ,
au(X)={;(( 2) +( 12) jx+( 2/12 X
2 (14)
1{ o , (v+3)o’ .
+o| =X x| e
2\ 227 A2
(ii). for 1>0,
[ (x)=P(M,—m, <0, (x))-®,(x) >0, (15)
and
el [y _ 3
b 87 (1 0 [ oA s ()]

= [ eA(=y) @, (x)r, (~y)dy
where S ,(-y) and r,(-y) areobtained from s,(-y) and r,(-y) byre-
placing A with -A.
Remark 1. For normalized sample range with norming sequence 0, (X)=17,X

and Vv (Y)=1,Y, where

()

M =

is given by Yang and Hu (2025), its limit distribution of the sample range
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M, —m, is consistent with the conclusion of Theorem 1, and the corresponding

higher-order expansions of sample range can also be obtained, that is,
@i). for 1<0,

I;)ﬂ(y)::P(Mn—mngv;(y))—tl)v(y)—w, (17)
and
Iimloglogn{an(l;l(y)— +Ooe‘XA(x)(I)V(y)s;(x)dx)]
N (loglogn) ad (18)
= f:e‘xA(x)(Dv (y)r; (x)dx,
where
. . 3)?
sﬂ(x)zzcl(x)—(\/;) (19)
and
ﬁr(m](—ﬂ)v v%
(v+3)| v+2+x+log 2
RF(\ZIJ
r, (X)=a, (X)+ 2 (20)
with
. v+3) .
< ()= 16) e (21)
and
\/Er[‘”lj(—z)vvz
(v+3)| x+Vv+3+log 2
nf(\zlj
o, (X)=— 2 e (22)
(ii). for 1>0,
f:,l(x)_P<Mn—mn£l]:(x))—d>v(x)—>0, (23)
and
limloglogn an(fn*,l(x)—rwey/\(—y)q)v(x)s;(—y)dy)
N (loglogn) - (24)

- j:eyA(—y)cDV(x)r;(—y)dy.
where s;(-) and r(-) are obtained by replacing A with -4 from (-
and I’; () given in (19) and (20).
Note that b, :O(,llogn) and b, :O(,Hog n). From Theorem 1 and Re-

mark 1, the convergence rate of the distribution of sample range M, —m_ is
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_ loglogn)?
(0] i under normalized constants b, and b, whileitis O &
logn logn

under normalized constant 7, .

3. Numerical Analysis

In this section, numerical studies are presented to illustrate the accuracy of higher-
order expansions of the cdf of the normalized M,-m, .Let L(y) and U;(X),
i =1,2,3, denote the first-order, the second-order and the third-order asymptot-

ics of the cdf of the normalized M, —m, . From Theorem 1, we have
Table 1. The absolute errors between actual values and its approximations of the cdf of the normalized M, —m, with

(n,o) :(100,1) for 1<0.

(v.2.Y) L-L| L- L) -
(2,-3,0.5) 0.009350061961 0.009350061959 0.009350061941
(2,-31) 0.037794456846 0.037794456846 0.037794456481
(2,-3,25) 0.007291688814 0.007291688815 0.007291687969
(2,-3,4) 0.002310197299 0.002310197299 0.002310196367
(2,-4,05) 0.006727253763 0.006721065231 0.006721065216
(2,-4,1) 0.027098930697 0.027098930654 0.027098930363
(2,-4,2.5) 0.005664154550 0.005664154550 0.005664153874
(2-4,4) 0.001877767574 0.001877767574 0.001877766829
(15,-3,0.5) 0.013532735646 0.013532735640 0.013532735576
(15-31) 0.016635733516 0.016635733516 0.016635733121
(15,-3,2.5) 0.003804335347 0.003804335347 0.003804334512
(15-34) 0.001415812591 0.001415812591 0.001415811643
(15,-4,0.5) 0.010045832712 0.010045832705 0.010045832641
(15-41) 0.012265049126 0.012265049085 0.012265048684
(1.5,-4,2.5) 0.002886327334 0.002886327334 0.002886326488
(15-4,4) 0.001106975657 0.001106975657 0.001106974696

Table 2. The absolute errors between actual values and its approximations of the cdf of the normalized M, -m, with

(n,O'):(1000,1) for 1<0.

