
Journal of Applied Mathematics and Physics, 2025, 13(11), 3842-3853 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2025.1311215  Nov. 13, 2025 3842 Journal of Applied Mathematics and Physics 
 

 
 
 

Numerical Solution of the Quaternion 
Quadratic Matrix Equation X BX C2 0+ + =  

Baiquan Hu 

Faculty of Science, Hunan University of Technology, Zhuzhou, China 

 
 
 

Abstract 
This paper addresses a class of numerical solution problems for quaternion 
quadratic matrix equations arising from practical engineering applications. By 
transforming it into a special Riccati equation, a sufficient condition for the 
existence of solutions to the corresponding M-matrix equation is derived us-
ing the theory of comparison matrices. This condition is then applied to in-
vestigate the existence of solutions for the quaternion quadratic matrix equa-
tion. Finally, numerical examples demonstrate an effective solution method 
for the quaternion quadratic matrix equation using fixed-point iteration. 
 

Keywords 
Quadratic Matrix Equations, Quaternion Matrices, M-Matrices, Fixed-Point 
Iteration Method, Comparison Matrix 

 

1. Introduction 

Solving secondary matrix equations holds a central position in computational 
mathematics. Their extension to noncommutative algebras has become a critical 
bottleneck in cutting-edge applications such as quantum mechanics (e.g., the Pauli 
matrix system) [1] and robotic control (quaternion rotation dynamics) [2]. These 
equations possess significant theoretical importance and broad application con-
texts across computational mathematics, control theory, signal processing, and 
applied physics. 

This paper considers the following unilateral quadratic matrix equation: 

 2 0,X BX C+ + =  (1) 

where ( )1 2diag , , , nB b b b=   is a diagonal matrix, each ib  being a quaternion, 
n nC ×∈  is a quaternion matrix, and  
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[ ] ( ) ( ) ( ) ( ) ( ) ( )ij ij ij i ij j ij ijij
C c c c c c c= + = + + + ki j k      , [ ] n n

ij
C ×∈ , 

where , ,i j k    denote the imaginary parts of the quaternion, and I  is the 
identity matrix. In this paper, n n×  denotes real n n×  matrices, n n×  denotes 
quaternion n n×  matrices,   represents the field of complex numbers, +  
represents the positive half-axis of the complex plane, and −  represents the 
negative half-axis of the complex plane. Equation (1) generalizes the quadratic 
matrix equation in the real number field to the quaternion space. This generaliza-
tion extends traditional applications such as system stability analysis, optimal con-
trol, the Markov chain noise Wiener-Hopf problem [3], and numerical solutions 
for differential equations. Moreover, it offers unique advantages and irreplaceable 
value in recently developed fields such as three-dimensional rotation representa-
tions [4], spatial pose computation [5], quantum mechanics, robot kinematics [6], 
and computer graphics [7]. Within the quaternion matrix domain, the commuta-
tive property of multiplication from traditional number field theory often no 
longer applies. New analytical methods must be developed to address non-com-
mutativity and the unique algebraic structure of quaternions. Consequently, the 
existence of solutions and numerical methods for solving such equations presents 
greater challenges. 

For various types of quadratic matrix equations, numerous experts and scholars 
have achieved substantial research outcomes in both theoretical and numerical 
solution approaches. In the real and complex domains, Higham et al. [8] employed 
generalized Schur decomposition to provide a comprehensive characterization 
and proposed a novel numerical method. Subsequently, Higham et al. [9] com-
bined exact linear search with the Newton method for solving quadratic matrix 
equations, significantly enhancing the global convergence of the Newton method 
in both theoretical research and practical applications. Guo [10] transformed the 
quadratic matrix equations into a special class of asymmetric algebraic Riccati 
equations, discussing the existence and uniqueness of M-matrix solutions and 
proposing numerical methods for solving them. Yu et al. [11] introduced the M-
matrix to establish a sufficient condition for solution existence and analyzed the 
convergence properties of both the Newton and Bernoulli methods. Lu et al. [12] 
transformed the quadratic matrix equation into a special asymmetric Riccati equa-
tion and solved it using a fixed-point iteration method. In the quaternion domain, 
Shao et al. [13] recently introduced comparison matrices for quaternion matrices 
to study asymmetric algebraic Riccati equations for quaternion matrices, provid-
ing conditions for the existence and uniqueness of extremal solutions. 

