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Abstract 
We develop the analytic, geometric, and variational framework on NUVO 
space, the conformally flat manifold ( ),M g  with 2g λ η=  introduced in Part 
I. Weighted divergence and Stokes theorems, curvature identities, and the La-
place-Beltrami operator are derived in full detail. We construct the variational 
principles governing geodesic motion and scalar currents and prove the exist-
ence and regularity of solutions to representative nonlinear scalar field equa-
tions. Together with Part I, this paper provides the mathematical foundation 
required for subsequent applications to gravitation and field dynamics. 
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1. Introduction 

Part I of this series established the geometric foundation of NUVO space as a con-
formally flat manifold ( ),M g  determined by a flat background metric η  and 
a smooth, positive scalar field ( ): 0,Mλ → ∞ . The induced metric 2g λ η=  de-
fines a unit-constrained frame structure that fixes local scaling while preserving 
the global topology of M ; compare standard conformal geometry texts [1]-[3]. 
Unlike general relativity or Brans-Dicke theory, the NUVO framework treats the 
conformal factor λ  as a geometric field intrinsic to the background rather than 
as an external scalar coupled to curvature, thereby preserving flat topological 
structure while allowing curvature to emerge from scalar modulation. 

Purpose of the present paper. The objective of Part II is to develop the com-
plete analytical and variational machinery required for applications of NUVO ge-
ometry to dynamical and gravitational problems. We extend the purely geometric 
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structure of Part I to include: 
1) the weighted differential operators—gradient, divergence, and Laplace-Bel-

trami—and the associated Stokes and Gauss theorems in the λ -weighted meas-
ure;  

2) explicit curvature formulas for the conformal metric 2g λ η=  together with 
energy identities and Bochner-type relations [1]-[3]; 

3) the variational and geodesic principles governing motion on NUVO space, 
including conservation currents defined purely by scalar geometry; 

4) the existence, regularity, and stability of weak solutions to representative 
nonlinear scalar field equations [4]-[6]. 

These developments complete the mathematical backbone of NUVO space, al-
lowing the scalar field λ  to be treated as a geometric quantity obeying well-
posed equations rather than an auxiliary rescaling factor. 

Structure of the paper. Section 2 introduces the λ -weighted differential op-
erators and establishes the divergence and Stokes theorems. Section 3 derives the 
curvature tensors and energy identities, culminating in the scalar curvature func-
tional. Section 4 formulates the variational principle for geodesic motion and the 
conservation laws for the scalar-weighted (sinertia) current. Section 5 presents the 
analysis of nonlinear scalar field equations, proving existence and regularity of 
solutions under general structural conditions. Section 6 collects analytical exam-
ples and limiting cases, while Section 7 summarizes the results and outlines the 
transition to the physical applications pursued in later papers, including the grav-
itational field equations and PPN analysis. 

Notation and conventions. Indices are raised and lowered using the back-
ground metric η  unless otherwise stated. Differential operators η∇  and η∆  
denote the flat background gradient and Laplacian, while g∇  and g∆  denote 
their counterparts associated with 2g λ η= . Volume and surface measures satisfy 
d dn

gV Vηλ=  and 1d dn
gS Sηλ −= . All functions and fields are assumed suffi-

ciently smooth for the stated operations to be well defined. 
Relation to subsequent work. The formulas and identities established here will 

be used directly in the derivation of the NUVO gravitational field equation and its 
weak- and strong-field limits. They also supply the analytical tools for defining 
conserved quantities, variational energies, and perturbation theory in the scalar 
framework. For the geometric base of this paper, see Part I [7].  

2. Weighted Differential Operators and Divergence  
Theorems 

The conformal metric 2g λ η=  introduces a natural λ -weighted calculus on 
M . All differential operators associated with g  can be written explicitly in 
terms of the background operators defined by η  and the scalar field λ . Basic 
conformal operator relations appear in standard references [1]-[3]. This section 
establishes the gradient, divergence, and Laplace-Beltrami operators, together 
with their integral identities and Stokes-type theorems. The analysis is purely ge-
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ometric and independent of any physical interpretation. 

