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Abstract

This paper addresses a class of numerical solution problems for quaternion
quadratic matrix equations arising from practical engineering applications. By
transforming it into a special Riccati equation, a sufficient condition for the
existence of solutions to the corresponding M-matrix equation is derived us-
ing the theory of comparison matrices. This condition is then applied to in-
vestigate the existence of solutions for the quaternion quadratic matrix equa-
tion. Finally, numerical examples demonstrate an effective solution method

for the quaternion quadratic matrix equation using fixed-point iteration.
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1. Introduction

Solving secondary matrix equations holds a central position in computational
mathematics. Their extension to noncommutative algebras has become a critical
bottleneck in cutting-edge applications such as quantum mechanics (e.g., the Pauli
matrix system) [1] and robotic control (quaternion rotation dynamics) [2]. These
equations possess significant theoretical importance and broad application con-
texts across computational mathematics, control theory, signal processing, and
applied physics.
This paper considers the following unilateral quadratic matrix equation:

X?4+BX +C =0, (1)

where B=diag(b,,b,,--+,b,) isa diagonal matrix, each b, being a quaternion,

C eH™ isa quaternion matrix, and
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[Cly =R (ey)+ T (e)=R(c; )+ Ti(e; )i+ T (e;) i+ T (e )k [Cly e H™,

where J,,J;,J, denote the imaginary parts of the quaternion, and | is the

XN XN

identity matrix. In this paper, R™" denotes real NxN matrices, H™" denotes

quaternion NxN matrices, C represents the field of complex numbers, C,
represents the positive half-axis of the complex plane, and C_ represents the
negative half-axis of the complex plane. Equation (1) generalizes the quadratic
matrix equation in the real number field to the quaternion space. This generaliza-
tion extends traditional applications such as system stability analysis, optimal con-
trol, the Markov chain noise Wiener-Hopf problem [3], and numerical solutions
for differential equations. Moreover, it offers unique advantages and irreplaceable
value in recently developed fields such as three-dimensional rotation representa-
tions [4], spatial pose computation [5], quantum mechanics, robot kinematics [6],
and computer graphics [7]. Within the quaternion matrix domain, the commuta-
tive property of multiplication from traditional number field theory often no
longer applies. New analytical methods must be developed to address non-com-
mutativity and the unique algebraic structure of quaternions. Consequently, the
existence of solutions and numerical methods for solving such equations presents
greater challenges.

For various types of quadratic matrix equations, numerous experts and scholars
have achieved substantial research outcomes in both theoretical and numerical
solution approaches. In the real and complex domains, Higham et a/ [8] employed
generalized Schur decomposition to provide a comprehensive characterization
and proposed a novel numerical method. Subsequently, Higham et a/ [9] com-
bined exact linear search with the Newton method for solving quadratic matrix
equations, significantly enhancing the global convergence of the Newton method
in both theoretical research and practical applications. Guo [10] transformed the
quadratic matrix equations into a special class of asymmetric algebraic Riccati
equations, discussing the existence and uniqueness of M-matrix solutions and
proposing numerical methods for solving them. Yu et a/ [11] introduced the M-
matrix to establish a sufficient condition for solution existence and analyzed the
convergence properties of both the Newton and Bernoulli methods. Lu et al [12]
transformed the quadratic matrix equation into a special asymmetric Riccati equa-
tion and solved it using a fixed-point iteration method. In the quaternion domain,
Shao et al. [13] recently introduced comparison matrices for quaternion matrices
to study asymmetric algebraic Riccati equations for quaternion matrices, provid-
ing conditions for the existence and uniqueness of extremal solutions.

This paper investigates the existence of solutions and numerical methods for
solving quadratic matrix Equations (1) in the quaternion field. By transforming it
into a special class of Riccati matrix equations, a sufficient condition for the exist-
ence of solutions to the transformed matrix equation is proposed. Under this suf-
ficient condition, utilizing the relevant properties of comparison matrices, the ex-
istence and uniqueness of solutions to the quaternion quadratic matrix equation

are proven. Finally, a numerical example verifies the conditions for solution ex-
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istence and employs fixed-point iteration for efficient solution. When B isadi-
agonal matrix, the quadratic matrix equation can be transformed into a special
form of Riccati equation. This allows us to utilize the theories of comparison ma-
trices and M-matrices to establish strong existence and uniqueness conditions.
However, for the more general case where B is a non-diagonal matrix, the treat-
ment becomes considerably more complex, which will be an important direction
for future research.

