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1. Introduction

Part I of this series established the geometric foundation of NUVO spaceas a con-
formally flat manifold (M,g) determined by a flat background metric 1 and
a smooth, positive scalar field A:M — (0,%). The induced metric g =A% de-
fines a unit-constrained frame structure that fixes local scaling while preserving
the global topology of M ; compare standard conformal geometry texts [1]-[3].
Unlike general relativity or Brans-Dicke theory, the NUVO framework treats the
conformal factor A as a geometric field intrinsic to the background rather than
as an external scalar coupled to curvature, thereby preserving flat topological
structure while allowing curvature to emerge from scalar modulation.

Purpose of the present paper. The objective of Part II is to develop the com-
plete analytical and variational machinery required for applications of NUVO ge-

ometry to dynamical and gravitational problems. We extend the purely geometric
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structure of Part I to include:

1) the weighted differential operators—gradient, divergence, and Laplace-Bel-
trami—and the associated Stokes and Gauss theorems in the A -weighted meas-
ure;

2) explicit curvature formulas for the conformal metric g =A% together with
energy identities and Bochner-type relations [1]-[3];

3) the variational and geodesic principles governing motion on NUVO space,
including conservation currents defined purely by scalar geometry;

4) the existence, regularity, and stability of weak solutions to representative
nonlinear scalar field equations [4]-[6].

These developments complete the mathematical backbone of NUVO space, al-
lowing the scalar field A to be treated as a geometric quantity obeying well-
posed equations rather than an auxiliary rescaling factor.

Structure of the paper. Section 2 introduces the A -weighted differential op-
erators and establishes the divergence and Stokes theorems. Section 3 derives the
curvature tensors and energy identities, culminating in the scalar curvature func-
tional. Section 4 formulates the variational principle for geodesic motion and the
conservation laws for the scalar-weighted (sinertia) current. Section 5 presents the
analysis of nonlinear scalar field equations, proving existence and regularity of
solutions under general structural conditions. Section 6 collects analytical exam-
ples and limiting cases, while Section 7 summarizes the results and outlines the
transition to the physical applications pursued in later papers, including the grav-
itational field equations and PPN analysis.

Notation and conventions. Indices are raised and lowered using the back-
ground metric 7 unless otherwise stated. Differential operators V, and A,
denote the flat background gradient and Laplacian, while V, and A, denote
their counterparts associated with g = A°7. Volume and surface measures satisfy
dV, =2"dV, and dS,=2""dS, . All functions and fields are assumed suffi-
ciently smooth for the stated operations to be well defined.

Relation to subsequent work. The formulas and identities established here will
be used directly in the derivation of the NUVO gravitational field equation and its
weak- and strong-field limits. They also supply the analytical tools for defining
conserved quantities, variational energies, and perturbation theory in the scalar

framework. For the geometric base of this paper, see Part I [7].

2. Weighted Differential Operators and Divergence
Theorems

The conformal metric g =A% introduces a natural A -weighted calculus on
M . All differential operators associated with g can be written explicitly in
terms of the background operators defined by 7 and the scalar field 4. Basic
conformal operator relations appear in standard references [1]-[3]. This section
establishes the gradient, divergence, and Laplace-Beltrami operators, together

with their integral identities and Stokes-type theorems. The analysis is purely ge-
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ometric and independent of any physical interpretation.

2.1. Weighted Gradient and Divergence

Let (M ,77) be a flat n-dimensional manifold with coordinates x = (xl,..., x”)
and background metric 7, . For any smooth scalar field f and vector field
X = X'8,, the gradient and divergence with respect to g are

—ai( |detg|xi). (1)

Vif =g's fo,, div X =
! ’ |det g

Since detg=A"dets, one obtains the compact formula

div,X = A "div, (4"X). ©)

Equation (2) defines the A -weighted divergence on NUVO space.