2.1. Weighted Gradient and Divergence 

Let ( ),M η  be a flat n-dimensional manifold with coordinates ( )1, , nx x x= 
 

and background metric ijη . For any smooth scalar field f  and vector field 
i

iX X= ∂ , the gradient and divergence with respect to g  are  

 ( )1, div det .
det

g ij i
j i g if g f X g X

g
∇ = ∂ ∂ = ∂  (1) 

Since 2det detng λ η= , one obtains the compact formula 

 ( )div div .n n
g X Xηλ λ−=  (2) 

Equation (2) defines the λ -weighted divergence on NUVO space. 
Remark 1. The expression (2) shows that all integral identities involving diver-

gence on g  can be expressed as weighted identities on the flat background η . 
This observation underlies the λ -weighted versions of the divergence and Stokes 
theorems proved below. 

2.2. Integral Identities 

Let d dn
gV Vηλ=  denote the volume measure of g . For any compact domain 

MΩ⊂  with smooth boundary ∂Ω  and outward g -unit normal n , integra-
tion of (2) gives 

 

( )
( )

( )

div d div d

div d

, d .

n n n
g g

n

n

X V X V

X V

X n S

η η

η η

η η

λ λ λ

λ

η λ

−

Ω Ω

Ω

∂Ω

=

=

=

∫ ∫
∫
∫

 (3) 

Because 1n nηλ−=  and 1d dn
gS Sηλ −= , the surface term becomes  

( ) ( ) ( ), d , d , d .n
g gX n S X n S g X n Sη η ηη λ λη= =  

Hence the fundamental identity: 
Theorem 2 (Divergence theorem on NUVO space) For every smooth vector 

field X  and domain MΩ⊂  with smooth boundary, 

 ( )div d , d .g g gX V g X n S
Ω ∂Ω

=∫ ∫  (4) 

Proof. The result follows directly from (2), the change of measure d dn
gV Vηλ= , 

and the relation n nη λ=  between the unit normals.                     □ 
Corollary 1 (Gauss identity). For any scalar field f  and vector field X , 

( ) ( )div d , d , d .g
g g g gf X V g f X V fg X n S

Ω Ω ∂Ω
= − ∇ +∫ ∫ ∫  

Remark 3. Setting 1λ ≡  reduces (4) to the classical Stokes theorem on the flat 
background ( ),M η , confirming internal consistency of the formalism. 

2.3. Weighted Laplace-Beltrami Operator 

The Laplace-Beltrami operator g∆  acting on a scalar function f  is defined by 
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( )Δ div g
g gf f= ∇ . Using 2ij ijg λ η−=  and formula (2), we compute 

 

( )
( )

( )( )

2

2

Δ div

2 , log .

n n ij
g j i

n n ij
i j

f g f

f

f n f

η

η η η

λ λ

λ λ λ η

λ ϕ ϕ λ

−

− −

−

= ∂ ∂

= ∂ ∂

= ∆ + − ∇ ⋅∇ =

 (5) 

Proposition 4 (Explicit Laplace-Beltrami operator). On NUVO space  

( )2,M g λ η=  the scalar Laplace-Beltrami operator is 

 ( )( )2 2 , log .g f f n fη η ηλ ϕ ϕ λ−∆ = ∆ + − ∇ ⋅∇ =  (6) 

Remark 5. The operator g∆  is self-adjoint in ( )2 , dnL M Vηλ  and satisfies the 
usual maximum and mean-value principles; see, e.g., [4] [5].  

Remark 6. Equation (6) immediately implies self-adjointness of g∆  in the 
weighted Hilbert space ( )2 , dnL M Vηλ : 

( )d d , , .g g g g cM M
f h V h f V f h C M∞∆ = ∆ ∈∫ ∫  

2.4. Weighted Sobolev Spaces 

To analyze integral and variational properties, we introduce the appropriate func-
tional framework. 

