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Abstract

In this article, we study the convergence of an IIPG (Incomplete Interior Pen-
alty Galerkin) Discontinuous Galerkin numerical method for the Richards
equation. The Richards equation is a degenerate parabolic nonlinear equation
for modeling flows in porous media with variable saturation. The numerical
solution of this equation is known to be difficult to calculate numerically, due
to the abrupt displacement of the wetting front, mainly as a result of highly
nonlinear hydraulic properties. As time scales are slow, implicit numerical
methods are required, and the convergence of nonlinear solvers is very sensi-
tive. We propose an original method to ensure convergence of the numerical
solution to the exact Richards solution, using a technique of auto-calibration
of the penalty parameters derived from the Galerkin Discontinuous method.
The method is constructed using nonlinear 1D and 2D general elliptic prob-
lems. We show that the numerical solution converges toward the unique so-
lution of the continuous problem under certain conditions on the penalty pa-
rameters. Then, we numerically demonstrate the efficiency and robustness of the
method through test cases with analytical solutions, laboratory test cases, and
large-scale simulations.

Keywords

Porous Media, Richards Equation, Discontinuous Galerkin, Backward
Differentiation Method, Incomplete Interior Penalty Galerkin (IIPG),
Broken Sobolev Space, Picard’s Fixed Point, Minimal Regularity Solution

1. Introduction

The behavior of flows in variably saturated porous media can be modeled by the
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Richards’ Equation (RE). One of the key advantages of RE is its ability to represent
the porous medium, incorporating both saturated and unsaturated zones. While it
doesn’t consider the air phase, RE effectively incorporates the effects of gravity and
capillarity, enabling the modeling of complex processes across various scales. No-
tably, RE is a nonlinear parabolic equation that can transform into an elliptic equa-
tion under complete saturation conditions.

The history of RE begins with Darcy’s law, which was formulated experimentally
by Darcy in 1856 [1] for saturated porous media. This result was later extended to
multiphase flows by Buckingham in 1907 [2], resulting in the Darcy-Buckingham
law, which serves as the cornerstone for the derivation of RE. The equation was first
established by Richardson in 1922 [3], although it was later attributed solely to Rich-
ards, who independently published the equation in 1931 [4]. Initial attempts to
numerically solve the RE date back to the late 1960s with the works of Rubin [5] and
Cooley [6]. From the 1980s, RE was extensively studied from both theoretical and
numerical perspectives.

In this paper, RE is introduced by providing its expression and constitutive laws.
As the main objective of this work is to solve RE using Discontinuous Galerkin (DG)
methods, the weak problem associated with RE is given and its discretization using
the Incomplete Interior Penalty Galerkin (IIPG) formulation. Additionally, an over-
view of the penalization method is provided. The fully discrete IIPG formulation is
derived through time integration using the implicit Backward Differentiation For-
mula (BDF) method. Due to the nonlinear nature of RE, its fully discretized nonlin-
ear formulation is linearized using Picard’s fixed-point method. Theoretical results
related to the solution of stationary nonlinear elliptic problem are produced, includ-
ing existence, uniqueness, and convergence results. Furthermore, an automatic cali-
bration method is obtained for penalization parameters. The solution of RE using the
previously mentioned IIPG formulation is implemented in an in-house numerical

code named RIVAGE, which is then validated against numerical benchmarks.

2. Governing Equation

RE is a classical nonlinear parabolic equation used to describe flow in both unsatu-
rated and saturated zones of an aquifer (for a detailed derivation of the equation,
please refer to Clément’s 2021 thesis [7]).

The so-called mixed formulation of the RE, commonly used in hydrology, is

0(h—z)-V-(K(h—z)Vh)=0 (1)

where h:=y +z isthe hydraulichead with y the pressure head, z is the eleva-
tion, O isthe water content and K is the hydraulic conductivity tensor.

The tensor of hydraulic conductivity K is split, in general, into two parts: the
intrinsic or saturated hydraulic conductivity tensor K  and the relative hydrau-
lic conductivity K, :

K(y)=K.K, (v). 2)

The intrinsic hydraulic conductivity tensor K depend on the material of the
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porous media.
The relative hydraulic conductivity is a function of the pressure head control-

ling the behavior of groundwater flow within the porous media and it is defined

as
1 ify>y,
K = 3
) {Ke,law (w) otherwise )
where K, isgiven by empirical laws, see Table 1 and Figure 1. The quantity

V¥, , corresponding to the entry of the air pressure, the pressure head transition value
between the saturated and unsaturated zones. The saturated zone corresponds to
v 2y, and the unsaturated zone to ¥ <y,. The water table corresponds to
¥ =y, by definition.

Table 1. Hydraulic relations for hydraulic conductivity and effective saturation.

Name Expression Parameters
ay . .
Gardner-Irmay S —em a : Pore-size distribution
e
relations (1954) [8] K =e® m : Tortuosity
_ C
- D . .
Vachaud’s C+ly| A,B : Empirical shape parameters
relations (1971) [9] K = A C,D: Empirical shape parameters
T B
A+ ‘y/‘
a\ " [=0.5: Pore connectivity
5= (1 +(alvl) ) « : Linked to air entry pressure inverse
Van Genuchen-Mualen s p distrib
. m n>1: Pore-size distribution
relations (1980) [10] K =s'|1- l—Si |
e ¢ m=1-—: Pore-size distribution
n
1t Vachaud | ‘ ' ' I 1} Vachaud | ' " - ' X
Gardner-Irmay Gardner-Irmay R
Van Genuchen-Mualen 0.0 | Van Genuchen-Mualen ~ ===---
08 | i 08 |
i 07 |
!
06 f i i 06 |
L‘-{T !" ’-'5 0.5
0.4 } 0.4
03 |
02| 02}
01}
0 0
0 0.1 —0.5 0.1
h 1;’,'

Figure 1. Hydraulic laws for effective saturation and hydraulic conductivity.

The water content law is expressed in terms of the effective saturation S, :
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O(v)-6
S (w)=——""7", (4)
. (v) )
where @, is the residual water content and 6, is the saturated water content cor-
responding to the minimal and maximal saturation, respectively. The effective sat-
uration is defined as follows

1 ifyzy,,
Se(v)= {Se,law (w) otherwise, )

where S

e,law

is given by empirical laws, see 1 and 1.

Remark. The nonlinear behavior of the constitutive laws S

e,law

and K,

(see Table 1 and Figure 1) are responsible of the fails of the convergence of the

numerical methods and a particular attention have been done. In particular, we

have:

e In the saturated zone, hydraulic properties remain constant and RE becomes
an elliptic equation characterized by fast diffusion.

e In the unsaturated zone, hydraulic properties approach very close to zero, which
halts diffusion and can cause numerical inconvenience.

¢ For a specific set of parameters, when y — 0, constitutive laws may display
extremely steep gradients.

To overcome, regularization techniques can be employed as in [11], for instance,
which make slight modifications to the functions to avoid some types of degener-
acy to improve convergence properties. In this paper, we will see that in the frame-
work of DG, we show that whenever some numerical parameters are well-chosen,
the modification of such constitutive laws is not necessary.

Equation (1) together with Equation (2) and Equation (4) can be completed with
Dirichlet and/or Neumann boundary conditions as done in this work. One can also
use more realistic boundary condition in view of real life simulation, such as the seep-

age boundary condition (we refer to [12] for details).

3. Numerical Methods

This section focusses on the presentation of the numerical solution of RE using DG
methods. The solution is sought within a trial space due to the similarity of these
methods to Finite Element (FE) methods, resulting in a weak problem.

Let d e{1,2,3} be thespace dimension, the porous medium can be represented
by the computational domain Q R of boundary 0Q=I", UI',, for which
the subscript D and N stands for, respectively, Dirichlet and Neuman. Let
T eR’ be the final time.

The problem is:
Find % (x,t):Qx(0,7)— R such that:

0(h—z)-V-(K(h-z)Vh)=0, inQx(0,T),

h=h,, in Qx {0}, (R
h=h,, onT, x(0,T), e
-K(h—z)Vh-n=gq,, onT, x(0,T)
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where hel’ (Q x (0, T)) represents the solution of RE. Additionally,

hy€ L’ (Q), h,el’(I;(0,T)),and gy e L’(T,;(0,T)) correspond to the ini-
tial condition, the Dirichlet boundary condition, and the Neumann boundary con-
dition, respectively.

The matrix-valued function K depends monotonically on #, is symmet-
ric positive definite, and is uniformly bounded below and above (see Equation (2),
Table 1 and Figure 1). Similarly, the function &, also depends monotonically on
h » is uniformly bounded below and above (see Equation (4), Table 1 and Figure
1).Both K and & arecontinuous functions within a given porous medium but

may be discontinuous at the interface of heterogeneous materials.