(v2y) [ [ [

(2,-3,0.5) 0.005999173742 0.005999173741 0.005999173739
(2,-31) 0.017938460495 0.017938460495 0.017938460452
(2,-3,2.5) 0.002808046188 0.002808046188 0.002808046088
(2,-3,4) 0.001017960224 0.001017960224 0.001017960113
(2,-4,0.5) 0.004541237239 0.004539342334 0.004539342333
(2,-4,1) 0.013260117764 0.013260117751 0.013260117723
(2,-4,2.5) 0.002125050279 0.002125050279 0.002125050216
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Continued
(2, —4, 4) 0.000849008491 0.000849008491 0.000849008421
(1.5, -3, 0.5) 0.004593492428 0.004593492426 0.004593492418
(1.5, —3,1) 0.004988635638 0.004988635638 0.004988635593
(1.5, -3, 2.5) 0.000721496906 0.000721496906 0.000721496810
(1.5, -3, 4) 0.000000628940 0.000000628940 0.000000628951
(1.5, -4, 0.5) 0.003477885996 0.003477885994 0.003477885989
(1.5,-4.1) 0.003877077425 0.003877077413 0.003877077377
(1.5, —4,2.5) 0.000861162434 0.000861162434 0.000861162358
(1.5, —4, 4) 0.000371306232 0.000371306233 0.000371306146

Table 3. The absolute errors between actual values and its approximations of the cdf of the normalized M, —m, with

(n,o) :(100,1) for 1>0.

(v, 2,x) U -U,| U -U,| U U
(2, 3, 0.5) 0.009350061808 0.009350061806 0.009350061788
(2, 3,1) 0.037794449719 0.037794449719 0.037794449354
(2,3, 2.5) 0.007291668033 0.007291668033 0.007291667187
(2,3,4) 0002310175903 0002310175903 0.002310174971
(2,4,0.5) 0.006727254051 0.006721065519 0.006721065504
(2,4,1) 0.027098980537 0.027098980494 0.027098980202
(2,4, 2.5) 0.005664175501 0.005664175501 0.005664174826
(2, 4, 4) 0.001877789343 0.001877789343 0.001877788599
(1.5,3,0.5) 0.013533517090 0.013533517084 0.013533517020
(1.5, 3,1) 0.016642050457 0.016642050457 0.016642050061
(1.5,3,2.5) 0.003818218828 0.003818218828 0.003818217994
(1-5,3,4) 0.001430121982 0.001430121982 0.001430121034
(1.5, 4,0.5) 0.010045834757 0.010045834751 0.010045834686
(1.5, 4,1) 0.012265089309 0.012265089267 0.012265088867
(1.5,4,2.5) 0.002886297768 0.002886297768 0.002886296922
(1.5,4,4) 0.001106665963 0.001106665963 0.001106665002

Table 4. The absolute errors between actual values and its approximations of the cdf of the normalized M, —m, with

(n,0)=(1000,1) for 2>0.

(V. 2.%) U-u| u-u, U-U,|
(2,3,0.5) 0.005999364766 0.005999364765 0.005999364763
(2,3,1) 0.017944923928 0.017944923929 0.017944923885
(2, 3, 2.5) 0.002824078186 0.002824078186 0.002824078085
(2,3, 4) 0.002001450902 0.002001450902 0.002001450791
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(2, 4, 0.5) 0.004541252964 0.004539358060 0.004539358059
(2,41) 0.013292745311 0.013292745298 0.013292745271
(2,4,2.5) 0.002126531624 0.002126531624 0.002126531561
(2,4,4) 0.000708637712 0.000708637712 0.000708637643
(15,3,0.5) 0.004614674689 0.004614674687 0.004614674680
(1.5, 3,1) 0.005183691518 0.005183691518 0.005183691473
(1.5,3,2.5) 0.001109438827 0.001109438827 0.001109438732
(1.5,3, 4) 0.000390670111 0.000390670111 0.000390670003
(1.5, 4, 0.5) 0.003463618270 0.003463618268 0.003463618263
(1541) 0.003877046225 0.003877046212 0.003877046176
(1.5, 4, 2.5) 0.000832418148 0.000832418148 0.000832418071
(1.5,4,4) 0.000295375652 0.000295375652 0.000295375566

L(y)=P(M,-m, <v,(y)),

L(y)=2,(y),

L(y)= Ll(y)+bgzj'_+:e’xA(x)CDV(y)sA (x)dx,
L(y)= LZ(y)+b,j“.[j:e’*A(x)(Dv(y)ri(x)dx,

(25)

for A<0;and

o (26)
+b, [T’ A(=y) @, (x)s_, (-y)dy,

+ Bn’“jmey/\(—y)(I)V (x)r_, (-y)dy,

for 2>0, where s,(x), I, (X

reml, respectively.

~—

> S-z(—Y) and r_ﬁ(—y) are given in Theo-

Next, we use R to calculate the absolute errors with sample sizes n =100
and n=1000 under normalized constants a,, @,, b, and b,. From Tables
1-4, we have the following findings: 1) The accuracy of higher-order asymptotics
improves with increasing n; 2) First-order, second-order and third-order as-
ymptotics are all close to the actual values; 3) The accuracy of the three approxi-
mations is comparable, as the second-order and third-order corrections do not
lead to a significant improvement in the approximation. Therefore, it cannot be
concluded that the third-order approximation is markedly superior; it only mar-
ginally approaches the true value in numerical terms. To achieve further improve-
ments in accuracy, subsequent studies could employ the same approach as pre-

sented in this work to calculate higher-order terms.