Definition 7 (Weighted Sobolev space). Let λ  be a positive function bounded 
above and below on M . Define  

( ) ( ) ( ){ }1,2 2 2, d : , d .n nW M u L M V u L M Vλ η η ηλ λ= ∈ ∇ ∈  

The norm is  

( )1,2

22 2 d .n
W M

u u u V
λ

η ηλ= ∇ +∫  

Lemma 8 (Poincaràinequality). If λ  satisfies ( )min max0 xλ λ λ< ≤ ≤ < ∞ , 
then there exists 0C >  such that  

22 d d ,n nu u V C u Vη η ηλ λ
Ω Ω

− ≤ ∇∫ ∫  

for all ( )1,2 Ωu Wλ∈ , where u  is the λ -weighted mean of u  on Ω . 
Compact embeddings and Poincaré inequalities in the weighted setting follow 

from standard arguments in elliptic theory [4] [5]. 
Remark 9. The space 1,2Wλ  forms the natural variational domain for elliptic 

equations involving g∆ , as will be used in Section 5. 

3. Curvature and Energy Identities 

We next compute the curvature tensors associated with 2g λ η=  and derive sev-
eral integral and variational identities that will later underpin both field equations 
and conservation principles on NUVO space. 

3.1. Ricci and Scalar Curvature of a Conformal Metric 

Let η∇  denote the Levi-Civita connection of the flat background η , and set 
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logϕ λ= . The connection coefficients of 2g λ η=  were obtained in Part I as  

.k k k k
ij i j j i ijδ ϕ δ ϕ η η ϕΓ = ∂ + ∂ − ∂



 

Theorem 10 (Curvature of a conformal metric). For 2g λ η=  with logϕ λ= , 
the Ricci and scalar curvatures are  

 ( )( ) ( )( )22Ric 2 Δ 2 ,g n nη η η η ηϕ ϕ ϕ ϕ ϕ η= − − ∇ −∇ ⊗∇ − + − ∇  (7) 

 ( ) ( )( ) 21 22 1 Δ 1 2 .gR n n nη ηλ λ λ λ− −= − − − − − ∇  (8) 

Proof. The result follows from classical conformal transformation formulas for 
curvature (see, e.g., Chavel and Lee [1] [2]; also Jost [3]). Starting from the 

connection difference tensor ( )kk k
ij ij ij

C η= Γ − Γ , a direct computation of  

k k k k m k m
ij i j j i mi j mj iR C C C C C C= ∂ −∂ + −
    

 and its traces yields (7) and (8).  □ 

Corollary 2 (Flatness condition). If λ  is constant, then Ric 0g =  and 
0gR = . Hence constant λ  corresponds to a globally flat geometry identical to 

( ),M η  up to overall scale.  
Remark 11. Curvature is governed entirely by first and second derivatives of λ . 

Gradients ηλ∇  produce anisotropic corrections, while ηλ∆  encodes isotropic 
dilation or compression of the conformal volume element.  

3.2. Bochner and Energy Identities 

The curvature expressions above give rise to standard energy identities for scalar 
fields on NUVO space. 

Proposition 12 (Bochner identity on NUVO space). For every ( )f C M∞∈ ,  

 ( ) ( )2 221 Δ Ric , .
2

g g g g g
g g g gf f f f f f∇ = ∇ + ∇ ∇ +∇ ⋅∇ ∆  (9) 

Proof. Identity (9) follows from standard Weitzenböck formulas and remains 
valid for any Levi-Civita connection.                                  □ 

Integrating (9) over a compact domain and applying the divergence theorem of 
Section 2 gives 

( ) ( )2 22 1d Ric , d d .
2

g g g
g g g g n gf V f f V f S

Ω Ω Ω∂
∇ + ∇ ∇ = ∂ ∇∫ ∫ ∫  

Such relations will be central to later energy estimates and stability analyses. 
Bochner and Weitzenböck identities in this conformal setting are standard [1] 

[3]. 

3.3. Scalar Curvature Energy Functional 

The scalar curvature gR  admits a natural global integral interpretable as a con-
formal energy of the field λ . 