Remark 1. The expression (2) shows that all integral identities involving diver-
gence on J can be expressed as weighted identities on the flat background 7.
This observation underlies the A -weighted versions of the divergence and Stokes

theorems proved below.

2.2. Integral Identities

Let dV, = /1"an denote the volume measure of ¢. For any compact domain
Qc M with smooth boundary 0Q and outward ¢ -unit normal n, integra-
tion of (2) gives

[ divyxdv, = [ A7div, (4"X)A"dV,
= [ div, (2"X)av, 3)
= [ ,n(X,n,)A"ds,.
Because n= /1‘1n,, and ng = /1”'1d8,7 , the surface term becomes
n(X.,n,)A"dS, = An(X,n,)ds, =g(X,n)ds,.

Hence the fundamental identity:
Theorem 2 (Divergence theorem on NUVO space) For every smooth vector
field X and domain Q< M with smooth boundary,

[ divyXdv, =[ _g(X,n)ds,. 4)

Proof. The result follows directly from (2), the change of measure dV, = ﬂ”dV” ,
and the relation n, =A4n between the unit normals. ]

Corollary 1 (Gauss identity). For any scalar field f and vector field X,
[ fdivyxdv, =—[ g(Vef,X)dv,+[ fg(X,n)ds,.

Remark3. Setting A =1 reduces (4) to the classical Stokes theorem on the flat
background (M, 7), confirming internal consistency of the formalism.

2.3. Weighted Laplace-Beltrami Operator

The Laplace-Beltrami operator A, acting on a scalar function f is defined by
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A, f =div, (Vg f). Using g"=27" and formula (2), we compute
A f=A4"div, (29", 10,)
=276, (A"A7%n"a; 1) (5)
=27%(A,f+(n-2)V,0-V,f), p=log .

Proposition 4 (Explicit Laplace-Beltrami operator). On NUVO space
( M,g= /1277) the scalar Laplace-Beltrami operator is

A f=27%(A,f+(n-2)V 0V, f), p=logi. (6)

Remark5. The operator A is self-adjointin L* (M ,ﬂ”dV”) and satisfies the
usual maximum and mean-value principles; see, e.g., [4] [5].

Remark 6. Equation (6) immediately implies self-adjointness of A in the
weighted Hilbert space L? (M ,l”dV”) :

[, fAhdv, =[ hA fdv, f,heCl(M).

2.4. Weighted Sobolev Spaces

To analyze integral and variational properties, we introduce the appropriate func-
tional framework.
Definition 7 (Weighted Sobolev space). Let 1 be a positive function bounded

above and below on M . Define
W?(M)={uel?(M,2'dV,):V,ue (M, 4"V, )}.
The norm is
2 2 2\ 4n
Julfse = [, (9,0 + 1o 270,

Lemma 8 (Poincardinequality). If A satisfies 0< A, <A(X)< A, <o,

then there exists C >0 such that
[ Ju-af* 27av, <c| [v,uf 2"av,,

forall ueW;?(Q),where U isthe A -weighted meanof u on Q.

Compact embeddings and Poincaré inequalities in the weighted setting follow
from standard arguments in elliptic theory [4] [5].

Remark 9. The space W} forms the natural variational domain for elliptic
equations involving A, as will be used in Section 5.
3. Curvature and Energy Identities

We next compute the curvature tensors associated with g =A°7 and derive sev-
eral integral and variational identities that will later underpin both field equations
and conservation principles on NUVO space.

3.1. Ricci and Scalar Curvature of a Conformal Metric

Let V, denote the Levi-Civita connection of the flat background 7, and set
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¢ =log A . The connection coefficients of g =A°7 were obtained in Part I as
k k k ke
I =6%0,9+6" 09 =131 0,9.