DOI: 10.4236/jamp.2025.1311222

3982 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2025.1311222

W.R. Yang

4. Auxiliary Lemmas

Before proving the main conclusion, we first give the following lemmas. Lemma
1 and Lemma 2 have been proved by Yang and Hu (2025).
Lemma 1. Let F, (X) denote the cdf of STN (02,/1, v). Forlarge X, we have
@i). for 1<0,

nl Vj (t 2
2
(27)
+(V+4)G ]ij{vz(v+1)(v+3)a4
A7 8
4 2 +9v+23)0’
+v(v+1)(v2+6)a +(V + Vj )0 }x‘#o(xe)}
22 A
2
where g(t):l+% and f(t)——t'
(ii). for A1 >0,
1- FA(X)
2F(V+ljavv\2/1 3,2\ -2
=Z—exp{—an(t)t'ldt}{l—mx‘z (28)
\/;r(\zlj 2(V+2)

ferie e oo

8 (v+2)(v+4)  2(v+2)

where o (t) =V.
Lemma 2. Let f, (X) be the density function of the skew-t-normal distribu-
tion.

(i). for A <0, we have

(v+3)o® o* , (v+2)o?

4 4 4
J{[v(v;zl)a +2; _(v+3)(/;/4+2)a JX
2(v+4)c* v(v+1l)o! . (v+1)(v+3)c* 2

At A? 22°
4 4
+—(V;/21‘)10 X3 +—;4 x“}bf +o(bn4)}

(ii). for 4 >0, we have

(29)
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na, . (7,(v))=e {1 ((HS)GZ ARV OHZ)GZV}V

A? 247 A2
{ v+1 20— (v+3)(v+2)o-4Jy
a (30)
2v+4 (v+1) (v+1)(v+3)c*

+
A7 22*
4
e v3+;7v“}b‘n-“+°<5n“‘>}

Lemma 3. With u,(x), 0,(x), v,(y) and V,(y) given by (5) and (7), we
have
(i). for 1 <0,

[F (4 ()= F (u (%) +vi (-9))
K2 (x (31)
=A(x)¢>v(y){l+ K, (X)b;? +{wl(x)+%}bn4}+o(bn4);

(ii). for 1>0,
[F (8,09 +9,(1)=F (% ()]

_ &2 (—y) |- _ (32)
=d,(x)A(- ){1+K (- y)bn2+{a)A(—y)+#}bn4}+o(bn4).

where Kz(x)) a)A(X), K, (—y) and @, (—y) are given in Theorem 1.
Proof 1). For A<0,bylemmaland 1-F,(b)=n"=1-F (b, ), we have

zi(x,y)::nlog[Fl( (x))-F (un (X)+V, ( y))]+e—x+y7v
:nlog[l—(l— F, (U, (%)) + Fy (U (X)+v, (- y)))j|+e—><+y—v
(1))-

:—n[(l—Fl(un(x))) - F( (%)) (1+0(1)
—n[(l— Fﬁl(—un(x)+vn(y)))+%( (U, () +v, (y ))) (1+0(1)) (33)
—n1yV}—n(l—F_i(—un(x)+vn(y)))(1—FA( x)))(1+0(1))

(e 0297 [0t (s (et
24 A A 2 A
4 2 2 )2
+(v+320- N 0—2x2+—(v+32)0 x| [b* +0(bn’4)
24 2\ 24 A

for large n.Hence by (33), we get

lim biz, (x.y)=x;, (x), lim br?(brfzi(x’ y)-K; (X)):wz (%) (34)

with &, (X) and o, (X) given in Theorem 1. It can be easily derived that as

n— oo
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0 52 (5 (40 00) s 0 )+, () A0, ()], (A ), ()]
=b? {bn2 [exp(z,I (x, y))—l]—zcl (x)}A(x)(DV(y)
-l om0 iz ) 32, o £ Ay, ()

.0+ 52 a0, ).

So, combining with (35), we can obtain
[P (0, ()= s (0 ()4 (=)
K2 (x (36)
:A(x)d)v(y){lﬂcl(x)bnz+{a)ﬁ(x)+ *2( )}bf}+o(bn4).