3.1. Settings
The time duration (0,7 ) is subdivided into N time intervals such that

0=t"<t'<--<t"=T.Let neN, 0<n<N, if the time interval

T" = [t”,t"“] is considered, the corresponding time step is A" =¢"" —¢" .

Let us define £" a partition of the computational domain Q valid forall te7".
For the sake of simplicity, it is assumed that Q is a polygonal domain in two space
dimensions so that £" covers Q exactly. The mesh £" is composed of quadrilat-
eral and triangular elements not necessarily conformal.

Forallelements Ee&”, d; isits diameter defined as the ratio between its sur-
face (5;) and perimeter (p;) and d" :=max,__, (dy).

The set of all open faces of all elements E e &” is denoted by F.Moreover,

one can define two subsets of F, F° for the boundary facesand F™" for the
interior faces:

F = U F and F™:= F\F°. (6)

FedQ

For a given element E e £", there exists a set of face F' := {F eF|Fe 8E}
which defines boundaries of E . Then, for all interior faces of E, ie,
VF € F¥ N F™, there exists a neighboring element E, such that ENE, =F .
Consequently, the normal unit vector n,. := (”w” y )T pointing from E to E,
can be defined. An example of interior face is given Figure 2(a). Moreover for all
boundary facesof E,ie, VF e F* NF’, thereexists E, afictitiouselement
such that ENE, =F . Consequently, the normal unit vector 1, pointing always
from E to E; can be defined.

Example 1. Figure 2(a) gives a graphical representation for an example mesh
composed of triangles and quadrilaterals. In this example, the mesh is composed
of 7 elements, ie, &" = {Ei,i € 1,--~,7} . Thus, the set of faces F ={F,,iel,---,19}
is defined. It can be split into two subsets, the first one F°={F,iel,--,9}
boundary faces of F, depicted with dashed lines on Figure 2. The second one
Fin = {F,,i €10,---,19} interior faces of F . Figure 2(b) gives graphical repre-
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sentation for two elements E; and E,. Faces are also depicted with their normal

vectors.

3
_________________ h-l
i ¢ ] 5 I
1 1 Py
1 1 1
i Ee § Ui | By :
: : .
1 ] N nF4
—14 15 19 [ —
1 1
8 FE3 13 Fy 17 Es : ! Ngg s E
:—10—|—11 18 1 Er
1
) Eq1 12 By j(/ Er . L *
1 1
T P Ig
w
(a) Representation of £, F? (dashed (b) Description of FEs and E7 and
lines) and F'™ (solid lines) their normal vectors

Figure 2. Example of a mesh.

Let two neighbouring elements E;, and E, sharingoneface F e F .Thereare
two traces of a function v on E, (v,)andon E (v, ):

v(x):=limv(x+en,) and v,(x):=limv(x+en,),VxeF. (7)

-0~ 0"
In addition, on any boundary faces F € F° thetraceof v isonly defined on
the left side of the face:
v (x):=limv(x+en,),VxeF (8)

£—>0"
Using these trace definitions, one can define the jump and the average on any
face of the mesh (as displayed in 1D on Figure 3). On an interior face F e Fr,

the jump and the average are respectively defined as:
1
vxeF,[v](x)=v (x)-v(x) and {|u|}(x) = E(V, (x)+v (x)) 9)

Moreover, on aboundary face F € F°, the jump and the average are respectively

defined as:
vxeF, [v](x)=v,(x) and {|u|}(x): v (x). (10)
vl
{v] = ]
E F E,

Figure 3. Definition of the mean and jump opera-
tors for two elements E, and E, in ID.

The solution of Problem (7 ) is sought in a subspace of the well-known bro-

ken Sobolev space, taken to be:

Vp(é’"):z{veLz(Q)|v|EGPP(E),VEEE"} (11)
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where P”(E) stands for the set of polynomial functions of degree less than or equal
to peN on E.Itiscalled the DG space. For more detailed and general defini-
tions of this set, see [13].
3.2. Semi-Discrete Weak Formulation
Keeping in mind that

Yu,v eV’ (5"), I[uv]]zl[u]]{|v|}+{|u|}|[v]], (12)
assuming that the flux of RE is continuous at the interfaces of elements:

VFej’-',[[K(h—z)Vh-nF]”F:O, (13)

the Neumann boundary condition arises naturally in the weak formulation, mul-
tiplying Problem (R ) by a test function ¢ € V” (8 ”) and integrating on each

element of &, we get

ZIE9(h—Z)qodE+ ZjE(K(h—z)Vh)-VgodE

- 2 [ [“ (h—2)Vh)- nFHl[[go]]dF ZI (h—2)Vh) - npdF

+ Z [, axpdr =0, onre(0,7) (14)
FerN

ZJ.th)dE: ZJ.EhOngE,

Eef Ee€

h=hy, onT, x(0,T).

To enforce the continuity of the solution and the Dirichlet boundary condition,

two penalty terms are added:

smoye % 3 %0 [illolar s

FeFin

0
Iy (he)=3Y % (h=hy)pdF (16)

FeFP

where, J, represents the penalization terms that constrain the continuity of the
solution on the interior of the domain, and, J, for the Dirichlet boundary con-
ditions. o and o are the penalization parameters for the interior and for
the Dirichlet boundary condition where, we recall that, d, is the diameter of an
element FE.

Remark. This method is known as the IIPG method [12] [14]-[16]. The role of
these parameters is essential to ensure the convergence of the method and will be
studied in Section 4 for the first time, up to our knowledge, in the nonlinear case.
The linear case has been dealt in [17].

Using Equation (15) and Equation (16) in Equation (14), the semi-discrete non-

linear weak formulation of Problem (R )is, VteT",

Find h e V? (5" ) such that :

(Pusp)
m (0(h-2).0)+a, (hoih) =1, (0), Yo7 (e7), 7
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where m,, a,,and [, are given by:

n?

=> jE qodE (17)

Ee&"

L (hph) = j (K(h=z)Vh)-VodE

ZF: [ A {| (h—2)Vh)- nF|}[[(p]]dF

1 ol (18)
- 3 2SS | aller
_FZf:D [ (K(h=-z)Vh)- nF(de+sz:D
L(p)= > j h,pdF — Z [ avpdF. (19)

FeFrP d FeFrN

3.3. Time Discretization

The aim of this section is to present the time discretisation through the implicit
BDF method for Problem (R ). In the following, we make use of notation:

VneN, u"(x):=u(x,t,), for any function ue I’ (Qx(0,T)). Let us recall that

n+l

the time step is defined by A" =¢"" —¢" and the time interval by 7" = [t",t””} .

Due to their stability properties, the BDF methods are commonly used to solve
stiff differential equations such as Problem (R ). These linear multi-step meth-
ods allow to construct time approximation up to order ¢ <6. The analysis of
these methods can be found in [18]. The 1-step BDF method corresponds to the
classical backward Euler scheme. BDF methods have been used in [19] [20] up to
6th-order. BDF methods are well-known to balance space and time errors and
particularly well-designed in combination with DG methods. BDF methods can
be constructed both with a constant time step [18] or a variable [21]. The case of
variable time step is more pertinent for Problem ( B gp ) concerned. The method
of order ¢ is derived from the Newton interpolation polynomial of degree ¢,
which interpolates 4’ attime #/ for j=n-+1,---,n+1-gq,using the method of
divided difference.

The backward divided difference for a given function y is defined by a recur-

sive division process:
0_ n+l _ n+l | _ _ n+l
8Oy =[ym )=y,

Sty :[yn-ﬂ’yn]: 503/“1_50}’" _ y"H -y

n

y

>

At" At"
n+l n n n—1
51 n+l _51 n n y - y anl (20)
é‘ZynJrl — I:ynJrl,yn’ynfl:I — Yy )y — At At ,
A"+ AL A" + A"

5/‘*1 n+l 5/’*1 n

Z! 1Atnk

5_/’yn+l _ [yn+1 ’yn,___,yn+lf.i:| —
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du
For a given ode, for instance E =f (u, t) with initial condition, the implicit

BDF method of order ¢ is given by:

i—1 (k-1
i[ﬁ(zAtnlj\Jéju"H — iaq’junﬂfj :f(un+l,ln+])’

=1\ k=1 \ =0 =0 .
where a,,; are the lin-

q-1
n+l n+l n+l\ _ n—j
oy —f(u N )——Zaq,ﬁ]u
Jj=0

ear combination coefficients obtained from the divided differences of u . For in-
stance, for the 2-order BDF method, the coefficients are:

1 1

A R —

A A+ A

1 1 At"

a. - - - )

Toar A AT AT (A AT (21)
. At

A (A +ar)

Remark. (Stability.) BDF methods of order 1 and 2 are A -stable, and L -stable
[22]. BDF methods of order 3 to 6 are A(a) -stable where « decreases as the
order increases [23]. BDF methods of order ¢ >6 are unconditionally unstable.
The use of variable time steps is recommended to enhance the stability of the method.
In practical applications, variations in time step sizes are limited by an upper bound
known as the swing factor to ensure stability and robustness Table 2 (see [24]). In

the following, swing factors are used.