Theorem 10 (Curvature of a conformal metric). For g =A% with ¢=loga,

the Ricci and scalar curvatures are
. 2
Ric, =~(n-2)(Vip-V,0@V,0)-(a,0+(n-2)|v,f 1 )

R, =-2(n-1)A"a,2~(n-1)(n-2) 27|V, . ®)

g

Proof The result follows from classical conformal transformation formulas for

curvature (see, e.g., Chavel and Lee [1] [2]; also Jost [3]). Starting from the

k
connection difference tensor Ckij = Fkij —(F,,) - direct computation of

R, =0,C",-9,C", +C*,C", —C ,C"; and its traces yields (7) and (8). [J

4j
Corollary 2 (Flatness condition). If A is constant, then RiCg =0 and
R, =0. Hence constant A corresponds to a globally flat geometry identical to
(M ,77) up to overall scale.

Remark11. Curvature is governed entirely by first and second derivatives of 1.
Gradients V, A produce anisotropic corrections, while A 1 encodes isotropic

dilation or compression of the conformal volume element.

3.2. Bochner and Energy Identities

The curvature expressions above give rise to standard energy identities for scalar
fields on NUVO space.
Proposition 12 (Bochner identity on NUVO space). For every f eC*(M),
1 2 262 o
>4, Ve f[ =|VEf[ +Ric, (VO F,VOf)+VIf-vo(Af). 9)
Proof. 1dentity (9) follows from standard Weitzenb6ck formulas and remains
valid for any Levi-Civita connection. U
Integrating (9) over a compact domain and applying the divergence theorem of

Section 2 gives

Jolv £[ av, + [ Ric, (v2£,v2 t)av, ==, o,

votf )ds

Such relations will be central to later energy estimates and stability analyses.
Bochner and Weitzenbock identities in this conformal setting are standard [1]
[3].

3.3. Scalar Curvature Energy Functional

The scalar curvature R; admits a natural global integral interpretable as a con-
formal energy of the field 4.

Definition 13 (Scalar curvature energy functional). Define

£[2]=], Ryav, j[ (n-1)2"A,2-(n-1)(n-2)A"*|V, 4| }dv (10)
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Proposition 14 (First variation). The first variation of £[A] under
A A+eh is

=-2(n-1)[ A"*(A,h+(n-2)27V, -V, h)dV,.

e=0

dig[,ueh]

€

Stationary points of £ therefore satisfy
_ 2
A A+(n=2)A7|V, 4] =0, (11)

which is precisely the harmonic condition for the conformal factor in dimension
n>2.

Remark15. Equation (11) defines the flat-space harmonic gauge for NUVO ge-
ometry. In subsequent sections this variational structure will extend to geodesic

and scalar-field equations governing dynamics on (M, g).

4. Variational Geodesics and Conservation Currents

The conformal structure (M 0= 1277) admits a natural variational principle
that generates geodesic motion and corresponding conservation laws. This section
establishes the variational derivation of the geodesic equation, identifies the asso-

ciated conserved current, and outlines stability properties of nearby trajectories.

4.1. Variational Principle and Geodesic Equation

Let y:[a,b] >M beasmooth curve with velocity 7 =dy/dt. The action func-

tional

s[y]=[ 2(r (V)] ()], ct (12)

defines the scalar-weighted arc length on NUVO space. Its stationary curves co-
incide with the geodesics of ¢ .

The Euler-Lagrange derivation uses standard variational calculus; see, for in-
stance, Evans [5].

Theorem 16 (Geodesic equation on NUVO space). A smooth curve y is sta-
tionary for S[y] if and only if it satisfies

K AT XX =0, T =8%0,0+8 00 -nn"' 0,0, (13)

where @ =1logA and derivatives are taken with respect to the background coor-
dinates of 7.
Proof Let L(xX)= A(X)”X”” . The Euler-Lagrange equations

i(ﬁx,k L) - 8xk L=0 give

dt
d Uijj . akﬂijxixj
i LT I R [ Ny N}
dt{nxuj T

Because 7 is flat, 0,77; =0. Expanding the total derivative and simplifying
yields the Christoffel expression (13). O
Corollary 3 (Affine parametrization). Reparametrizing y by the g -arc
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length Szﬁﬂ(y(r))”ﬂr)"”df renders "7"9 constant, giving an affine pa-

rameterization for which the geodesic equation retains the form (13).