This paper investigates the existence of solutions and numerical methods for 
solving quadratic matrix Equations (1) in the quaternion field. By transforming it 
into a special class of Riccati matrix equations, a sufficient condition for the exist-
ence of solutions to the transformed matrix equation is proposed. Under this suf-
ficient condition, utilizing the relevant properties of comparison matrices, the ex-
istence and uniqueness of solutions to the quaternion quadratic matrix equation 
are proven. Finally, a numerical example verifies the conditions for solution ex-
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istence and employs fixed-point iteration for efficient solution. When B  is a di-
agonal matrix, the quadratic matrix equation can be transformed into a special 
form of Riccati equation. This allows us to utilize the theories of comparison ma-
trices and M-matrices to establish strong existence and uniqueness conditions. 
However, for the more general case where B  is a non-diagonal matrix, the treat-
ment becomes considerably more complex, which will be an important direction 
for future research. 

The remainder of this paper is organized as follows: In Section 2, we review 
relevant concepts of quaternions, the definition and properties of right eigenval-
ues for quaternion matrices, as well as some related results on Z-matrices, M-ma-
trices, and comparison matrices. In Section 3, we transform Equation (1) into a 
Riccati comparison equation and provide a sufficient condition for the existence 
of a corresponding M-matrix solution. In Section 4, we establish a sufficient con-
dition for the existence of a solution to the quaternion quadratic matrix Equation 
(1). Finally, numerical experiments are conducted to verify the existence of the 
solution, and a fixed-point iteration method is employed to solve the equation. 

2. Preliminaries 

This section begins by reviewing some fundamental concepts of quaternions. The 
set of quaternions is denoted as { }0 1 2 3a a a a= + + +i j k , where  

0 1 2 3, , ,a a a a ∈ . Here, 0a  represents the real part, while 1 2,a a  and 3a  consti-
tute the imaginary parts. The imaginary units of quaternions satisfy the following 
relations: 

2 2 2 1.= = = = −i j k ijk  

For a quaternion 0 1 2 3q a a a a= + + +i j k , its conjugate is defined as  
*

0 1 2 3q a a a a= − − −i j k , and its norm (magnitude) is given by  
2 2 2 2
0 1 2 3 .q a a a a= + + +  

For more properties of quaternion matrix equations, one may refer to [14] [15]. 
Given a set of basis vectors 1 2, , , nv v v , the space spanned by all their linear 

combinations is denoted as Span ( )1 2, , , nv v v . 
For a quaternion matrix m nA ×∈ , [ ]ijA  denotes the ( ),i j th entry of A ; 

A  denotes the absolute value of every element in A .  
Definition 1 ([13]). Let n nA ×∈ , A  vector { }\ 0nv∈  is called a right ei-

genvector of A  corresponding to a right eigenvalue λ∈  if the equation  
,Av vλ=  

hold. 
The set of all right eigenvalues of A  is denoted by ( )r Aσ . Note that ( )r Aσ  

is closed under quaternion similarity, if Av vλ=  hold, then for all { }\ 0α ∈ , 
we have  

( ) ( )( )1 ,A να να α λα−=  

so vα  is a right eigenvector of A  corresponding to the right eigenvalue 
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1α λα− . 
Definition 2 ([13]). If all off-diagonal elements of n nA ×∈  are non-positive, 

then A  is called a Z-matrix. Any Z-matrix A  can be expressed as A sI B= − , 
where n nB ×∈  is a non-negative matrix. When s is greater than or equal to the 
spectral radius of B , i.e., ( )s Bρ≥ , then A  is called an M-matrix. Specifically, 
when ( )s Bρ> , A  is called a nonsingular M-matrix; when ( )s Bρ= , A  is 
called a singular M-matrix.  

Lemma 1 ([11]). For a Z-matrix n nA ×∈ , it is an M-matrix if and only if there 
exists a nonzero vector 0v ≥  such that 0Av ≥ . 