Definition 13 (Scalar curvature energy functional). Define 

 [ ] ( ) ( )( ) 21 2d 2 1 Δ 1 2 d .n n
g gM M

R V n n n Vη η ηλ λ λ λ λ− − = = − − − − − ∇  ∫ ∫  (10) 
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Proposition 14 (First variation). The first variation of [ ]λ  under  
hλ λ +   is  

[ ] ( ) ( )( )1 1

0

d 2 1 Δ 2 d .
d M

nh n h n h Vη η η ηλ λ λ λ− −

=

+ = − − + − ∇ ⋅∇∫


 


 

Stationary points of   therefore satisfy 

 ( ) 21Δ 2 0,nη ηλ λ λ−+ − ∇ =  (11) 

which is precisely the harmonic condition for the conformal factor in dimension 
2n > .  

Remark 15. Equation (11) defines the flat-space harmonic gauge for NUVO ge-
ometry. In subsequent sections this variational structure will extend to geodesic 
and scalar-field equations governing dynamics on ( ),M g . 

4. Variational Geodesics and Conservation Currents 

The conformal structure ( )2,M g λ η=  admits a natural variational principle 
that generates geodesic motion and corresponding conservation laws. This section 
establishes the variational derivation of the geodesic equation, identifies the asso-
ciated conserved current, and outlines stability properties of nearby trajectories. 

4.1. Variational Principle and Geodesic Equation 

Let [ ]: ,a b Mγ →  be a smooth curve with velocity d dtγ γ= . The action func-
tional  

 [ ] ( )( ) ( ) d
b

a
S t t t

η
γ λ γ γ= ∫   (12) 

defines the scalar-weighted arc length on NUVO space. Its stationary curves co-
incide with the geodesics of g . 

The Euler-Lagrange derivation uses standard variational calculus; see, for in-
stance, Evans [5]. 

Theorem 16 (Geodesic equation on NUVO space). A smooth curve γ  is sta-
tionary for [ ]S γ  if and only if it satisfies  

 0, ,k k i j k k k k
ij ij i j j i ijx x x δ ϕ δ ϕ η η ϕ+Γ = Γ = ∂ + ∂ − ∂



   (13) 

where logϕ λ=  and derivatives are taken with respect to the background coor-
dinates of η . 

Proof. Let ( ) ( ),L x x x x
η

λ=  . The Euler-Lagrange equations  

( )d 0
d k kx x

L L
t
∂ − ∂ =


 give 

d 0.
d 2

j i j
kj k ij

k

x x x
x

t x xη
η η

η η
λ λ λ

  ∂
  + ∂ − =
 
 

  



 

 

Because η  is flat, 0k ijη∂ = . Expanding the total derivative and simplifying 
yields the Christoffel expression (13).                                  □ 

Corollary 3 (Affine parametrization). Reparametrizing γ  by the g -arc  
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length ( )( ) ( )  d
t

a
s

η
λ γ τ γ τ τ= ∫   renders gγ  constant, giving an affine pa-

rameterization for which the geodesic equation retains the form (13). 
Remark 17. The scalar factor λ  rescales local arc length, so that motion in 

regions of larger λ  appears contracted when measured by η . Geodesics thus 
represent extremal scalar-weighted lengths rather than extremal coordinate dis-
tances. 

4.2. Existence, Uniqueness, and Energy Conservation 

Standard ODE theory provides local well-posedness for (13). 
Theorem 18 (Existence and uniqueness). If ( )1,1C Mλ∈  and η  is smooth, 

then for any initial position and velocity ( )0 0,x v  there exists a unique local geo-
desic ( )tγ  satisfying (13). The solution depends continuously on initial data. 

Proof. The right-hand side of (13) is locally Lipschitz in ( ),x x  for 1,1Cλ∈ , 
hence the Picard-Lindelöf theorem applies.                            □ 

Proposition 19 (Energy integral). Along any geodesic of g  the quantity 

( ) 2, i j
ijE g x xγ γ λ η= =     

is constant. 
Proof. Taking the covariant derivative of E  along γ  and using 0g g∇ =  

yields d d 0E t = .                                                 □ 
Remark 20. The constancy of E  expresses the reparametrization invariance 

of the variational principle. Null, timelike, and spacelike geodesics in ( ),M g  
correspond to η -trajectories scaled by λ . Local well-posedness follows from 
ODE theory with Lipschitz right-hand sides (textbook methods; cf. [5]).  