The remainder of this paper is organized as follows: In Section 2, we review
relevant concepts of quaternions, the definition and properties of right eigenval-
ues for quaternion matrices, as well as some related results on Z-matrices, M-ma-
trices, and comparison matrices. In Section 3, we transform Equation (1) into a
Riccati comparison equation and provide a sufficient condition for the existence
of a corresponding M-matrix solution. In Section 4, we establish a sufficient con-
dition for the existence of a solution to the quaternion quadratic matrix Equation
(1). Finally, numerical experiments are conducted to verify the existence of the

solution, and a fixed-point iteration method is employed to solve the equation.

2. Preliminaries

This section begins by reviewing some fundamental concepts of quaternions. The
set of quaternions is denoted as H = {a, +a,i +a, ] +a;k}, where

a,,8,,8,,8, € R.Here, a, representsthereal part, while a,a, and a, consti-
tute the imaginary parts. The imaginary units of quaternions satisfy the following

relations:
i2= j2 =k?2 =ijk =-1.

For a quaternion q=a,+4a,i+a,j+aK, its conjugate is defined as
q =a,-aji—a,j—aK,and its norm (magnitude) is given by

||q||=1/a§+af+a§+a32.

For more properties of quaternion matrix equations, one may refer to [14] [15].

Given a set of basis vectors V;,V,,-:-,V,, the space spanned by all their linear
combinations is denoted as Span (V;,V,,-+,V, ) .

For a quaternion matrix AeH™", [A]ij denotes the (i, j) th entry of Aj;
|A| denotes the absolute value of every element in A.

Definition 1 ([13]). Let AeH™", A vector veH" \{0} is called a right ei-
genvector of A corresponding to a right eigenvalue A e€H if the equation

Av =VA4,

hold.

The set of all right eigenvalues of A is denoted by o, (A). Note that o, (A)
is closed under quaternion similarity, if Av=vA hold, then forall aeH\{0},
we have

A(va)= (va)(a’lfta),

so Va is a right eigenvector of A corresponding to the right eigenvalue
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aia.

Definition 2 ([13]). If all off-diagonal elements of AeR™" are non-positive,
then A iscalled a Z-matrix. Any Z-matrix A canbe expressedas A=sl-B,
where BeR™ isanon-negative matrix. When s is greater than or equal to the
spectral radius of B, ie, S> p( B) ,then A is called an M-matrix. Specifically,
when s> p(B), A is called a nonsingular A-matrix; when s=p(B), A is
called a singular M-matrix.

Lemma 1 ([11]). Fora Z-matrix AeR™", itisan M-matrix if and only if there
exists a nonzero vector V>0 suchthat Av>0.

Lemma 2 ([11]). For a Zmatrix AeR™", the following statements are equiv-
alent:

1) A isanon-singular M-matrix;

2) A isnon-singular and satisfies A™>0;

3) Av>0 for vectors v>0;

4) All eigenvalues of A are positive real numbers.

Lemma3 ([13]).If AeR™ isanonsingular M-matrix, then for any Z-matrix

B> A, B isalsoa nonsingular M-matrixand B <A™,

Lemma 4 ([13]). For a matrix AeH"™, the comparison matrix is defined as
A(i,j)=

where 'R[A]ij is the real part of [A]ij;

Lemma 5 ([13]). If AeH™" and A is a nonsingular M-matrix, then A is
nonsingular satisfying |A_1| <A™, and the right eigenvalues of A have positive
real parts.

To obtain the existence of solutions for Equation (1), we need the following
lemma:

Lemma 6 ([16]). For the nonsymmetric algebraic Riccati equation

XCX —XD-AX +B =0, 2)

where A, B, C, D are real matrices of sizes mxm, mxn, nxm, nxn
respectively.
Define an (m + n)>< (m + n) matrix

D -C
M = .
-B A
If M is a singular AM-matrix, then Equation (2) has a unique minimal
nonnegative solution S, and both D-CS and A-BS are nonsingular M-
matrices. When M is an irreducible matrix,both D-CS and A-BS areir-
reducible.
Lemma 7 ([10]). For a class of quadratic matrix equations
X?—EX —F =0, 3)

where E,F,X e R™, E isa diagonal matrix, and F isan M-matrix.
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If F is a nonsingular M-matrix, then there is exactly one A/-matrix solution
in Equation (3), and this M-matrix is nonsingular. If F isan irreducible singular
M-matrix, then Equation (3) has an A/matrix solution, and all elements of each
M-matrix solution are nonzero.