Table 2. Maximum swing A"*>/A"™*' for BDF methods with variable time steps.

Order ¢ 1 2 3 4 5 6

Maximum swing Af"?/At"™ - 26 1.9 1.5 1.2 1.05

Applying the BDF method to Problem (B 4y ), we get

Find as equence of (h”)

69(‘/’) d n+l—j n+ /% "
mn[W./’ﬂjZoaq,jh 11)¢}+aﬂ(h 1’¢)’h 1):L"(¢), v¢)eV"(5 )

€ %4 (5" ) such that :

0<n<

(PNLFD )

where m,, a, and [ are given, respectively, by Equation (17), Equation (18),
Equation (19) with y =h—-z.

The time integration method needs an initialization step to compute the solu-
tion for further time steps. The initialization uses the prescribed initial condition
to start the first-time step. A direct and simple way is to write the corresponding

discontinuous weak formulation:

Find #° € V¥ (So)such that : m, (ho,(o)zfo(qo), (22)

where m, is defined by Equation (17) and f, is the linear form defined by:
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fi(p)= X [, hwdE, VoV’ (£°). (23)

Eeg’

3.4. Nonlinear Iterative Process

Problem ( Py rp ) being nonlinear, several iterative methods can be used such as
the Newton-Raphson method or the classical first-order fixed-point method Pi-
card’s method. Due to the strong nonlinearities of the constitutive laws Equation
(2) and Equation (4) (see also Remark 1), the convergence of the iterative methods
may fail [25] [26]. We will see in Section 4 that in the case of IIPG methods one
can enhance the convergence of the iterative methods, at least in the case of a
Picard’s fixed-point method, whenever the penalization terms Equation (15) and
Equation (16) are well-chosen. Therefore, in what follows, we present the Picard’s
fixed-point method for Problem ( Py pp )-

Remark. (Choice of the Picard linearization.) Although Newton-Raphson iter-
ations may offer quadratic convergence, we adopted a Picard fixed-point linear-
ization for robustness in strongly nonlinear configurations such as the Vauclin in-
filtration case. In preliminary tests, Newton iterations often diverged without reg-
ularization of the hydraulic functions, whereas the Picard approach provided sta-
ble convergence at a moderate computational cost. Similar observations have been
reported in [7] [27], highlighting that Picard iterations remain preferable when
the Jacobian varies sharply near saturation thresholds.

Linearization of Problem ( Py zp ) is done by a Picards’ iterative procedure. For

k =0,---, the problem is:
For a given h""* e V? (5” ), find A" e VP (5" ) such that, V¢ € V? (5” ) :

) 09('//) a, Ohn+1,k+l’¢ +a, (hn+1,k+l’¢);hn+l,k)
oy Sk (Frn)
W) © .
=1 - — L h o .
n ((P) mn 81// WMU{ j;)aq,ﬁrl (p

where m,, a, and [ are given, respectively, by Equation (17), Equation (18),
Equation (19) with w =h-z. h"”’ stands for the solution at the rank % of the

iterative process (see Figure 4).

Linearization :

Fixed-point m

‘ (W) : Non-linear weak problem | ‘ (W) : Linearized weak problem
¥-..... 3 Fixed-point’s solution . 4

............ Discretization :

................... : DG method (ITPG)
Convergence from 3

discrete to continuous

(Wh) : Discretized linearized weak problem

3! solution to (W)

Figure 4. Scheme of the general proof.
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The global algorithm of the Picard’s fixed-point iteration, for a positive n, is:

1) Start with an initial guess #"™’;

2) Compute the solution of Problem (B, ) with A" to get h"*";

3) Start again with A2"""';

4) Compute the solution of Problem (B, ) with A" to get h"™**';

5) Start again with 4"""*"" until the stopping criteria are satisfied;

6) Set " = e

The stopping criterion is one important choice in determining accuracy for a
nonlinear iterative process. For RE, the stopping criterion can be specified in

terms of absolute error for pressure head or water content between two successive

(o) o]
m <¢g and ”hllz " <&,

where &, =h"—h"" and r (h,@)=m,(h,@;h)+a,(h.@;h)—1,(p). & and

iterations [12]. For this study, we have used:

&, are user-defined tolerances. These two criteria are relative and independent of

the characteristic quantities of the problem.

3.5. Adaptive Time Stepping

Time adaptation is motivated by the convergence of the nonlinear solver. On one
hand, transient simulations have difficulties to converge if the time step is too large
but, on the other hand, shorter time steps mean more time steps and so, a longer
computational time. That is the reason why time adaptation is very attractive and
common for Richards’ equation. Different strategies can be used to adjust the time
step [28]-[30], either heuristic and mainly based on convergence performance of
the nonlinear solver or rational and based on error control. The latter ones are
generally more efficient but heuristic methods remain a relevant approach due to
their simplicity.

In this study, the time step is adjusted heuristically based on the number of iter-
ations NN, from the nonlinear solver, as discussed in [29] [31]. The size of the time
step directly influences the convergence of the solver. The simulations start with
a time step At’, and subsequent time steps are calculated according to the fol-
lowing rule: the time step remains unchanged if convergence is achieved between
m, and M, nonlinear iterations; it is increased by an amplification factor
Aump > 1 if convergence is achieved in fewer than 71, nonlinear iterations; and it
is decreased by a reduction factor A, <1 if convergence requires more than M,
nonlinear iterations. If convergence fails due to solver issues (poor initial guess, bad
condition number) or exceeds a prescribed maximum bound W, , the time step is
recalculated using a reduced step size (4,,; <1). The calculation of the next time step
A" from the previous one At" follows this time-stepping scheme:

AampDt"if Ny <my,
At =1 AL if m,<N,<M,,
A A" i M, <N, <W,

it?

(24)

At" = 2,,At" if N, >W, orif the solver has failed (time step is started again),
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where N,

. is the number of nonlinear iterations.

Remark. By studying the full-time-dependent problem, as done in Section 4 in
the case of the steady problem, the time step can be adjusted automatically and this
work is in progress.

Remark. In the numerical code RIVAGE, Adaptive Mesh Refinement can be also
employed. We refer to [7] [12] [32]-[34] for more details.

4. Theoretical Study and Estimation of the Optimal
Penalization Parameters

In this section, we present the main result of this work, namely, the way to get a
convergent iterative scheme by constructing a robust method to compute auto-
matically the penalization parameters (see Equation (15) and Equation (16)). This
is achieved by studying the theoretical properties and convergence of the solution
of the discrete problem Problem (R ) to the mathematical problem Problem
(R )- To this end and for the sake of simplicity, we will consider a toy model sim-
ilar to the stationary RE for which we study, as depicted in Section 4.

1) The existence and uniqueness of the weak solution to the nonlinear problem
in Section 4.2.

2) The existence and uniqueness of the weak solution to the discrete linearized
problem in Section 4.3.

3) The method to compute optimal penalization parameters to ensure the con-
vergence of the nonlinear solver at the discrete level in Section 4.4.

4) The convergence of the discrete linearized weak problem to the continuous
linearized weak problem in Section 4.5.

Proofs of this section are given in Appendix and can be easily extended to sev-
eral space dimensions. However, since the computations are rather technical to
get the optimal penalization parameters in the two-dimensional case, for the sake
of completeness, the 2D case for the existence and uniqueness of the weak solution
to the discrete linearized problem is considered in Section 4.3. We will see that the
construction of the optimal penalization parameters is essentially based on the
constants appearing in the discrete continuity and the discrete coercivity of the

operator.

4.1. Toy Model

Let us consider the following toy problem (P ) on the interval Q=[a,b]cR:
For a given f e L’ (Q), find u (x): Q — R such that :
—(A(x,u,u')),:f, inQ (P)
u=0, on 0Q)

with  A(x,s5,£)=K(x,s)¢ where the real function K intends to mimick the

properties of K (Equation (2)). Following [35] and in view of the properties of
K (Equation (2)), assuming that
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3K, K, eR,, K,<K(x,u)<K, VxeQ,Vu eR (H1)
51’72

3K, R, |K(xm)-K(x.i)|< K, i —i|, VxeQV(i.m5)eR>’

lip

we deduce that 4 is straightforwardly a Carathéodory function, which we recall

hereafter,
(1) 3a>0 s.t. (A(x,s,cf)—A(x,s,O))fZa|§|2,
(2) 3p>0.3hel’(Q) st |d(x.5.8)|< B(h(x)+]s]+]¢]). (32)
(3) Ir>0 s.t. (A(x,s,f)—A(x,s,n))(f—n)2}/|§—77|2,
(4) 36>0,3he’(Q) st |A(x,s,§)—A(x,t,§)| < 5|s—t|(h (x)+|§|+|s|+|t|).