4.3. Sinertia Current and Continuity Law 

The scalar weighting that defines [ ]S γ  also determines a conserved current for 
any scalar density ρ . 

Definition 21 (Sinertia current). Let ρ  be a scalar field and uµ  a g -nor-
malized vector field, 1g u uµ ν

µν = −  (or +1 in Euclidean signature). Define  

 .J uµ µλρ=  (14) 

The term sinertia (from “scalar inertia”? denotes the effective inertia carried by 
the scalar field itself, representing a conserved flow of scalar-weighted momentum 
through the geometry. 

Proposition 22 (Continuity equation). The current J µ  is divergence-free in 
g ,  

( )0 div 0.g
gJ uµ

µ λρ∇ = ⇔ =  

Proof. Applying g
µ∇  and using ( ) ( )1div divn n

g u uηλρ λ λ ρ− +=  from formula 
(2) shows that the λ -weighted measure renders the flux through ∂Ω  zero for 
compact domains, establishing conservation.                           □ 

Remark 23. The continuity law expresses the conservation of scalar-weighted 
density along flow lines of u . In the dynamical interpretation of later papers, J µ  

https://doi.org/10.4236/jamp.2025.1311205


R. W. Austin 
 

 

DOI: 10.4236/jamp.2025.1311205 3688 Journal of Applied Mathematics and Physics 
 

will represent the conserved sinertia flux associated with geodesic motion or scalar 
field evolution.  

4.4. Jacobi Fields and Stability of Nearby Trajectories 

Let ( )s tγ  be a smooth one-parameter family of geodesics and 

( ) ( ) 0s s s
J t tγ

=
= ∂  the corresponding Jacobi field. Differentiating (13) with re-

spect to s  gives  

 ( )2 , 0,t J R J γ γ∇ + =   (15) 

where R  is the Riemann curvature tensor of g . 
Theorem 24 (Stability estimate). If λ  and its first two derivatives are bounded 

on a compact region K M⊂ , then any Jacobi field J  along a geodesic Kγ ⊂  
satisfies  

2
2 2

2
d ,
d g gJ C J

t
≤  

for some constant C  depending only on 2
ηλ ∞

∇ . Hence perturbations of 

nearby geodesics remain bounded in K .  
Proof. The estimate follows from the energy identity obtained by contracting 

(15) with J  and substituting curvature bounds derived from (7).          □ 
Remark 25. Bounded curvature of λ  ensures exponential stability of geodesic 

congruences within finite domains, providing the geometric foundation for later 
analyses of focusing and defocusing phenomena.  

5. Nonlinear Scalar Field Equations on NUVO Space 

The scalar field λ  that defines the conformal metric 2g λ η=  can itself satisfy 
nonlinear partial differential equations whose structure is compatible with the λ
-weighted geometry. We now formulate and analyze a general class of such equa-
tions, prove existence and regularity of weak solutions, and discuss symmetry, 
uniqueness, and stability. 

5.1. Model Equations and Variational Structure 

We consider scalar field equations whose structure is compatible with the λ -
weighted geometry, framed variationally via standard elliptic PDE methods [4] [5] 
and monotone operator theory [6]. Such nonlinear forms arise naturally in con-
formally invariant scalar-tensor and nonlinear-σ  models, where the potential 
( )U λ  encodes self-interaction or curvature back-reaction. The present choice 

represents the minimal structure preserving ellipticity and geometric self-con-
sistency, consistent with recent analyses of conformal scalar-tensor analogues and 
emergent-gravity formulations [8] [9].  

 ( ) ( )Δ , or equivalently Δ , ,g
gFη ηλ λ λ λ λ λ− = ∇ − = ∇  (16) 

where F  and   satisfy structural conditions ensuring ellipticity and mono-
tonicity. When F  derives from a potential ( )U λ  through ( ) ( )F Uλ λ′= , 
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these equations admit a variational formulation. 
Definition 26 (Energy functional). For a smooth potential :U + →  , define  

 [ ] ( )21 d ,
2

nU Vη ηλ λ λ λ
Ω

 
 
 

= ∇ −∫  (17) 

where MΩ⊂  is a bounded domain. Critical points of   satisfy  

 ( )21Δ ,n Uη ηλ λ λ λ− ′− − ∇ =  (18) 

interpreted weakly in ( )1,2Wλ Ω .  
Remark 27. The nλ  factor in (17) arises from the volume element d dn

gV Vηλ=  
and ensures that the Euler-Lagrange equations correspond to the Laplace-Bel-
trami operator g∆  acting on λ . The Euler-Lagrange correspondence and weak 
formulation follow the classical framework [4] [5]. 