Lemma 8 ([16]). Consider Equation (2). If M is a nonsingular A/-matrix or

an irreducible singular Amatrix, then there exist nonnegative matrices S, and

S, such that
D Cj|!I S I S,||G O
ooals THs e e e
B -A|lS | S 1]0 -G,

where both G, and G, are M-matrices.

Lemma 9 ([16]). Consider Equation (2) and its dual equation
XBX — XA-DX +C =0, (5)

If M isanonsingular M-matrix, then the nonnegative matrices S, and S,
satisfying (4), with G, and G, being M-matrices, are the unique minimal
nonnegative solutions of Equations (2) and (5), respectively. In this case, both G,

and G, are nonsingular, and the matrix
IS,
S |

3. Sufficient Conditions for the Existence of the M-Matrix
Solution to the Comparison Equation Corresponding to
Equation (1)

is also nonsingular.

In this section, we consider rewriting Equation (1) to obtain the corresponding
comparison equation. We prove that under certain conditions on the coefficient
matrix of the comparison equation, its solution exists.

Assume that X =al =Y («a >0), this assumption helps construct M-matri-
ces, allowing us to utilize their excellent properties. This lays a crucial foundation
for our subsequent use of the fixed-point iteration method and proving the exist-

ence of solutions. Therefore, Equation (1) can be rewritten as

Y2-Y (al)-(al +B)Y +(a’l +aB+C)=0, (6)
and its coefficient matrix is
al -1
K= 5 .
~(e’1+aB+C) al+B
Consider the comparison Equation (6) as follows:
Y2-Y (al)~(al +R(B))Y +|o’l +aB+C|=0. (7)

Therefore, K is the comparison matrix of K, and

R al -1
K= .
~|e*1+aB+C| al+R(B)
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Theorem 1. For the comparison matrix
R al -1
K= 5 ,
~a’1 +aB+C| al +R(B)
assume that

H; = max

{_R(bi)+ R*(b)-4R(c;) |~7i (ci)
2 ’|\7i(bi)

where i=12,---,n,and J;, J P> J, denote its three imaginary parts respec-
tively, when « > max {,ui + Z?:1|Cij | -R(b) ,1} , K isan M-matrix.
| J#i
Proof. Suppose the comparison matrix
R al —1
K= ,
~a’1 +aB+C| al +R(B)

where al =diag(a,a, -+, a). According to Definition2, it is obvious that K is

a Z-matrix.
From the definition of 4, we have g >1. Therefore, when

a>m_ax{,ui+Z?-_1|Cij|—72(b,),l}, a >1 always holds.
i i

When V= (1,1, e ,1)T , we have

. al ~
= ~|o*1 +aB+C| aI+R(B):|V
- 1 }
a-1
a-1
= —|a2+abl+c11|—|clz|—-~-—|c1n+a+R(bl)
—|az2+ozb2+czz|—|021|—-~~—|cZn +a+R(b,)
_—‘az +ab, +c,, |—|cn1|—---—|cn(n_l) +a+R(b, )_
Since a >1, and
—|a2+abl+cll|—|clz|—--~—|cln|+a+72(b1)>0,
—|a2+abz+022|—|c21|—---—|02n|+a+R(bz)>0,
—|052+o¢bn+cnn ey Cony| @+ R(by)>0.

~ A

Therefore, Kv>0. According to Lemmal, K isanonsingular A-matrix.
O

Corollary 1. According to Lemma 6, Equation (7) has a nonsingular A~matrix
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as its solution.

4. Existence of Solutions to Quaternion Quadratic Matrix
Equations

This section primarily establishes the existence of solutions for the quaternion
quadratic matrix Equation (1) by comparing it with the existence of solutions for
Equation (6) in the previous section.