This problem can be cast into the weak formulation by multiplying by a test func-
tion ve H, (Q) and integrating over Q:

Find u € Hy(Q)such that : a(u,v)=1(v), Vv e Hy (Q) o)
where

a (u,v) = .[QK(x,u)u'v'dx, l(v) = J.Q fvdx.

Problem ( P ) being nonlinear, we use the Picard’s iterations method as in Prob-

lem ( Ry ) to get

Fora givenu € L’ (Q), find u € H, (Q) such that : o)
d(u,v;ﬁ)zl(v), VveHé (Q)
with
a (u,v;ﬁ) = _[QK(x,LT)u’v’dx. (25)

Given i, we solve the Problem (W) with # =" toobtain u'.Then, we solve
the Problem ( W ywith % =u' toobtain u” andsoon.The sequence of solutions

of the linearized problem is denoted by (u") N and its limit when n goes to

infinity is expected to be the solution to the nonlinear Problem (). In the fol-

lowing, we note u""' = T(u”) the fixed point.

4.2. Existence and Uniqueness of the Weak Solution to the
Nonlinear Problem (W)

The first step is to show that Problem (V) has a unique solutionin H,(Q). The
existence of solution of Problem (V) can be achieved by using the Schauder fixed-
point theorem to the operator 7' while the uniqueness can be obtained through
the technique proposed in [35].

Thus, we have

Lemma 1. (Existence of a solution to Problem (V).) Under Hypothesis ( H1),
JueH(Q); T(u)=u.

Then, one can obtain uniqueness through the following result

Lemma 2. (Uniqueness of the solution to Problem (1 ).) Under Hypothesis

(H1), the solution u € Hé (Q) of Problem (W) is unique.

These results hold for the dimension & <3 and the proofs are rather classical
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and left to the reader.

4.3. Existence and Uniqueness of the Weak Solution to the
Discrete Linearized Problem (W)

One-dimensional case
To solve numerically Problem (W ), we use DG methods as in Section 3. Let
0=x,<---<xy =1 beapartition &, of Q (see Figure 5) and denote

I, =[x,,x,,] asub-interval. The size of a sub-interval is defined as

In

1
=h= & Vne{0,---,N -1} with N —the number of elements in the par-

tition. The solution is sought in the DG space 17 (&,) defined as:

VI (6)={re 2 (Q) v, =0, eP’(1,).¥], €&, |c (@) @6

Figure 5. Representation of &, in the one-dimension case.

As in Section 3, we define

v(x;):lfiil(‘)lv(xn+e), v(x;)zlfiilgv(xn—e), (27)

0 0

}xﬂ =%(v(x;)+v(x;)>, Vne{l,,N-1}, (28)

v, = v(x;)—v(x;), {|v

n

and

[1, ==v()s (b, =v(x). oD, =v()- I

The DG space 1)”(&,) is associated with the norm:

N N-1 2 N 1 2 N-1 ,
bF =S, + 25T, = Xl
n= n=0 n=0

b, = v(xy). (29

2
I

M, (30)

where ||||1 is the usual norm L*(/,) and |v|j = Z:]:O%[[v]]i is the jump
semi-norm. With this definition of the norm, jumps are controlled. One can ob-
servethat |-| isanormon 1)’ (&,).One cannotethat 1)’ (&,) isacomplete
Banach space, ie., a complete normed vector space for |:|. Lastly, the concept of
broken gradient is introduced to specify when only the regular part of the gradient
is considered. The broken gradient V, : 1)’ (€,) > r (Q) is defined that, forall
veV'(€,),

VE€E,,, (Vv), =V (v,)- (31)

The linearized weak formulation Problem ( W ) can be discretized using the IIPG
formulation as in Section 3 to get
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{For agivenu € 1)’ (€,), find u, €1}’ (€, ) such that : W)
h

a, (u,,visi)=1,(v,), Yv, €W’ (&)

with

(”h"’h’ ) NZ_(:),[ (xu)”hvhdx Z{|K xu |} hx, [[vh]]xn

D] ]~ ] ], 6

n=1

+ %[[“h ]]XN [v, ]]xN ’
Vh I Jv,dx

At the discrete level, one can write Hypothesis ( /1) as follows: for all
n e{O,'--,N—l} :

3k, K" eR,Vxel, VueR, K" <K(x@)<K!"; ()
31(1(1;)6]1% vxel,, V(u,u,)e R, |K x4 )— K (x,u )| K, [, — it
where
K, = 0m1n K() K, = Ionax K and K,, = max K,(,p) (33)

Existence and unicity for the solution to Problem ()4} ) is obtained using the

Lax-Milgram theorem. We have the following result.
Theorem 3. (Existence and uniqueness of the weak solution to the discrete lin-

earized Problem (VV,, ).) Under Hypothesis (H, ) for all n, for a given
el (&), then Flue)y (&) suchthat g, (u,,v,;u)=1,(v,),
Vv, eV’ (€,).

This existence and uniqueness result is obtained thanks to the below-following
lemmas.
Lemma 4. (Discrete coercivity of d,.) Under Hypothesis (H, ) for all n, for

any vector of positive numbers ¢ = (8(")) , there exists a constant
n=0,-,N-1

c (6) >0 such that

Vu, e’ (Eh)’ a, (”h’”h’ 2 )"”h"
if
(n) ~(n)
o =M Vne{l N—l}
(7) "2k T 7
e"<2, Vnel{0,--,N-1} 0 ,
c,>0,, Vne{l- N-1} with 4+ (KI(O)Ct(r(?ZJ—I) (34)
o, >0, S0P
Oy >0y (K](N—I)Ct(N—ll) )2
* r,p—
oy ‘W
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and

(n) *
* o . (n) _ & o o . 0,—0,
C (6)_mm{n—(r)?l-,rzlv-1[](° [1 5 J}O—O 04,0y O-N’n—g?l-,rzlv-( 3 j} (35)

Lemma 5. (Discrete continuity of @,.) Under Hypothesis (H, ) for all #, for

any vector of positive numbers €= (8(")) , there exists a constant
=0, N-1
é(e) >0 such that

oy €37 (8,)> | (1,057 < C () o 1]

@<6>=,,_5%%I(Kf"))+J,,_¥{?%§1(28("’Kf"’)ma>{03’0*~’ e 1@” D »
36

O-ﬂ
+max| 6,,0,, max .
n=l,-,N-1{ 2

Lemma 6. (Discrete continuity of /,.) There exists a constant B >0 such that

Vv, € Y’ (Sh) |lh (vh )" < B”vh ||

Remark. Trace constantly involved in bounds for penalization parameters are
a function of the polynomial degree p, the type of polynomial basis used. In the
one-dimensional case, with an orthonormal basis and for u e (&, ), the trace

constant for [, is given by:

C(”)

. =p+1. (37)

Proofs of Lemmas 4, 5, and 6 can be found in Appendix. The proof of Theorem
3 is a straightforward application of the Lax-Milgram theorem and is left to the
reader.

Two-dimensional case

We propose to extend the previous results to the dimension 2. Let us consider

the two-dimensional extension of Problem ( V% )

{For agiveniz € ' (&,), find u, € )’ (&, ) such that, Vv, e )}’ (€,): )
a, (w,,v,:1) =1, (v,). '
where
a(u,,v,;u ZI (x,)Vu,)-Vv,dE - Z}TIF“(K(X’E)V”;,)'”F|}[[Vh]]dF
Ee&" Ee
1 O-E GZ:: o;
+ z + IF[[uh]][[vh]]dF—i- Z —IFuhvhdF
EeF™m 2 d E, EeFP dE
L(v) _[ Jydx
The two-dimensional version of the discrete hypothesis on K is given by: For
al Ee&:
{3k K} R, Vxe E, Vi e R, K; <[K(x.7)|, <K/; (H2)
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with |[K|, =max,_,, (K,). In addition, X, =max, K/ and K,=min,_ K,
denotes global bound of K.

The DG space is associated with the following norm:
1 1 2 1 2
MF =2+ 2 | o+ e+ 2 I = X+ b 38)
Ee€ pern\ dp dE,. pero A Ee€

where ||v||2E is the usual 7> normon E, ||v||2F isthe I’ normon F and

|v| , is the jump semi-norm. This norm has the same characteristics as in the one-

dimensional case. We obtain the following result.
Theorem 7. (Existence and uniqueness of the weak solution to the discrete lin-

earized Problem ( VVh ))If K satisfies Hypothesis (H; ) forall £ <& and for
agiven wel) (&,),then FlueV’(&,) suchthat a,(u,,v,;u)=1,(v,),
Vv, eV’ (&,).