5.2. Existence of Weak Solutions 

We now prove existence of minimizers for [ ]λ  under standard coercivity and 
monotonicity hypotheses. 

Theorem 28 (Existence of minimizers). Assume ( )1U C +∈   satisfies:  

1) coercivity: ( )
2lim

U
λ

λ
λ→∞ = +∞ ; 

2) lower boundedness: ( ) 0U Cλ ≥ −  for some 0 0C > ; 
3) monotonicity: ( )  0Uλ λ′ ≥  for all 0λ > . 
Then   attains a minimizer ( )1,2Wλλ ∈ Ω  with 0λ >  that satisfies the weak 

equation (18). Positivity and regularity are obtained by maximum principle and 
elliptic estimates [4] [5]. 

Proof. Conditions (i)-(ii) guarantee coercivity and weak lower semicontinuity 
of   on ( )1,2Wλ Ω . The direct method of the calculus of variations therefore yields 
a minimizer. Positivity follows by the maximum principle applied to the weak for-
mulation.                                                        □ 

Corollary 4 (Regularity). If ( )kU C +∈   and ∂Ω  is 1,C α , then any weak so-
lution λ  of (18) belongs to ( )1,kC α+ Ω .  

Proof. Apply standard elliptic regularity for uniformly elliptic operators with 
smooth coefficients (cf. Gilbarg-Trudinger). (cf. classical elliptic regularity [4] [5].) 

□ 

5.3. Symmetry and Decay of Ground States 

On the full space n , finite-energy solutions exhibit strong symmetry properties. 
Theorem 29 (Radial symmetry and monotonicity). Let 0λ >  be a finite-en-

ergy solution of ( )Uηλ λ′−∆ =  on n  with ( ) 0U λ λ′ ≥  and ( )0 0U = . Then 
λ  is radially symmetric and strictly decreasing in r x= . The proof follows the 
moving planes method of Gidas-Ni-Nirenberg [10].  

Proof. The proof follows the method of moving planes of Gidas, Ni, and Niren-
berg: one reflects the solution about a plane and uses the maximum principle to 
enforce equality, obtaining spherical symmetry.                         □ 
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Corollary 5 (Asymptotic decay). Under the assumptions of Theorem 29, ( )rλ  
satisfies ( )rλ λ∞→  as r →∞  with exponential or power-law decay depending 
on the asymptotic form of ( )U λ′ .  

Remark 30. Radial symmetry ensures that curvature and energy densities de-
rived from λ  remain isotropic, which will simplify subsequent applications to 
spherically symmetric gravitational solutions.  

5.4. Uniqueness and Linearized Stability 

To study stability and uniqueness of weak solutions we examine the linearized 
equation obtained by setting 0 hλ λ= +   in (16). 

Theorem 31 (Uniqueness). Suppose ( )F λ  in (16) satisfies a Lipschitz-mon-
otone condition  

( ) ( )( )( )1 2 1 2 1 20 for all .F Fλ λ λ λ λ λ− − > ≠  

Then the weak solution of (16) in ( )1,2Wλ Ω  is unique. This is a standard ap-
plication of monotonicity methods [6]. 

Proof. Subtract the equations for two solutions, multiply by ( )1 2λ λ− , and in-
tegrate. The monotonicity condition forces the difference to vanish.         □ 

Theorem 32 (Linearized stability). Let 0λ  be a smooth stationary solution of 
(16) and h  a small perturbation satisfying 

( )0 0Δ , 0.g
gh hλ λ λ− −∂ ∇ =  

If ( )0 0, 0g
λ λ λ∂ ∇ >  in Ω , then the quadratic form  

[ ] ( )( )2 2
0 0, dg

g gQ h h h Vλ λ λ
Ω

= ∇ + ∂ ∇∫   

is positive definite and the equilibrium 0λ  is linearly stable.  
Proof. Multiply the linearized equation by h  and integrate by parts using the 

divergence theorem of Section 2. Positivity of λ∂   implies [ ] 0Q h > .      □ 
Remark 33. The positivity of the quadratic form [ ]Q h  ensures that small per-

turbations of λ  produce bounded oscillations in the weighted energy norm, es-
tablishing stability of scalar configurations in the absence of external forcing. 