Consider Equation (6) and its dual equation
Z(a*1+aB+C)Z-Z(al +B)—(al)Z+1=0, (8)
we have the following theorem.
Theorem 2. Under the assumption of Theorem 1,
al -1

| -|e?1 +aB+C| al +R(B)

is an M-matrix. Let @ be the minimal nonnegative solution of the comparison
Equation (7), then the quaternion Equation (6) has a solution @ satisfying
|(D| < ® . Moreover, the right eigenvalues of the nonsingular matrix al —® have
positive real parts, and @ is the unique numerical solution of Equation (6). Simi-

larly, the dual matrix equation corresponding to Equation (7) is

Z|e*1 +aB+C|Z-Z(al +R(B))-(al)Z+1=0, 9)

let ¥ be the minimal nonnegative solution of Equation (9), then Equation (8)
has a solution ¥ satisfying |‘P|S‘i’ . Moreover, the right eigenvalues of the
nonsingular matrix (al+B)— (a2 l+aB+C ) Y have positive real parts, and ¥ is
the unique numerical solution of Equation (8).

Proof. Define the linear operators £:H"™ —H™" and £:R™ —R™ as

follows:
L(Y)=Y (al)+(al +B)Y, L(Y)=Y(al)+(al +R(B))Y.
Since
[[’(Y ):|ij :[Y ]ij a+(a+bij)[Y]ij ! [E(Y ):Lj =(Za+R(biJ))[Y ]ij ! (10)

both £ and £ are invertible, where R(b )> 0.
Below we prove that f(Y)=L" (Y + a’l +aB+ C ) has a fixed point in the

compact convex set W={Y:[Y|<®} . Assume E=L(Y),then we have:
[EL,|=[[Y], @+ (o +0y)[Y]
|(zs () 1v), +(r 1))
>[2a+ R (b, ) [Y],
:(2a+R(bij))‘[£_l(E)]ij‘.

The above inequality holds because
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[¥], L spanfi[], (Y], K[Y], LY, 101, 5], K
Taking the inverse linear operator on both sides of
[E],|> (22 +R (b ))‘[[1( )],

(8= £ ()

and using (10), we have

Therefore,
V=] (Y)
‘ 1(Y2+ a I+aB+C))‘
<L+ (a1 +aB+C)|
<t (|Y| +|a I+aB+C|)
( 2 |a I+aB+C|)
Therefore

f(W)ew.

By Brouwer’s fixed point theorem [17], f has a fixed pointin W, so Equa-
tion (6) has a solution satisfying |<D| <®. Let

al -l g «! B
:LZI+0:B+C —(al+5)} " ha I+aB+C| (ol +R(B ))]

Lo Vs 7

R=ql-®, R=al -,

S=(al+B)—(a’l +aB+C)¥, S=(al +R(B))-|a’l +aB+C|¥
From Equations (6) and (8), we obtain
R 0
HT =T , (11)
0 -S
At =R 2| (12)
0 -S

~

Since K is a nonsingular M-matrix, according to Lemma9, T is nonsingu-

lar. Define the comparison matrix of T as

'FN: 1~ —‘P'
- 1

which is clearly a nonsingular M -matrix. Therefore, according to Lemma5, T
is nonsingular.
According to Lemma 8, R isa nonsingular AM-matrix. Define the comparison

matrix of R as R according to Lemma 4. Since
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R([R],)=a-R([@],)>a-[][>a-[],

i
[R]ik =|[q)]ik| < [(le !

therefore R>R. According to Lemma 3, it is obvious that R isa nonsingular

M-matrix. Then, according to Lemma 5, we can know that the right eigenvalues

of R have positive real parts. Similarly, the right eigenvalues of S also have

positive real parts.

Here, we only focus on the right eigenvalues of the complex matrix representa-
tion of quaternion matrices. Since (11) is a similarity transformation, and it is
pointed out in Section 2.1 of [13] that the real parts of the right eigenvalues of
quaternions remain unchanged under similarity transformation. Therefore, H

has exactly 2n complex right eigenvalues in C, and exactly 2n complex

+

right eigenvalues in C_. Thus, the right vector space spanned by the columns of
{q)} is exactly the invariant subspace corresponding to the right eigenvalues
with positive real parts.

Finally, we prove the uniqueness of the solution. Assume that |:Y} corre-

sponds to the same invariant subspace. Therefore, there exists a nonsingular ma-

trix V such that
I |
V= .
o]

From this, we obtain V =1 and Y =® . The proof of uniqueness for ¥ is sim-
ilar to the above.