As before, this result is a consequence of the Lax-Milgram theorem through the

following lemmas:
Lemma 8. (Discrete coercivity of d,.) If K satisfies Hypothesis ( ;) for all

E €& and for any vector of positive numbers €= (EE)E . there exists a con-
€

stant C (e)>0 such that

Vu, e’ (gh )> @, (”h:”h;ﬁ) >C (€)||”h "2

if
2
_ DF(K[CE

ef <2, VEeé& o = (4 IEK‘;’ )

) ) ) L . . &
op >0y and o >op", VFeF" withVEeE b (39)

5 E E ~E
ol >0l VF e F° ox _ D (Kl Cu p*l)

and D* isthe number of edges of the element E . Moreover

E in in*
* s . E _ & . Op —Op ’ . o _ox
C'(e)= mln{lgelgl[l{o (1 ey JJ,I?EI?(—Z J,;IEI}:I}(O'E oy )} (40)
Lemma 9. (Discrete continuity of @,.) If K satisfies Hypothesis (7, ) for all

E €& and for any vector of positive numbers €= <<€'E )E o there exists a con-

€,

stant é(e) >0 such that

Vuh,vh € Vop (gh ), |d}, (uhsvh;ﬁ)| < é(e)"uh”"‘}h "

where

in
~ o
C(€)=max K + max { max| —=£ ,max(af-)
Ee Ee€ | 2 ) FeF?

in*
O- ’ *
+ [2max gEKlEmax max | —£ ,max(ag‘ ) .
EeE EeE 2 FeF®

(41)
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Lemma 6 still holds in the two-dimensional case and is left to the reader. Proofs
of Lemmas 7, 8 and 9 are similar to proofs in the one-dimensional case. The main
difference is in the expression of trace constants. In two dimensions, they are linked
to the element’s shape. For an orthonormal basis and for u e}’ (&), the trace

constant of E €& is given by:

+1)(p+2
%, if E is a triangle,
L= 1 (42)
%, if E is a quadrilateral.

4.4. Optimal Penalization Parameters

Thanks to the previous results on the discrete linearized problem Problem ()4) ),
one can now construct a method to set automatically penalization parameters.
They must be chosen to ensure the coercivity and continuity of the linearized dis-
crete problem, ie, C° (6)>0 and C(€)>0.Moreover, using Céa’s Lemma 10,
they are set to minimize the distance between the weak and discrete solutions.
Lemma 10. (Céa’s lemma). Let ¥ be a real Hilbert space with the norm |-
Let a:VxV — R beabilinear formand /:7 — R alinear form satisfying the
Lax-Milgram theorem. Let V, be a closed subspace of V. Then, there exists a

unique u, €V, such that

Vv, €V,, a(u,,v,)=1(v,) and ||u—uh||S§

u—v", vvel, (43)

where C is the continuity constant and C’ the coercivity constant.
Firstly, as a reminder, positivity of continuity and coercivity constants enforce

that for all ne{0,---,N -1}, e™ <2 and vne{0,--,N}, o,>o,.Theyare

given by:

C'(¢)=min{ min | K" 1—£ — 6 .Cu—0", min 0,~0, (44)
€)= n=0,--,N—1 0 2 2007~ %9y O-N’,,:L“.’N,l 2 ’

and

o n n n * O':
C(G):nzlol}_?ljs_l (K1( ))+ nzg}%)}g_l(zg( )Kl( ))\/maX[O'O,O'N,nI]I’_l_%ﬁ_I(T}] "
45

UV[
+max| 0,,0,, max .
n=l-,N-1{ 2

For the sake of simplicity, let us consider that the variable & is the same for
()

every element: Vne{0,---,N—1}, &" =&<2,and in addition, because penali-
zation parameters are bounded below, let us consider that they are above the lower

bound of an amount ¢ constant for every element:

o o o (Kl(")c(”) 1)

~ ~F ~ . ~ tr,p—

Va>l,Vne{l,-~~,N—l},U =—©6,,0,=—6,,0y, =—06, with&, = ! . (46)
"o2e " & £ ! K(E”)
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Using previous assumptions, it can be noticed that C" and C are functions

of ¢ and a and can be rewritten:

C'(a,¢) :min{K0 [l—fj, a—l&o’a_—l&}v’ min (a—l%} (47)

2 Fa Fod n=l,-- N-1

and

&

a - - G,
+—max| 6,,0,, max |—-||.
£ n=l,-,N-1\ 4

One can see that two quantities are involved in the two previous definitions:

- N . G - .. (o)
6 . =min<&,,6,, min 2 and 6, =max<{&,,6,, max |—=% (49)
min { 0° N’n—l,m,Nl( 4 \J} max { 0> N’n—l,w,Nl( 4

to have the final write:
« . ) a-1 . ~ p a .
C' (a,¢)=min{ K, 1—5 G ¢ and C(a,&) =K, +2K,G e +— G\ (50)
£ £

These new expressions of C° and C showthat C* has two different states

C(e)=K, +42¢K, \/lmax(&;,&;,, Ilnaﬁl(c:” D

(48)

and C is continuous concerning @ and ¢&. The aim of this section can now
C(a,¢)
C (a,¢)

First, C' and C are studied separately, then » is observed. C" has two dif-

be reformulated as find @ and & such that y(a,&)= is minimal.

ferent states, is continuous and well defined for all (a,&) e (1,+90)x(0,2). It can

be rewritten as follows:

V(a,e)e(1,+2)x(0,2), (51)
@1 5> If @ <a (€) ©
C (a,¢)= witha' (e)=——"—¢(2-¢)+1. (52)
& . 20,
K, (1 - Ej , otherwise min

jod *

where C is continuous and well defined for all (a,¢)e(1,+0)x(0,2). C
2 . . C(a,e)
and C are now explicitly characterized and now }/((Z,S) =——— can be
C (a,¢)
studied. (aapt,gopt) are looked for such that y is minimal and it is given by:

V(a,&)e(1,+0)x(0,2), (53)

ﬁ[lg + \/m + % O max j , otherwise

where y is studied on its different open subdomains and the boundary between
them. On D), forall (a,¢)e (a* (6‘),+00)><(0,2) , it gives:
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K, +.2K.,6 5
7(a,6)=a ! w2 witha=2wandb=26ma". (55)
2-¢  ¢(2-¢) K, K,

Then, looking at its variations, it gives that:

<0, if0<e<e

0,7(a,e)4=0, ife=¢ and 8a}/(a,6):L>0 (56)
o e(2-¢)
>0, ife <e<2
. 1/b(2a+b)—b
with & ==——————>0. And finally noting that y — +0 when a — +o

a
and when & >0 or ¢—2 itgivesthat y is minimalfor £=¢" and
a—>a (5)

On D,,forall (a,¢)e (l,a* (g))X(O,Z) it gives:

~;1)(&%/2]{1&%)+ ® T (57)

O-min (Of - a _1 min

13

7(a,6)=

M

Then, looking at its variations, it gives that:

K, +2K,0,,
657/(a,£)=m

0,7 (a,6)=—— [o:i(Kl +2K G, )+ O J <0.

(0.’ - 1)2 min min

And finally, noting that y — +00 when « —1 itgivesthat y is minimal

>0and

(58)

for @ —a (£). On the boundary between D, and D,, for all a=a (&)

and &£€(0,2) it gives:

2-¢ £(2-¢) K,

>

7(a*(5),£):a -
59

bzzﬁandcz@.
K, O i

Then, looking at its variations, it gives that:

<0, if0<e<eg
’ 8 Jo(2a+b)-b
0 7/(0{*(5),5) =0, L>O. (60)

. ife=¢, with ¢, = p
>0, ifeg, <e<2

The expression of (“ap, ,gap[) can be summarized as follows:

\Jb(2a+b)-b J2K. G 5
(2a+b) Kty 2K Oy and b =22 and

&,y = witha=2
a K, K, (61)
K

_ 0
Ay = —25_ Eopt (2 — & ) +1.

min
Finally, in one dimension, the auto-calibration of penalization parameters is given
by:
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a, . a,, . a,, .
VI’IE{L---’N—l}, O-nzzgpt &n’ O-Oz_pto-oa Oy = o Oy
opt opt opt
2 (62)
. ~k (Kl( )Ct(r,;—l)
with 6, =——7——.
KO

In two dimensions, the auto-calibration of penalization parameters is given by:

*

. a . a
in in __ opt * in __ opt
VFeF", of =——0;, Of =——0

2
2¢ r2e, D*(KfCy, )
opt opt . * 1 tr,p-1
with o, =——— 1) (63)
. 25EK5

VFeF°, o) = o o
opt
and D* isthe number of edges of the element E and Cf, -1 is the trace con-
stant defined in Equation (42).