6. Analytical Consequences and Examples 

The preceding sections provide the complete analytic framework for scalar geom-
etry on NUVO space. We now illustrate several limiting and representative cases 
that demonstrate how the λ -weighted operators, curvature, and variational 
structures behave in practice. 

6.1. Harmonic and Constant Limits 

When λ  is constant or harmonic with respect to η , the conformal geometry of 
( ),M g  reduces to the flat background. 

Proposition 34 (Harmonic limit). If λ  satisfies 0ηλ∆ = , then Ric 0g =  
and 0gR = . Consequently, ( ),M g  is locally flat and all geodesics coincide with 
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straight lines in η . Substituting 0ηλ∆ =  into the conformal curvature formulas 
(7)-(8) [1]-[3] eliminates all curvature terms. 

Proof. Substituting 0ηλ∆ =  into (7) and (8) eliminates all curvature terms. □ 
Corollary 6 (Constant field). For 0 0λ λ≡ > , one has 2

0g λ η= , g η∇ = ∇ , and 
2

0g ηλ−∆ = ∆ . The entire scalar calculus reduces to uniform rescaling of η . 
Remark 35. This limit verifies that the NUVO calculus is a genuine generaliza-

tion of flat geometry: the background metric η  is recovered when the scalar field 
ceases to vary.  

6.2. Radial Power-Law Fields 

Nontrivial curvature arises for spatially varying λ . A simple and analytically 
tractable case is the radial power-law profile  

 ( ) 1 , , 0,pr r pλ ε ε−= + >  (19) 

in n-dimensional Euclidean background ij ijη δ= . These computations are con-
sistent with the general conformal-curvature identities [1] [2].  

Lemma 36 (Gradient and Laplacian). For λ  of the form (19), 

( )2 2, 2 .p pp r x p p n rη ηλ ε λ ε− − − −∇ = − ∆ = − +  

Proposition 37 (Asymptotic curvature). For λ  given by (19), the scalar cur-
vature to first order in ε  is  

( ) ( ) ( )2 22 1 2 .p
gR n p p n rε ε− −= − − − + +  

Hence curvature decays as ( )2pr− +  and the geometry is asymptotically flat for 
0p > . 

Proof. Substitute the expressions for ηλ∇  and ηλ∆  into (8) and retain terms 
linear in ε .                                                      □ 

Remark 38. Choosing 2p n= −  yields 0ηλ∆ = , so the metric becomes con-
formally harmonic and curvature vanishes. For other exponents, curvature be-
haves as an inverse power of distance, resembling long-range fields in classical 
potentials. 

6.3. Curvature Consistency Check 

The energy and curvature formulas derived in Theorem 10 can be cross-verified 
by explicit computation for a Gaussian-type scalar field. Let  

( ) 2
1 e , , 0.rx βλ α α β−= + >  

Then  

( )2 2 22 e , 2 e 2 .r rx r nβ β
η ηλ αβ λ αβ β− −∇ = − ∆ = −  

Substituting into (8) gives 

 ( ) ( )
( ) ( )( )

( )

2 2

2

2

2 2

3

2 e 2 1 e
4 1 e .

1 e

r r

r
g

r

n r r n
R r n

β β

β

β

αβ β α
αβ

α

− −

−

−

 − + − + 
= − −  

 +
 

 (20) 
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For small α  and large r , ( ) 22 2~ 8 1 e r
gR n r βαβ −− , confirming smooth de-

cay of curvature and finite total scalar energy. 
Remark 39. Equation (20) explicitly verifies the analytic consistency of the sca-

lar curvature formula (8) and demonstrates that [ ]λ  from (10) is convergent 
for rapidly decaying scalar profiles.  