Lemma 2 ([11]). For a Z-matrix n nA ×∈ , the following statements are equiv-
alent: 

1) A  is a non-singular M-matrix; 
2) A  is non-singular and satisfies 1 0A− > ; 
3) 0A >v  for vectors 0>v ; 
4) All eigenvalues of A  are positive real numbers. 
Lemma 3 ([13]). If n nA ×∈  is a nonsingular M-matrix, then for any Z-matrix 

B A≥ , B  is also a nonsingular M-matrix and 1 1B A− −≤ . 
Lemma 4 ([13]). For a matrix n nA ×∈ , the comparison matrix is defined as 

( )
[ ]

[ ]
ˆ

,
,

,

ij

ij

A i j
A i j

A i j

 =
= 
− ≠


 

where [ ]ijA  is the real part of [ ]ijA . 
Lemma 5 ([13]). If n nA ×∈  and Â  is a nonsingular M-matrix, then A  is 

nonsingular satisfying 1 1ˆA A− −≤ , and the right eigenvalues of A  have positive 
real parts. 

To obtain the existence of solutions for Equation (1), we need the following 
lemma: 

Lemma 6 ([16]). For the nonsymmetric algebraic Riccati equation 

 0,XCX XD AX B− − + =  (2) 

where A , B , C , D  are real matrices of sizes m m× , m n× , n m× , n n×  
respectively. 

Define an ( ) ( )m n m n+ × +  matrix  

.
D C

M
B A

− 
=  − 

 

If M  is a singular M-matrix, then Equation (2) has a unique minimal 
nonnegative solution S , and both D CS−  and A BS−  are nonsingular M-
matrices. When M  is an irreducible matrix, both D CS−  and A BS−  are ir-
reducible. 

Lemma 7 ([10]). For a class of quadratic matrix equations 

 2 0,X EX F− − =  (3) 

where , , n nE F X ×∈ , E  is a diagonal matrix, and F  is an M-matrix. 
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If F  is a nonsingular M-matrix, then there is exactly one M-matrix solution 
in Equation (3), and this M-matrix is nonsingular. If F  is an irreducible singular 
M-matrix, then Equation (3) has an M-matrix solution, and all elements of each 
M-matrix solution are nonzero. 

Lemma 8 ([16]). Consider Equation (2). If M  is a nonsingular M-matrix or 
an irreducible singular M-matrix, then there exist nonnegative matrices 1S  and 

2S  such that 

 2 2 1

1 1 2

0
,

0
I S I S GD C
S I S I GB A

−       
=       −−       

 (4) 

where both 1G  and 2G  are M-matrices. 
Lemma 9 ([16]). Consider Equation (2) and its dual equation  

 0,XBX XA DX C− − + =  (5) 

If M  is a nonsingular M-matrix, then the nonnegative matrices 1S  and 2S  
satisfying (4), with 1G  and 2G  being M-matrices, are the unique minimal 
nonnegative solutions of Equations (2) and (5), respectively. In this case, both 1G  
and 2G  are nonsingular, and the matrix 

2

1

I S
S I
 
 
 

 

is also nonsingular. 

3. Sufficient Conditions for the Existence of the M-Matrix  
Solution to the Comparison Equation Corresponding to 
Equation (1) 

In this section, we consider rewriting Equation (1) to obtain the corresponding 
comparison equation. We prove that under certain conditions on the coefficient 
matrix of the comparison equation, its solution exists. 

Assume that X I Yα= −  ( 0α > ), this assumption helps construct M-matri-
ces, allowing us to utilize their excellent properties. This lays a crucial foundation 
for our subsequent use of the fixed-point iteration method and proving the exist-
ence of solutions. Therefore, Equation (1) can be rewritten as 

 ( ) ( ) ( )2 2 0,Y Y I I B Y I B Cα α α α− − + + + + =  (6) 

and its coefficient matrix is 

( )2 .
I I

K
I B C I B

α

α α α

− 
=  

− + + +  
 

Consider the comparison Equation (6) as follows:  

 ( ) ( )( )2 2 0.Y Y I I B Y I B Cα α α α− − + + + + =  (7) 

Therefore, K̂  is the comparison matrix of K , and 

( )2
ˆ .