Extension to multi-dimensional meshes. In multi-dimensional settings, the
penalization term given in Equation (62) is extended by replacing the one-dimen-
sional element length d, with a local characteristic size derived from the ratio
between the element volume and its boundary surface area, e, d, = |E|/|6E|
For non-quadrilateral (triangular or polygonal) cells, this characteristic measure
ensures that the penalty parameter scales consistently with the element geometry.
Therefore, no additional geometric constant is required, and the same penalization

formula applies naturally in two and three dimensions.

4.5. Convergence of the Discrete Linearized Weak Problem to the
Continuous Linearized Weak Problem

Previously, it has been proven that the Problem ()4)) has a unique solution. This
problem is part of a fixed-point method, and it has been proven in Section 4.2 that
this fixed point has a unique solution also. To solve the nonlinear weak formula-
tion Problem (W), one step needs to be added to prove the well-posedness of the
problem. It is addressed in the following; the goal is to prove that the solution of
Problem (Wh) converges towards the solution of Problem (W) and prove that
the bilinear form d, of Problem ( Wh ) converges to Problem (W).

The work in this section is based on the book of Pietro and Ern published in
2012 [13]. They proved convergence in the case of a Symmetric Interior Penalty
Galerkin method and sketch the proof in the case of an Incomplete Interior Penalty
method. The following study provides detailed proof of the IIPG case.

The key idea is to revisit the concept of consistency and introduce a new point
of view based on asymptotic consistency. This new form of consistency and the usual
stability of the discrete bilinear form are the two main ingredients for asserting con-
vergence to the minimal regularity solutions. The discrete bilinear form ¢, needs
to be reformulated to consider only the contribution of K on the mesh elements,
not the interfaces; consequently, lifting operators are introduced. They map func-
tions defined on mesh faces to functions defined on mesh elements. In the context

of DG methods, liftings act on interfaces and boundary jumps. Bassi and Rebay
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introduced them [36] in the context of compressible flows and analyzed by Brezzi
et al. [37] in the context of the Poisson problem. Liftings have many useful applica-
tions. They can be combined with the gradient to define discrete gradients. Discrete
gradients play an essential role in the design and analysis of DG methods. Indeed,
they can be used to formulate the discrete problem locally on each element using
numerical fluxes.

Liftings: Definition

For any point x,,and forall ¢e’({x,}) thelifting operator
rP L ({x,}) >V’ (&,) is defined as the solution of the following problem:

IQ r?(p)r,dx = {|z’h|}X" p(x,), Yz, eV (&,). (64)

Forany v in ) (&,), the global lifting of its interface and boundary jumps

is defined as follows:

M=

R/ ([[vﬂ) =

Discrete gradients: Definition
The discrete gradient operator G} : W) (&,)— L*(1,) is defined as follows: for

all v in 1)(E,),

(VD) e W (&) (65)

Il
S

n

G/ (v)=V,v=R!([v]). (66)
In addition, there exists a bound on the discrete gradient operator:

|Gy (v)

) < a”v" (67)

2(Q

where |||| is the norm associated with the IIPG formulation defined Equation
(30).
Theorem 11. (Regularity of the limit and weak asymptotic consistency of dis-

crete gradients.) Let p>0.Let v, beasequencein 1)’(,) bounded by the
|||| -norm. Then, there is a function ve H, (Q) suchthatas #—»0,uptoasub-
sequence,

v, — v strongly in I (Q), (68)
and for all p >0, the discrete gradients defined by Equation (66) are such that
G/ (v,) = V' weakly in I’ (Q). (69)

Proof of Theorem 11 is available in [13] (pp. 194-195).
Because of the shape of the IIPG formulation, the modified discrete gradient

operator G : )’ (§,)>L*(1,) isdefined as follows: forall v in V)’ (&,),
G! (v)=V,. (70)

Using liftings and discrete gradients, surface contributions of the flux in Equa-
tion (32) are transformed to volume contribution. It makes working with the bilin-

ear form 4, easier. Foragiven u e))’(&,), it can be rewritten as follows:
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Vi, <V (6,),
i, (uh,v,,,a):gjan(”)v 0,V v, — "zo{|1< SOVt [, s (0)
=3[, K5O (1) 9,de= 23 ] K () ([ D)6 ) 5, () 1)
::VZ:;L”K(x,u)Gh (uh)thhdx—:VZ:;jan(x )R ([ 1) 67 () +5, (v,
:j:ol.[an(x,u)Gh (1,)G? (v, )dx+ 5, (1,.v,)
with
Vi, € (&), 5 () = 2], 1], + £ 22 % ], ],

n=1 (72)

(’7[{ I,

Consider that (o, )n:O,-w, y arechosen according to Lemma 4 that implies dis-
crete coercivity in the |||| -norm, and hence well-posedness of the discrete linear-
ized problem (V}).

Definition 1. (Asymptotic adjoint consistency.) The discrete bilinear form a,
is asymptotically adjoint consistent with the exact bilinear form a on 1’ (&)

if for any subsequence v, in 1)’ (&,) bounded in the |||| -norm and for any

smooth function ¢ e Cy (), there is a subsequence ¢, in )’ (&,) converging

to ¢ inthe |||| -norm and such that, up to a subsequence
lima, (v,.¢,)=a(v.9) = [ vo'ds (73)

where ve Hg(Q) is the limit of the subsequence identified in Theorem 11.
Lemma 12. (Asymptotic adjoint consistency of @, .) The discrete bilinear form
a, of Problem (})) is asymptotically adjoint consistent with the exact bilinear

form & of Problem (W) on W(E,).

Finally, we deduce the following result.

Theorem 13. (Convergence to minimal regularity solutions.) Let p>1.Let u,
be a sequence of approximate solutions generated by solving the discrete linear-
ized problem (ﬁh ) with g, defined by Equation (32) and with penalty parameters

ensuring coercivity. Then,as % — 0

u, — u strongly in I’ (Q) (74)
V,u, — u' strongly in L* (Q) (75)
|uh |J -0 (76)

where u € Hy(Q) is the unique solution of the strong problem.

Proofs of Lemma 12 and Theorem 13 can be found in Appendix.
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4.6. Concluding Results

In the current section, several theorems have been proven. It is proven that there
exists a unique solution to Problem (W) using Lemma 1 and Lemma 2. Then, it
is proven that for a given # , there exists a unique solution to Problem ( l/i/h ) us-
ing Lemma 3. Lastly it is proven that for a given i , the solution of Problem ( ) )
converges to the solution of Problem ( W). These results proven in a general case
for a given & can be used to solve the toy problem. Figure 6 gives a graphical

representation of the whole loop of resolution with different paths.

T
u > U
AA
o
oy T
=
\ \ TD J
Pi(@) —5—> (Th o Pr) (1)
h

Figure 6. Scheme of the whole loop of resolution with the different linearization methods.

The nonlinear problem, Problem () can be linearized directly at the contin-
uous level by employing a fixed-point method. The continuous level linearization
T:Hy(Q)— H,(Q)

T ()=u 77

stands for: find u solution of Problem (W) for a given & e H;(Q). One can

define the following sequence defined by u’ e H, (Q) an initial guess and

n

ut =T (u”) for neN.Lemma 1 and Lemma 2 ensure that taking lim, ,_ u

gives the solution of Problem (W).
A discretization step is needed to compute the solution of Problem (/). Con-

sequently, the projector P, : H, (Q)—> VY’ (&,) is introduced. It projects a func-
tion living in an infinite-dimensional space to a finite-dimensional space, espe-
cially it projects a function to the DG space (&, ). Then, at a discrete level, the
linearization method
TV (&) >V (E,) (78)
we T, (i) =u,
stands for: find u, discrete solution of Problem (W) for a given u €V’ (&, ).
One can notice that for a given # € H,(Q), it has been proven (Theorem 13) that
(T,oP,)(#)=u, convergesto u givenby T (ir).
Lastly, the linearization method of Problem (V) going through a discretization

step is defined as
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T, :Hy(Q) > H,y(Q)

7> T, ()= lim (T, ) () = 7

Using T, one can define a new sequence V' € H, (Q) an initial guess and
Vit=T, (v” ) =lim, (7, ° P, )(v”) for ne N. Taking the limit when n goes
to infinity gives the solution of Problem (W).

The previously explained method uses two limits, » goestoOthen n goes
to infinity. One can also consider limits in the opposite order. Using proof of Lemma
1 applied to the nonlinear discrete problem and then using Theorem 13, one can
prove that the solution of the nonlinear discrete problem converges to the solution

of the nonlinear continuous problem.