Remark 17. The scalar factor A4 rescales local arc length, so that motion in
regions of larger A appears contracted when measured by 7. Geodesics thus
represent extremal scalar-weighted lengths rather than extremal coordinate dis-

tances.

4.2. Existence, Uniqueness, and Energy Conservation

Standard ODE theory provides local well-posedness for (13).

Theorem 18 (Existence and uniqueness). If 1€ Cl’l(M ) and 7 is smooth,
then for any initial position and velocity (X,,V,) there exists a unique local geo-
desic y(t) satisfying (13). The solution depends continuously on initial data.

Proof. The right-hand side of (13) is locally Lipschitz in (X, X) for 1eC',
hence the Picard-Lindel6f theorem applies. U

Proposition 19 (Energy integral). Along any geodesic of ¢ the quantity

E= 9(717}):/1277inin
is constant.

Proof. Taking the covariant derivative of E along y and using V ,g=0
yields dE/dt=0. O

Remark 20. The constancy of E expresses the reparametrization invariance
of the variational principle. Null, timelike, and spacelike geodesics in (M , g)

correspond to 7 -trajectories scaled by A . Local well-posedness follows from
ODE theory with Lipschitz right-hand sides (textbook methods; cf. [5]).

4.3. Sinertia Current and Continuity Law

The scalar weighting that defines S[y] also determines a conserved current for
any scalar density p.
Definition 21 (Sinertia current). Let p be a scalar field and u” a ¢ -nor-

malized vector field, ¢ Wu"uv =-1 (or +1 in Euclidean signature). Define
J# = Apu”. (14)

The term sinertia (from “scalar inertia”? denotes the effective inertia carried by
the scalar field itself, representing a conserved flow of scalar-weighted momentum
through the geometry.

Proposition 22 (Continuity equation). The current J* is divergence-free in
g,
V83# =0« div, (Apu)=0.

Proof. Applying V9 and using div, (4pu)=2"div, (i”*lpu) from formula
(2) shows that the A -weighted measure renders the flux through 0Q zero for
compact domains, establishing conservation. U

Remark 23. The continuity law expresses the conservation of scalar-weighted
density along flow lines of u . In the dynamical interpretation of later papers, J*
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will represent the conserved sinertia flux associated with geodesic motion or scalar

field evolution.

4.4.]acobi Fields and Stability of Nearby Trajectories

Let 7,(t) beasmooth one-parameter family of geodesics and
J ('[):(95‘}/S (I)L:O the corresponding Jacobi field. Differentiating (13) with re-
spectto s gives

VZI+R(J,7)7 =0, (15)

where R isthe Riemann curvature tensor of (.
Theorem 24 (Stability estimate). If A and its first two derivatives are bounded
on a compact region K — M , then any Jacobi field J alonga geodesic y c K

satisfies
d? 2 2
L <chl:,

for some constant C depending only on "V,Z]/l" . Hence perturbations of

nearby geodesics remain bounded in K .
Proof. The estimate follows from the energy identity obtained by contracting
(15) with J and substituting curvature bounds derived from (7). ]
Remark25. Bounded curvature of A ensures exponential stability of geodesic
congruences within finite domains, providing the geometric foundation for later

analyses of focusing and defocusing phenomena.

5. Nonlinear Scalar Field Equations on NUVO Space

The scalar field A that defines the conformal metric g =A%) can itself satisfy
nonlinear partial differential equations whose structure is compatible with the 4
-weighted geometry. We now formulate and analyze a general class of such equa-
tions, prove existence and regularity of weak solutions, and discuss symmetry,

uniqueness, and stability.