I I
K

I B C I B

α

α α α

− 
=  

− + + +  
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Theorem 1. For the comparison matrix 

( )2
ˆ ,

I I
K

I B C I B

α

α α α

− 
=  

− + + +  
 

assume that 

( ) ( ) ( ) ( )
( )

( )
( )

( )
( )

2 4
max , , , ,1 ,

2
i i ii j iii ii k ii

i i
i i j i k i

b b c cc c
b b b

µ
 − + − =  
  

    
  

 

where 1,2, ,i n=  , and i , j , k  denote its three imaginary parts respec-

tively, when ( ){ }1max ,1n
ji ij ii j i

c bα µ =
≠

> + −∑  , K̂  is an M-matrix. 

Proof. Suppose the comparison matrix  

( )2
ˆ ,

I I
K

I B C I B

α

α α α

− 
=  

− + + +  
 

where ( )diag , , ,Iα α α α=  . According to Definition 2, it is obvious that K̂  is 
a Z-matrix. 

From the definition of iµ , we have 1iµ ≥ . Therefore, when  

( ){ }1max ,1n
ji ij ii j i

c bα µ =
≠

> + −∑  , 1α >  always holds. 

When ( )T1,1, ,1v =  , we have 

( )

( )
( )

( ) ( )

2

2
1 11 12 1 1

2
2 22 21 2 2

2
1 1

1
1

1

ˆ

.
n

n

n nn n nn n

I I
Kv v

I B C I B

b c c c b

b c c c b

b c c c b

α

α α α

α
α

α

α α α

α α α

α α α−

− 
=  

− + + +  
− 

 − 
 
 

− 
 = − + + − − − + + 
 − + + − − − + + 
 
 
 − + + − − − + + 



















 

Since 1α > , and 

( )2
1 11 12 1 1 0,nb c c c bα α α− + + − − − + + >   

( )2
2 22 21 2 2 0,nb c c c bα α α− + + − − − + + >   

  

( ) ( )2
1 1 0.n nn n nn nb c c c bα α α−− + + − − − + + >   

Therefore, ˆ 0Kv > . According to Lemma 1, K̂  is a nonsingular M-matrix. 
□ 

Corollary 1. According to Lemma 6, Equation (7) has a nonsingular M-matrix 
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as its solution. 

4. Existence of Solutions to Quaternion Quadratic Matrix 
Equations 

This section primarily establishes the existence of solutions for the quaternion 
quadratic matrix Equation (1) by comparing it with the existence of solutions for 
Equation (6) in the previous section. 

Consider Equation (6) and its dual equation 

 ( ) ( ) ( )2 0,Z I B C Z Z I B I Z Iα α α α+ + − + − + =  (8) 

we have the following theorem. 
Theorem 2. Under the assumption of Theorem 1, 

( )2
ˆ

I I
K

I B C I B

α

α α α

− 
=  

− + + +  
 

is an M-matrix. Let Φ  be the minimal nonnegative solution of the comparison 
Equation (7), then the quaternion Equation (6) has a solution Φ satisfying 
Φ ≤ Φ . Moreover, the right eigenvalues of the nonsingular matrix Iα −Φ  have 

positive real parts, and Φ is the unique numerical solution of Equation (6). Simi-
larly, the dual matrix equation corresponding to Equation (7) is 

 ( )( ) ( )2 0,Z I B C Z Z I B I Z Iα α α α+ + − + − + =  (9) 

let Ψ  be the minimal nonnegative solution of Equation (9), then Equation (8) 
has a solution Ψ satisfying Ψ ≤ Ψ . Moreover, the right eigenvalues of the 
nonsingular matrix ( ) ( )2I B I B Cα α α+ − + + Ψ  have positive real parts, and Ψ is 
the unique numerical solution of Equation (8). 

Proof. Define the linear operators : n n n n× ×→   and : n n n n× ×→    as 
follows: 

( ) ( ) ( ) ( ) ( ) ( )( ), .Y Y I I B Y Y Y I I B Yα α α α= + + = + +    

Since 

 ( ) [ ] ( )[ ] ( ) ( )( )[ ], 2 ,ij ijij ij ijij ij
Y Y b Y Y b Yα α α = + + = +    

    (10) 

both   and   are invertible, where ( ) 0ijb ≥ . 