5. Numerical Results

Following the numerical methods and theoretical results presented in the previous
sections, the RIVAGE code is validated against numerical test cases. Two analyti-
cal test cases are used to compute convergence rates and validate the code. These
analytical test cases are obtained by considering the problem’s aimed solution and
choosing the source term according to the solution and the hydraulic conductivity
function. They are built upon the nonlinear Poisson’s equation. The first case is a non-
linear one-dimensional problem in its stationary form. The second case is a nonlin-
ear two-dimensional problem in its stationary form. These numerical experiments
are inspired by literature. In 2008, Riviére [14] and in 2021, Clément et al [12] com-
puted convergence rates for linear problems, also for nonlinear problems.

Stationary problems are considered since theoretical results are given on this type
of problem. Moreover, they are more difficult to solve since they solve the problem
at infinite time. Consequently, the nonlinear solver has to find the solution without
getting time sub-steps.

Experimental test cases are solved with the RIVAGE code. These problems aim
at confirming the performance of the adaptive strategy proposed in this work.
Moreover, they allow to test RIVAGE of problems encountered in the hydrology
field. These experiments are based on the work of Haverkamp et al [38] and Vau-
clin et al [39].

Table 3. Solver and time-integration settings used in all numerical experiments.

Parameter

Nonlinear tolerance
Maximum Picard iterations
Time-step size

Minimum time-step

Linear solver

Spatial polynomial degree

Penalty parameters

Symbol/Setting Description

£y =107 Residual tolerance for Picard iterations

Np¥ =40 Upper bound before step rejection

adaptive Automatically reduced if residual increases
=10"*s Stability safeguard

Conjugate Gradient (CG) Preconditioned by ILU(0)

p=12 Depending on the test case

Equation (63) Auto-calibrated during iteration
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These settings (see Table 3) were kept identical for all test cases unless explic-

itly stated otherwise.

5.1. One-Dimensional Analytical Test Case

For this first test case, theoretical convergence rates of the IIPG methods are checked,
and numerical stability is evaluated concerning penalty values and penalization
methods. The following problem is considered:

—(K(u)u) = f(x) nQ=[-11]

u(-1)=1, (80)

u(l)=-1,

with K (u)=tanh(5u)+1.01 and f obtained by replacing u by u, in the
problem. The chosen analytical solution is u, (x)=—sin (ng The analytical

solution is chosen not to be polynomial but to span the interval [—1,1]. The hy-

draulic conductivity is chosen to have a nonlinear problem with a similar shape of
law given in Table 1. tanh has been chosen because it is a smooth function con-
venient for the computation of convergence rates and looks like constitutive laws
for RE. Moreover, a factor of 200 between the maximum and the minimum value
of K with K, =0.01. The problem is solved with the IIPG method. Three types

of penalization are used. The firstone " =o =1 forall E e&, thesecond one

0" =0=100 forall £e& andthethirdone o” areauto-calibrated using the
method presented in Section 4. For each type of penalization, the solution is ap-
proximated by a piecewise linear function ( p =1), a piecewise quadratic function
(p=2),and a piecewise cubic function ( p =3 ). Moreover, lastly, four different
mesh sizesareused N, =20,40,80,160 with N_—the number of elements in the
equally spaced partition of Q.

Table 4. [ -error, convergence rates and number of iterations for the one-dimensional benchmark.

p=1 p=2 p=3

o N, 7 -error r Z(S) 7 -error r t(s) I* -error r t(s)
1 20 3.21x 107! 0.21 1.33 x 107! 1.94 229 x 107 6.21
- 40 1.29 x 107! 1.31 0.46 3.41 x 1072 1.97 3.17 1.42 x 10™° 4.01 11.85
- 80 3.77 x 1072 1.78 1.02 8.53 x 1073 2.00 5.97 8.88 x 1077 4.00 23.94
- 160 9.83 x 1073 1.94 2.08 2.13x 1073 2.00 12.09 5.62 x 1078 3.98 52.83
- Fitted 1.69 1.99 4.00

100 20 8.33 x 1073 0.21 1.36 x 1073 1.48 2.33x 107 5.89
- 40 2.10 x 1073 1.99 0.51 3.41 x 107 2.00 2.97 1.44 x 1077 4.02 11.87
- 80 527 x 10™* 2.00 1.03 8.53 x 107° 2.00 5.94 9.74 x 107 3.89 24.03
- 160 131 x 10 2.00 2.08 2.13 x 1075 2.00 12.16 1.37 x 107 2.83 53.20
- Fitted 1.99 2.00 3.61
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Continued
auto 20 3.53 x 1072 0.24 1.69 x 1072 1.43 3.46 x 10°° 5.88
- 40 8.88 x 1073 1.99 0.51 4.40 x 1073 1.94 2.86 1.61 x 1077 4.42 11.92
- 80 2.17 x 1073 2.03 1.05 1.13 x 1073 1.95 5.95 9.45 x 10~° 4.10 24.07
- 160 5.32 x 107 2.03 2.55 2.90 x 10 1.97 12.13 1.33 x 10~° 2.82 53.25
- Fitted 2.02 1.96 3.81
30 r T T
p=3
25 }
20 F
— p=2
E 15}
S
10 fp=1
5 5
O 1 L
-1 —0.5 0.5 1
x

Figure 7. Penalization parameters for the one-dimensional test case in the case of auto-
penalization.

Table 4 shows L’ -error and convergence rate for each computation. It can be
noticed that computed convergence rates correspond to the theoretical ones found
in literature [14] and [40] (pp. 64-84). For the IIPG formulation with penalization,
p isoddinorder p+1,itisoptimal, andif p iseven, the orderis p,itis
suboptimal. Moreover, for a penalization speed set by the user to 1 (outside of the
range specified by theoretical results), errors are about 100 times greater than in
other computations. The fixed-point method converges to a less accurate solution.
Computation times are also given. It can be noticed that auto-penalization is not
greatly slower than user-defined penalization and can even be faster due to the
quickest convergence of the iterative method.

Moreover, Figure 7 shows penalization values in the case of auto-calibration.
One can observe that penalization values are not constant on ) and vary accord-
ing to the polynomial degree of approximation. On the domain, some part needs a

small amount of penalization, whereas others need a higher amount.

5.2. Two-Dimensional Analytical Test Case

This second experiment focuses on the ability of the IIPG method to solve RE in
two dimensions. Its convergence rates are computed, and numerical stability is eval-
uated concerning penalty values and penalization methods. The following problem

is considered:
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{‘v-(K(u>w)=f<x> in ©=[-L1J[-L1] @1
u=0 on 0Q),

with K (u)=tanh(u)+1.01 and similarly to the previous test case [ is ob-

tained by replacing u# by u, in the problem. The chosen analytical solution is

u,, (x,y)=sin (ng sin (g yj . The problem is solved similarly to the one-dimen-

sional test case. Three types of penalization are used. The first one o’ =0=1 for

all Eeé&,thesecondone 6°=0=100 forall E<c& and thethirdone o
are auto-calibrated. For each type of penalization, the solution is approximated by
a piecewise linear function ( p =1), a piecewise quadratic function (p=2),and a
piecewise cubic function ( p =3 ). Lastly, three different meshes are used. They are
all composed of quadrilaterals of identical size, and each space direction is discre-
tizedwith » =10,20,40 elements. It givesamesh with N, =100,400,1600 el-

ements.

Table 5. [*-error, convergence rates and number of iterations for the two-dimensional benchmark.

p=1 p=2 p=3
o N, I’ -error 7 t(S) I’ -error 7 t(S) I’ -error r t(s)
1 10 6.45 x 1072 0.29 4.83 x 1072 1.54 8.60 x 10™* 5.07
- 20 1.51 x 1072 1.99 1.00 1.11 x 1072 2.11 7.21 4.69 x 107 4.20 27.21
- 40 3.53 x 1073 2.10 7.57 2.65 % 1073 2.07 59.51 2.74 x 107° 4.09 279.59
- Fitted 2.10 2.09 4.15
100 10 3.80 x 1072 0.25 2.02x 1073 1.14 7.32x107° 4.83
- 20 9.53 x 1073 1.99 0.99 2.72x 107 2.90 6.78 4.59 x 107 4.00 30.23
- 40 2.38 x 1073 2.00 8.37 4.08 x 1073 2.74 61.62 2.87 x 1077 4.00 290.86
- Fitted 2.00 2.82 4.00
auto 10 3.37 x 1072 0.25 2.52 %1073 1.15 7.41 x 107° 4.93
- 20 8.11 x 107® 2.06 1.03 5.90 x 10™* 2.09 6.88 4.71 x 107 3.98 30.15
- 40 2.02x 1073 2.00 8.49 1.51 x 107 1.96 60.85 2.97 x 1077 3.99 288.50
- Fitted 2.03 2.03 3.98

Table 5 shows [’ -error and convergence rate for each computation. It can be
noticed that computed convergence rates correspond to the theoretical ones found
in literature [14] and [40] (pp. 64-84). For the IIPG formulation with penalization,
p isoddinorder p+1,itisoptimal,andif p iseven,theorderis p and
suboptimal. Moreover, for a penalization speed set by the user to 1 (outside of the
range specified by theoretical results), errors are about 100 times greater than
in other computations. The fixed-point method converges to a less accurate solu-
tion. Computation times are also given. It can be noticed that auto-penalization is

not greatly slower than user-defined penalization and can even be faster due to
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the quickest convergence of the iterative method as in the one-dimensional case.
Moreover, Figure 8 shows penalization values in the case of auto-calibration. One

can observe that penalization values are not constant on (2 and vary according to

the polynomial degree of approximation. On the domain, some part needs a small

amount of penalization, whereas others need a higher amount.

sigma
21 4 6 8 10 12 144
— | \ [ ——

025 0
X

Figure 8. Penalization parameters for the two-dimensional test case in the
case of auto-penalization.