5.1. Model Equations and Variational Structure

We consider scalar field equations whose structure is compatible with the A -
weighted geometry, framed variationally via standard elliptic PDE methods [4] [5]
and monotone operator theory [6]. Such nonlinear forms arise naturally in con-
formally invariant scalar-tensor and nonlinear- o models, where the potential
] (/1) encodes self-interaction or curvature back-reaction. The present choice
represents the minimal structure preserving ellipticity and geometric self-con-
sistency, consistent with recent analyses of conformal scalar-tensor analogues and
emergent-gravity formulations [8] [9].

-AA=F (A,Vq/l) or equivalently —A A= Q(A,Vg/l), (16)

where F and § satisfy structural conditions ensuring ellipticity and mono-
tonicity. When F derives from a potential U(A4) through F(1)=U’(1),
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these equations admit a variational formulation.

Definition 26 (Energy functional). For a smooth potential U :R" — R, define
1 2 n
I[A]=], [§|v,,/1| -u (xl)jl av,, (17)

where Q<= M isabounded domain. Critical points of Z satisfy
. 2,
—AA-nA7 VA =U'(2), (18)

interpreted weakly in W} (Q).

Remark?27.The A" factorin (17) arises from the volume element av, = ﬂ”dV,,
and ensures that the Euler-Lagrange equations correspond to the Laplace-Bel-
trami operator A, actingon A.The Euler-Lagrange correspondence and weak

formulation follow the classical framework [4] [5].

5.2. Existence of Weak Solutions

We now prove existence of minimizers for Z[4] under standard coercivity and
monotonicity hypotheses.
Theorem 28 (Existence of minimizers). Assume U C? (R*) satisfies:

U (2)

/12
2) lower boundedness: U (4)>-C, for some C,>0;
3) monotonicity: AU'(1)>0 forall 1>0.
Then 7 attains a minimizer AeW;?(Q) with A>0 that satisfies the weak

1) coercivity: lim,_ =+00;

equation (18). Positivity and regularity are obtained by maximum principle and
elliptic estimates [4] [5].

Proof. Conditions (i)-(ii) guarantee coercivity and weak lower semicontinuity
of 7 on W,;?(Q).The direct method of the calculus of variations therefore yields
a minimizer. Positivity follows by the maximum principle applied to the weak for-
mulation. U

Corollary 4 (Regularity). If U eC* (R*) and 0Q is C“,then any weak so-
lution A of (18) belongs to C**“ (ﬁ) .

Proof. Apply standard elliptic regularity for uniformly elliptic operators with
smooth coefficients (cf. Gilbarg-Trudinger). (cf. classical elliptic regularity [4] [5].)

O

5.3. Symmetry and Decay of Ground States

On the full space R", finite-energy solutions exhibit strong symmetry properties.
Theorem 29 (Radial symmetry and monotonicity). Let A >0 be a finite-en-
ergy solution of —A,2=U"(1) on R" with U’(1)4>0 and U(0)=0.Then
A is radially symmetric and strictly decreasingin I = |X| . The proof follows the
moving planes method of Gidas-Ni-Nirenberg [10].
Proof. The proof follows the method of moving planes of Gidas, Ni, and Niren-
berg: one reflects the solution about a plane and uses the maximum principle to

enforce equality, obtaining spherical symmetry. |
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Corollary 5 (Asymptotic decay). Under the assumptions of Theorem 29, A(r)
satisfies A ( r) — A, as r— o with exponential or power-law decay depending
on the asymptotic form of U’(1).

Remark 30. Radial symmetry ensures that curvature and energy densities de-
rived from A remain isotropic, which will simplify subsequent applications to

spherically symmetric gravitational solutions.

5.4. Uniqueness and Linearized Stability

To study stability and uniqueness of weak solutions we examine the linearized
equation obtained by setting A =A4;+¢ch in (16).
Theorem 31 (Uniqueness). Suppose F (/1) in (16) satisfies a Lipschitz-mon-

otone condition
(F(4)-F(4))(4—4,)>0 forall 4,  4,.