Below we prove that ( ) ( )( )1 2 2f Y Y I B Cα α−= + + +  has a fixed point in the 

compact convex set { }:Y Y= ≤ Φ . Assume ( )E Y=  , then we have: 

[ ] [ ] ( )[ ]

( )( )[ ] ( )( )[ ]

( ) [ ]

( )( ) ( )1

2

2

2 .

ijij ij ij

ij ijij ij

ij ij

ij ij

E Y b Y

b Y b Y

b Y

b E

α α

α

α

α −

= + +

= + +

≥ +

 = +  

 



 

 

The above inequality holds because 
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[ ] [ ] [ ] [ ] [ ] [ ] [ ]{ }Span , , , , , ,
ij ij ij ij ij ij ij

Y Y Y Y Y Y Y⊥ i j k i j k  

Taking the inverse linear operator on both sides of  

[ ] ( )( ) ( )12 ijij ij
E b Eα −≥ +      and using (10), we have 

( ) ( )1 1 .E E− −≤    

Therefore, 

( )

( )( )
( )( )

( )
( )

1 2 2

1 2 2

21 2

1 2 2

.

Y f Y

Y I B C

Y I B C

Y I B C

I B C

α α

α α

α α

α α

−

−

−

−

=

= + + +

≤ + + +

≤ + + +

≤ Φ + + +

= Φ


















 

Therefore 

( ) .f ⊂   

By Brouwer’s fixed point theorem [17], f  has a fixed point in  , so Equa-
tion (6) has a solution satisfying Φ ≤ Φ . Let 

( ) ( )( )2 2, ,
I II I

H H
I B C I B I B C I B

αα
α α α α α α

− − 
= =   + + − + + + − +    




 

, ,
I I

T T
I I
Ψ  Ψ 

= =   Φ Φ   







 

, ,R I R Iα α= −Φ = −Φ   

( ) ( ) ( )( )2 2, .S I B I B C S I B I B Cα α α α α α= + − + + Ψ = + − + + Ψ   

From Equations (6) and (8), we obtain 

 
0

,
0
R

HT T
S

 
=  − 

 (11) 

 
0

.
0
R

HT T
S

 
=  − 



  



 (12) 

Since K̂  is a nonsingular M-matrix, according to Lemma 9, T  is nonsingu-
lar. Define the comparison matrix of T  as 



1
,

1
T

 −Ψ
=  −Φ 







 

which is clearly a nonsingular M -matrix. Therefore, according to Lemma 5, T  
is nonsingular. 

According to Lemma 8, R  is a nonsingular M-matrix. Define the comparison 
matrix of R  as R̂  according to Lemma 4. Since 
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[ ]( ) [ ]( ) [ ] ,
ii ii ii ii

R α α α  = − Φ ≥ − Φ ≥ − Φ 
   

[ ] [ ] ,
ik ik ik

R  = Φ ≤ Φ 
  

therefore R̂ R≥  . According to Lemma 3, it is obvious that R̂  is a nonsingular 
M-matrix. Then, according to Lemma 5, we can know that the right eigenvalues 
of R  have positive real parts. Similarly, the right eigenvalues of S  also have 
positive real parts. 

Here, we only focus on the right eigenvalues of the complex matrix representa-
tion of quaternion matrices. Since (11) is a similarity transformation, and it is 
pointed out in Section 2.1 of [13] that the real parts of the right eigenvalues of 
quaternions remain unchanged under similarity transformation. Therefore, H  
has exactly 2n  complex right eigenvalues in +  and exactly 2n  complex 
right eigenvalues in − . Thus, the right vector space spanned by the columns of 

I 
 Φ 

 is exactly the invariant subspace corresponding to the right eigenvalues 

with positive real parts. 

Finally, we prove the uniqueness of the solution. Assume that 
I
Y
 
 
 

 corre-

sponds to the same invariant subspace. Therefore, there exists a nonsingular ma-
trix V  such that 

.
I I

V
Y

   
=   Φ   

 

From this, we obtain V I=  and Y = Φ . The proof of uniqueness for Ψ is sim-
ilar to the above. 

□ 
Corollary 2. According to Theorem 1, we know that the solution to Equation 

(6) exists and is unique. Since Equation (6) is obtained from Equation (1) through 
the transformation X I Yα= − , the solution to Equation (1) also exists and is 
unique. 