O

Corollary 2. According to Theorem 1, we know that the solution to Equation

(6) exists and is unique. Since Equation (6) is obtained from Equation (1) through

the transformation X =al —Y , the solution to Equation (1) also exists and is

unique.

5. Numerical Example

In this section, we provide a numerical example to illustrate that the numerical
solution of the equation considered in this paper exists.
Example 1. For Equation (6), take
B_{6+1.5i+0.8j+1.2k 0 }
0 5+0.9i+1.5j+0.7k
0.4+0.08i+0.06j+0.05k  —0.15+0.03i +0.02 j +0.04k
- {—0.12 +0.02i+0.05j+0.03k  0.5+0.07i+0.09j+0.06k }

We can obtain g =1, a>1 satisfying Theorem 1. Here, assuming a =2,

consider the fixed-point iteration scheme

Yo.=(2al+ B)’l(\(k2 +a’l+aB+C),
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with Y, =0. After 34 iterations, we obtain an approximate solution to Equation
(6)
0.794-0.132i+0.846j+1.724k  —0.010—0.004i +0.003 j — 0.014k
- {—0.008 —0.001i +0.006 j—0.013k  0.791-0.408i +0.754 j +1.622k |

The resulting relative error norm is

Jr)-] ~0.06884106.
[2a1 +B|

Figure 1 shows the decreasing trend of relative error and absolute error with
the number of iterations, clearly indicating that the fixed-point iteration method
exhibits linear convergence.

Through calculation, the right eigenvalues of |l —Y can be obtained as fol-

lows

4, =1.2041+1.9256i, A, =1.2041—1.9256i,
4, =1.2113+1.8341i, 2, =1.2113-1.8341i.

Therefore, Y is an approximate numerical solution. Since X =al —Y , then

we can get
|1.206+0.132i-0.846 j —1.724k  0.010+0.004i —0.003 j +0.014k
1 0.008+0.001i —0.006 j +0.013k  1.209 +0.408i —0.754 j —1.622k |’

and X is an approximate numerical solution of Equation (1).

Convergence Process of the Fixed-Point Iteration Method

) Relative residual Convergence History ) Absolute residual Convergence History
10 10

102 10°
= ©
© =]
3 10+ B 402
3 e
P e
2 =2
s 10 @104
Q Qo
o [Target tolerance 107 _ _ _ - <

10 10®

107 10°®

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Number of iterations Number of iterations

Figure 1. Relative residual and absolute residual vs iteration count.

6. Conclusions

This paper proposes an effective numerical method for the special quaternion
quadratic matrix equation X*+BX +C =0, where the coefficient matrix B is
a diagonal matrix. By introducing the key transformation X =al -Y , we trans-
form the original Equation (1) into a special form of Riccati equation, and suc-
cessfully utilize the theories of comparison matrices and A-matrices to establish
sufficient conditions for the existence of solutions.

Numerical examples demonstrate that the fixed-point iteration method con-
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structed based on this theory can effectively converge to the numerical solution of
the equation, verifying the correctness of the proposed theory and the feasibility
of the method. The results of this research have potential application value in
fields such as quantum mechanics and robotics mentioned in the introduction.
For example, in quantum mechanics, when the system Hamiltonian possesses spe-
cific symmetries, its mathematical description can be simplified to the equation
form addressed in this paper; our method provides a solid computational founda-
tion for the quantitative analysis of such problems. In robotics learning and con-
trol theory, this solution offers new ideas and tools for handling a class of quad-
ratic optimal control or filtering problems with diagonalized system matrices.
However, the method proposed in this paper also has certain limitations. First,
the existence condition for solutions given in Theorem 1 is a sufficient condition
rather than a necessary one. This means that even if this condition is not satisfied,
the equation may still have solutions, but our theoretical framework cannot guar-
antee their uniqueness, and the convergence of the fixed-point iteration method
becomes uncertain. Second, the core limitation of this paper lies in the assumption
that matrix B must be diagonal. Although this assumption simplifies the analy-
sis and enables the application of M-matrix theory, it also restricts the scope of
application, when B is a non-diagonal matrix, constructing effective transfor-

mations and establishing corresponding theories will face fundamental challenges.
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