Then the weak solution of (16) in W, (Q) is unique. This is a standard ap-
plication of monotonicity methods [6].

Proof. Subtract the equations for two solutions, multiply by (4 —4,),and in-
tegrate. The monotonicity condition forces the difference to vanish. O

Theorem 32 (Linearized stability). Let 4, be a smooth stationary solution of
(16) and h asmall perturbation satisfying

~Agh—8,G(4, V% )h=0.
If aﬁg(ﬁo,vgﬂo)w in Q, then the quadratic form

Q[h]:_[g(|Vgh|2 +alg(/10,vgﬂo)h2)dvg

is positive definite and the equilibrium /4, is linearly stable.
Proof. Multiply the linearized equation by h and integrate by parts using the
divergence theorem of Section 2. Positivity of 9,G implies Q[h]>0. U
Remark 33. The positivity of the quadratic form Q[h] ensures that small per-
turbations of A4 produce bounded oscillations in the weighted energy norm, es-

tablishing stability of scalar configurations in the absence of external forcing.

6. Analytical Consequences and Examples

The preceding sections provide the complete analytic framework for scalar geom-
etry on NUVO space. We now illustrate several limiting and representative cases
that demonstrate how the A -weighted operators, curvature, and variational

structures behave in practice.

6.1. Harmonic and Constant Limits

When A is constant or harmonic with respect to 77, the conformal geometry of
(M,g) reduces to the flat background.

Proposition 34 (Harmonic limit). If 1 satisfies AA=0, then Ric, =0
and R, =0.Consequently, (M,g) islocally flat and all geodesics coincide with
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straight lines in 77. Substituting A 4 =0 into the conformal curvature formulas
(7)-(8) [1]-[3] eliminates all curvature terms.
Proof. Substituting A,A=0 into (7) and (8) eliminates all curvature terms. [
Corollary 6 (Constant field). For A=/, >0,onehas g=A7, V,=V,,and
Ay =2 ZAU. The entire scalar calculus reduces to uniform rescaling of 7.
Remark 35. This limit verifies that the NUVO calculus is a genuine generaliza-
tion of flat geometry: the background metric 7 is recovered when the scalar field

ceases to vary.

6.2. Radial Power-Law Fields

Nontrivial curvature arises for spatially varying 1. A simple and analytically

tractable case is the radial power-law profile
A(r)=1+er™®, &,p>0, (19)
in n-dimensional Euclidean background 7; = ;. These computations are con-

sistent with the general conformal-curvature identities [1] [2].
Lemma 36 (Gradient and Laplacian). For A4 of the form (19),
V,A=—per P?x, A A=p(p-n+2)er 2
Proposition 37 (Asymptotic curvature). For A given by (19), the scalar cur-
vature to first order in ¢ is
R,=—2(n-1)p(p—-n+2)er 2 +0(82).
Hence curvature decays as r(pe2)

p>0.

and the geometry is asymptotically flat for

Proof. Substitute the expressions for v, 4 and A, A into (8) and retain terms
linearin ¢. (]

Remark 38. Choosing p=n-2 yields A 1=0, so the metric becomes con-
formally harmonic and curvature vanishes. For other exponents, curvature be-
haves as an inverse power of distance, resembling long-range fields in classical
potentials.

6.3. Curvature Consistency Check

The energy and curvature formulas derived in Theorem 10 can be cross-verified

by explicit computation for a Gaussian-type scalar field. Let
A(X)=1+ae?, a,f>0.
Then
- -pr? - -pr? 2
V,A==2apxe”", A A=2ape”" (2817 -n).
Substituting into (8) gives
| (n=2)aprie™ +(2pr" - n)(1+ ae )

frrae | 0

R, (r)=-4(n-1)ape™”
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For small ¢ and large r, R, ~8(n-1) af?rie ", confirming smooth de-
cay of curvature and finite total scalar energy.