6.4. Summary of Analytic Behavior 

1) The conformal geometry ( )2,M g λ η=  is flat if and only if λ  is harmonic 
with respect to η .  

2) For power-law ( ) 1 pr rλ ε −= + , curvature decays as ( )2pr− + , ensuring as-
ymptotic flatness for 0p > . 

3) Rapidly decaying fields such as Gaussian profiles yield finite total curvature 
energy [ ]λ .  

Remark 40. These results demonstrate that the analytic and variational frame-
works derived for NUVO space reproduce familiar geometric limits of classical 
conformal metrics while remaining fully consistent with the weighted calculus de-
veloped in previous sections.  

7. Discussion and Conclusions 

The results developed in this paper complete the analytic and variational con-
struction of NUVO space. Together with the geometric framework established in 
Part I, they define a self-consistent conformal calculus that is both mathematically 
rigorous and structurally compact. The scalar field λ  now possesses a precise 
analytic meaning: it is a positive function that determines not only the conformal 
metric 2g λ η=  but also the weighted differential operators, curvature tensors, 
and variational energies acting on M . 

Summary of principal results. 
1) The λ -weighted gradient, divergence, and Laplace-Beltrami operators were 

derived in closed form, and the corresponding divergence and Stokes theorems 
were proven for the measure d dn

gV Vηλ= .  
2) The curvature tensors of 2g λ η=  were computed explicitly, leading to the 

Ricci and scalar curvature formulas (7)-(8) [1]-[3]. The scalar-curvature energy 
functional [ ]λ  and its first variation were obtained, yielding the harmonic 
condition (11) for stationary points.  

3) The variational principle (12) generated the geodesic Equation (13), whose 
integral of motion ( ),E g γ γ=    is conserved. The associated sinertia current 
J uµ µλρ=  obeys the continuity law 0g J µ

µ∇ = .  
4) Existence, regularity, and symmetry of solutions to the nonlinear scalar equa-

tions (16) were established under general monotonicity and coercivity conditions 
[4]-[6] [10], ensuring that the scalar field λ  defines a well-posed elliptic prob-
lem.  

5) Analytical examples demonstrated that harmonic λ  yields exact flatness, 
while power-law and Gaussian profiles produce asymptotically flat curvature con-
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sistent with theoretical predictions.  
Conceptual implications. The mathematical structure presented here shows 

that a single scalar degree of freedom λ  suffices to encode both local curvature 
and global scaling on a flat background. Weighted differential operators and cur-
vature expressions derived from λ  are internally consistent, conserve total sca-
lar flux, and reduce to standard Euclidean or Minkowskian forms in the harmonic 
limit. The theory thus supplies a conformally exact but globally flat alternative to 
conventional curved-space formalisms. 

The coercivity and monotonicity assumptions on ( )U λ  ensure bounded cur-
vature and prevent collapse of the conformal volume element, thereby excluding 
geometric singularities. In asymptotically constant regimes they guarantee global 
flatness, providing natural boundary conditions for physical space-times. 

Outlook. The analytical foundations developed in Parts I [7] and II provide the 
necessary tools for constructing the NUVO gravitational field equation, in which 
the curvature and variational principles derived here determine the effective dy-
namics of matter and light. The next paper in this sequence, “NUVO Gravity 
Equations and Parameterized Post-Newtonian Analysis,” will apply these opera-
tors to weak- and strong-field regimes, test classical limits against observational 
data, and explore the transition between scalar-modulated geometry and standard 
general relativity. 

Concluding remark. From the geometric definition of 2g λ η=  to the varia-
tional, differential, and energetic structures detailed here, NUVO space is now 
fully defined as a mathematical object. All subsequent physical models can be de-
veloped directly on this foundation, ensuring analytic coherence across gravita-
tional, quantum, and cosmological domains. 

The present analysis remains entirely classical. Extending the NUVO frame-
work to quantum regimes or to explicit coupling with the Standard Model would 
require additional structure—such as operator-valued fields or spinor bundles—
beyond the scope of this work but representing natural directions for future de-
velopment. 
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