(ii). The proof is based on a similar approach to that used in the proof of (i).
For A1>0, by (27) and (28), we have

Z,(x, y)_nlog[ L (0, (x)+9, (y )) (Vn( ))]+x’v+ey
:nlog[ —(1=F (0, () + 9, () + F: (% () )+x LY

2 2 2
=ey{(2/12y (v+/132) { a[vv;a v+4) Jy )

v+3)o! 1 )o
! 21?‘ y+s (2&2 - yH 4}

for large n. Thus by (37) we have
r!m bz, (x.y)=x_,(-y), !mﬁnz (Enzzi (xy)-x_, (_y)) =, (-y), (39

Similar to (35), we have

57 B2 (7, (0, (0+9,(9) =, (4. (1))' = A=), ()]

() A(-Y), (1) (39)
- [au (-y) +—K’2’I g_y)}\(—Y)CDV (x).

and then combining with (39) we can get
[F (0, (0 +9, ()= F: (% (v)) ]
2 (_\1o (40)
:cDV(x)A(—y){HK_i(—y)bn2+{a)_l (-y)+— (2 y):|bn4}+0(bn4).

5. Proofs

Proof of Theorem 1. It follows from Yang and Hu (2025) that the density function
of the normalized (M,,m,) is
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n(n-1)a5, (F, (4, ()= F (v (1)) £ (0, () £ (4 (), £<0,
n(n-1)ab, (F, (1, (x))-F. (%, (1)) £, (8, (x)) £, (7, (v)). 2>0.

(). For 4<0,let q,, (X, y) be the density function of

gn,/l (X! y) —{

P(M, <u,(x),M,—m, <v,(y)).By the convolution formula, we can get

+b

U,z (X, y) On.2 (X y}. Then we have

n

-m, <v, (y))

} Ay, (xs)dxds
{ i x_+b _des}dx (42)
na, [, (4 (%)) = Fs (U, () v, (=) ] 1, (uy ()

Note that 1- Fl(un(x)):o(n’l) and F, (u,(x)+V,(-y))=0(n"), so we

have

P(M
-I.
-I-

[, (1, (%)=, (U, (9)+v HM
=[F, (U, ()= F (u, ()4, (-9))] (2+O(n ™).

It follows from the dominated convergence theorem, (29) and (31), we have

(43)

P(M,-m, <v,(y))
- nanjj:[Fl (u, (x))=F (v, (—y))}n f,(u, (x))(l+0(n’l))dx
:'[j:e‘xA(x)CDV(y)[H s, (X)b,%+1, (x)b,* +o(bn‘4)de

-, (y).

(44)

as N—o.
(ii). Similarly, for 4 >0,let G, , (X, y) be the density function of

P(M,-m, <d,(x),m <7, (y)). Then g,,(xy) and g,,(xy) satisfy

qn,ﬁ (X, y) =0n, [X+a—_bn, yj, so we have

S [RCH LS “
=, [ [F (0, 09+ 0, ()= F (L )] £ (5. (0)ey
Since 1-F, (1, (x )+\7n(y)):0(n 1) and Fl(Vn(y))zo( ) then we have
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=[F. (8, () +9,(1))-F: (% ()] (t+0(n7)) (46)
Combining with (30) and (32), we have
P(M,-m, <u,(x))
= nénf: F (Gn (X))_ F (Vn (y))]n f; (Vn (y))(1+o(n‘1))dy (47)
= [T (y)@, (X[, (9B + 1 (~y)b +o () Jay
>, (x)
as N — . The proof is finished. 0

6. Conclusions

This paper systematically investigates the limiting distribution properties of the
normalized sample range under the skew-t-normal distribution. We first derive
higher-order expansions for its extreme value distribution and normalization
constants, thereby determining the optimal convergence rate of the distribution
of normalized sample range M —m, . In particular, the convergence rate ob-
tained remains of the same order regardless of whether the skewness parameter
A is positive or negative, reflecting an intrinsic symmetry in the distributional
morphology with respect to its convergence behavior. More importantly, a com-
parative analysis in this study reveals that the skew-t-normal, skew-normal (cf.
[14]), and general error distributions (cf. [15]) have the same order of optimal
convergence rate for the normalized sample range under normalized constants
b, and b, . However, the specific forms and convergence behaviors of the
higher-order (second- and third-order) expansions of sample range for the skew-
t-normal distribution are further dictated by the interplay between the skewness
parameter A and the degrees of freedom V.

In the numerical analysis section, we observe that the second- and third-order
asymptotics provide no significant improvement in accuracy, indicating that fur-
ther incorporation of lower-order terms within the current expansion framework
offers limited refinement. To achieve substantial breakthroughs in approximation
precision, future work must account for the influence of fourth-order and higher-
order terms. Therefore, systematic investigation into the mathematical structure
and numerical effects of higher-order expansion terms represents a critical path-
way to overcoming current precision bottlenecks. Simultaneously, the limitations
inherent in the current expansion order clearly delineate the theoretical bounda-
ries of existing methodologies and highlight principal directions for subsequent

research.
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