Remark 39. Equation (20) explicitly verifies the analytic consistency of the sca-
lar curvature formula (8) and demonstrates that &£ [/1] from (10) is convergent

for rapidly decaying scalar profiles.

6.4. Summary of Analytic Behavior

1) The conformal geometry (M ,g= /1277) is flatifand onlyif A isharmonic
with respect to 7.

2) For power-law A(r)=1+¢r ", curvature decays as r (**”, ensuring as-
ymptotic flatness for p>0.

3) Rapidly decaying fields such as Gaussian profiles yield finite total curvature
energy £[1].

Remark 40. These results demonstrate that the analytic and variational frame-
works derived for NUVO space reproduce familiar geometric limits of classical
conformal metrics while remaining fully consistent with the weighted calculus de-

veloped in previous sections.

7. Discussion and Conclusions

The results developed in this paper complete the analytic and variational con-
struction of NUVO space. Together with the geometric framework established in
Part I, they define a self-consistent conformal calculus that is both mathematically
rigorous and structurally compact. The scalar field 4 now possesses a precise
analytic meaning: it is a positive function that determines not only the conformal
metric g =A’7 but also the weighted differential operators, curvature tensors,
and variational energies actingon M .

Summary of principal results.

1) The A -weighted gradient, divergence, and Laplace-Beltrami operators were
derived in closed form, and the corresponding divergence and Stokes theorems
were proven for the measure dV, = 1"dV, .

2) The curvature tensors of g =A%) were computed explicitly, leading to the
Ricci and scalar curvature formulas (7)-(8) [1]-[3]. The scalar-curvature energy
functional & [/1] and its first variation were obtained, yielding the harmonic
condition (11) for stationary points.

3) The variational principle (12) generated the geodesic Equation (13), whose
integral of motion E = g(}?,j?) is conserved. The associated sinertia current
J# =pu” obeys the continuity law V7J* =0.

4) Existence, regularity, and symmetry of solutions to the nonlinear scalar equa-
tions (16) were established under general monotonicity and coercivity conditions
[4]-[6] [10], ensuring that the scalar field A defines a well-posed elliptic prob-
lem.

5) Analytical examples demonstrated that harmonic 4 yields exact flatness,

while power-law and Gaussian profiles produce asymptotically flat curvature con-
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sistent with theoretical predictions.

Conceptual implications. The mathematical structure presented here shows
that a single scalar degree of freedom A suffices to encode both local curvature
and global scaling on a flat background. Weighted differential operators and cur-
vature expressions derived from A are internally consistent, conserve total sca-
lar flux, and reduce to standard Euclidean or Minkowskian forms in the harmonic
limit. The theory thus supplies a conformally exact but globally flat alternative to
conventional curved-space formalisms.

The coercivity and monotonicity assumptionson U (1) ensure bounded cur-
vature and prevent collapse of the conformal volume element, thereby excluding
geometric singularities. In asymptotically constant regimes they guarantee global
flatness, providing natural boundary conditions for physical space-times.

Outlook. The analytical foundations developed in Parts I [7] and II provide the
necessary tools for constructing the NUVO gravitational field equation, in which
the curvature and variational principles derived here determine the effective dy-
namics of matter and light. The next paper in this sequence, “NUVO Gravity
Equations and Parameterized Post-Newtonian Analysis,” will apply these opera-
tors to weak- and strong-field regimes, test classical limits against observational
data, and explore the transition between scalar-modulated geometry and standard
general relativity.

Concluding remark. From the geometric definition of g =A% to the varia-
tional, differential, and energetic structures detailed here, NUVO space is now
fully defined as a mathematical object. All subsequent physical models can be de-
veloped directly on this foundation, ensuring analytic coherence across gravita-
tional, quantum, and cosmological domains.

The present analysis remains entirely classical. Extending the NUVO frame-
work to quantum regimes or to explicit coupling with the Standard Model would
require additional structure—such as operator-valued fields or spinor bundles—
beyond the scope of this work but representing natural directions for future de-

velopment.
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