5. Numerical Example 

In this section, we provide a numerical example to illustrate that the numerical 
solution of the equation considered in this paper exists. 

Example 1. For Equation (6), take 

6 1.5 0.8 1.2 0
0 5 0.9 1.5 0.7

0.4 0.08 0.06 0.05 0.15 0.03 0.02 0.04
0.12 0.02 0.05 0.03 0.5 0.07 0.09 0.06

i j k
B

i j k

i j k i j k
C

i j k i j k

 + + + 
=  + + +  


+ + + − + + +  =   − + + + + + + 

 

We can obtain 1iµ = , 1α >  satisfying Theorem 1. Here, assuming 2α = , 
consider the fixed-point iteration scheme 

( ) ( )1 2 2
1 2 ,k kY I B Y I B Cα α α−
+ = + + + +  

https://doi.org/10.4236/jamp.2025.1311215


B. Q. Hu 
 

 

DOI: 10.4236/jamp.2025.1311215 3851 Journal of Applied Mathematics and Physics 
 

with 0 0Y = . After 34 iterations, we obtain an approximate solution to Equation 
(6) 

0.794 0.132 0.846 1.724 0.010 0.004 0.003 0.014
.

0.008 0.001 0.006 0.013 0.791 0.408 0.754 1.622
i j k i j k

Y
i j k i j k

− + + − − + − 
=  − − + − − + + 

 

The resulting relative error norm is 

( )
0.06884106.

2
f Y Y

I Bα
−

≈
+

 

Figure 1 shows the decreasing trend of relative error and absolute error with 
the number of iterations, clearly indicating that the fixed-point iteration method 
exhibits linear convergence. 

Through calculation, the right eigenvalues of I Yα −  can be obtained as fol-
lows  

1 21.2041 1.9256 , 1.2041 1.9256 ,i iλ λ= + = −  

3 41.2113 1.8341 , 1.2113 1.8341 .i iλ λ= + = −  

Therefore, Y  is an approximate numerical solution. Since X I Yα= − , then 
we can get  

1.206 0.132 0.846 1.724 0.010 0.004 0.003 0.014
,

0.008 0.001 0.006 0.013 1.209 0.408 0.754 1.622
i j k i j k

X
i j k i j k

+ − − + − + 
=  + − + + − − 

 

and X  is an approximate numerical solution of Equation (1). 
 

 
Figure 1. Relative residual and absolute residual vs iteration count. 

6. Conclusions 

This paper proposes an effective numerical method for the special quaternion 
quadratic matrix equation 2 0X BX C+ + = , where the coefficient matrix B  is 
a diagonal matrix. By introducing the key transformation X I Yα= − , we trans-
form the original Equation (1) into a special form of Riccati equation, and suc-
cessfully utilize the theories of comparison matrices and M-matrices to establish 
sufficient conditions for the existence of solutions. 

Numerical examples demonstrate that the fixed-point iteration method con-
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structed based on this theory can effectively converge to the numerical solution of 
the equation, verifying the correctness of the proposed theory and the feasibility 
of the method. The results of this research have potential application value in 
fields such as quantum mechanics and robotics mentioned in the introduction. 
For example, in quantum mechanics, when the system Hamiltonian possesses spe-
cific symmetries, its mathematical description can be simplified to the equation 
form addressed in this paper; our method provides a solid computational founda-
tion for the quantitative analysis of such problems. In robotics learning and con-
trol theory, this solution offers new ideas and tools for handling a class of quad-
ratic optimal control or filtering problems with diagonalized system matrices. 

However, the method proposed in this paper also has certain limitations. First, 
the existence condition for solutions given in Theorem 1 is a sufficient condition 
rather than a necessary one. This means that even if this condition is not satisfied, 
the equation may still have solutions, but our theoretical framework cannot guar-
antee their uniqueness, and the convergence of the fixed-point iteration method 
becomes uncertain. Second, the core limitation of this paper lies in the assumption 
that matrix B  must be diagonal. Although this assumption simplifies the analy-
sis and enables the application of M-matrix theory, it also restricts the scope of 
application, when B  is a non-diagonal matrix, constructing effective transfor-
mations and establishing corresponding theories will face fundamental challenges. 
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