5.3. Application to Groundwater Flows I: Haverkamp’s Test Case

The two problems considered here, one-dimensional and two-dimensional, aim
to validate the numerical resolution of RE using DG methods and auto-calibration
of penalization parameters. Numerical results are compared to numerical simula-
tions in the literature and experimental data.

The first experimental validation of solving RE with DG methods is a one-
dimensional test case. The numerical results are compared with data sourced from
the literature. This particular numerical test case was initially presented by Celia
et al [41]. It is based on an experiment conducted by Haverkamp et al [38], who
referred to the availability of a quasi-analytical solution provided by Philip [42].
Subsequently, it was used by others such as [43] [44], and represents a set of well-
established test cases, for instance, see [30]. Despite its simplicity, this case offers
insights into the fundamental physics of a wetting front resulting from infiltra-

tion.

DOI: 10.4236/jamp.2025.1311227

4111 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2025.1311227

C. Poussel et al.

This scenario involves the one-dimensional infiltration into a soil column meas-
uring 40 cm in height and 8 cm in width. The hydraulic head at the top and bottom
is governed by Dirichlet boundary conditions: 4, =19.3cm and

Myoiom = —01.5 cm, resulting in cumulative downward infiltration. The sides are
impermeable. The initial conditionis #, =—61.5+z cm . Although this case is one-
dimensional, it is solved on a two-dimensional domain. Therefore, homogeneous
Neumann boundary conditions are applied along the boundary in the infiltration

direction. For a visual representation of this setup, refer to Figure 9.

z
A h/top
A
— 2
I 4
VA
el 2 I
S| S <
=i 3
Z |
=) —_
\4 -
X
O hbottom

8 cm

Figure 9. Haverkamp’s test case configuration.

Hydraulic properties use Vachaud’s relations in Table 1 with 4=1.175x10°,
B=474, C=1611x10°, D=396, K, =0.0094cm-s", 6, =0287, and
0.=0.075 . The simulation is done on a mesh of 160 elements along the z -axis.
The solution is piecewise linear ( p =1), and time integration is BDF of order 2.
Penalization parameters are set automatically using results from Section 4. In ad-
dition, stopping criteria are set to 10~ for this computation. The solution to this prob-
lem is computed at 7 =600s.

Figure 10 displays the comparison of numerical results with results from Man-
zini et al. [44], the pressure head distribution at #=360s and the penalization
parameters distribution at #=360s . Numerical results are in good agreement with
the literature results for this test case. The pressure head distribution shows a ver-
tical progression of the wetting front with a steep transition from the initial y to
w imposed at the boundary condition. Moreover, the distribution of penalization
parameters shows that the penalization parameters are not constant on the whole
domain and are higher on the wetting front.

This test case validates a real, evolving test case for the DG method. Moreover,
it gives a good insight into the behavior of automatic penalization. Penalization pa-

rameters are auto-calibrated as long as the solution evolves. Moreover, automatic
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penalization impacts a full nonlinear problem because the nonlinear solver needs

fewer iterations to converge to the solution.
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Figure 10. Haverkamp’s test case, numerical solution for 160 elements, p =1 and BDF-2 method.

5.4. Application to Groundwater Flows II: Vauclin’s Test Case

Vauclin, Vachaud, and Khanji conducted a series of laboratory experiments in the
1970s, the details of which can be found in [39]. These experiments explored water
table recharge and drainage in a slab of sandy soil. The work by Vauclin ef al. [39]
specifically focuses on simulating water flow recharge through a soil slab and pro-
vides experimental details and results. The experiment involved a 6 m by 2 m box,
with only one half simulated due to symmetry. The left, top (for x >50cm ), and
bottom sides were impervious, with a prescribed constant flux on the top for
x<50cm of u,-n=-14.8 cm-h™'. The water level was maintained at a con-
stant 4 =65cm in the ditch on the right for z < 65cm , while the remaining
boundary on the right for z>65cm accounted for a seepage boundary condi-
tion. The initial state was at hydrostatic equilibrium with the water tableat z=65m.
For further reference, please see Figure 11 for a schematic representation of the
setup. The complete simulation of water table recharge by Vauclin et a/ [39] has
been used by numerous studies to evaluate their methods (see, for instance, [45]-
[47]). The MODFLOW code validation partially relies on this experimental dataset
(31].

Hydraulic properties use Vachaud’s relations in Table 1 with 4 =2.99x10°,
B=50, C=40000, D=29, K, =35cm-h™", 6, =03, and 6 =0.0. The
simulation is carried on an evolving mesh. The mesh is adapted along the compu-

tation according to the gradient of % . Mesh adaptive parameters are set to . =50
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and B =50. The solution is sought piecewise linear ( p =2) and time integra-
tion is BDF of order 3. Penalization parameters are set automatically using results
from Section 4. In addition, stopping criteria are set to 1076 for this computation.

The solution of this problem is computed until 7=10h.

z
1 Flux in
WL Solid Wall
=
=
= o
e =
g = S
o =)
= =
o o)
A [nitial piezometric head
o ST SLTTSNTOT A RS SNLTITRNTINANT 'Fg
] &
© - Saturated zone - &
) . . 2,
) )
o3
0 Solid Wall x

300 cm

Figure 11. Vauclin’s test case configuration.

In the initial mesh displayed in Figure 12, the refinement below the water entry
edge aims to assist in simulating the steep wetting front. Figure 13 compares the
water table’s position at r=2,3,4,8 h with data from Vauclin et al. [39]. The nu-
merical results closely match the experimental profile, although there are small dis-
crepancies in the middle of the water table, which may be due to the non-perfect iso-
tropic and homogeneous nature of the sandy soil.

Figure 14 and Figure 15 illustrate the field distribution of hydraulic head, flux,
and the positions of the water table and capillary fringe at 6 =0.29 . These figures
also show the isolines of the hydraulic head. The numerical results are in agreement
with the data from Vauclin et al. [39].

Additionally, in Figure 16, the evolution of penalization parameters during the
computation is presented. At selected times, the evolution of the mesh reflects the
capture of the steep front.

Finally, Figure 17 displays the evolution of time-steps and the number of ele-
ments over time. The adaptation of time steps and the number of elements is evi-
dent, with the time steps initially small due to the strong nonlinearity induced by
the steep wetting front. As the front smoothens, the number of elements decreases,
stabilizing at N, =600 after r=3h.

This test case is a test case, which is a typical problem where auto-calibration of

penalization parameters is essential. Since the problem is strongly nonlinear and
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evolving, with a basic penalization and user defined parameters, the nonlinear solver
failed to capture the solution or necessitates some combination of fixed-point solver
and Newton-Raphson method such as in the work of [7].

Discussions on possible limitations. A potential limitation of the proposed

approach arises when hydraulic parameters (e.g., K

s

a , n) exhibit abrupt
spatial variations between adjacent elements. In such cases, the optimal scaling of
the penalty parameter may deteriorate, leading to sub-optimal convergence rates.
Similarly, the application of capillary-pressure regularization can alter the local
nonlinearity of the constitutive laws, thereby reducing the effectiveness of the au-
tomatic penalization scheme. Future work will investigate adaptive penalty strat-
egies that account for local parameter contrasts and regularized constitutive mod-

els.
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Figure 12. Vauclin’s test case, initial mesh.
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Figure 13. Vauclin’s test case, numerical water table position compared to experimental
data from Vaulin et al. [39].
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(b) Numerical solution

Figure 14. Vauclin’s test case, at ¢ =3 h, spatial distribution of hydraulic head, water table position (white line), contour plot of

hydraulic head (red lines) and flux (arrows).
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Figure 15. Vauclin’s test case, at ¢ =8 h, spatial distribution of hydraulic head, water table position (white line), contour plot of

hydraulic head (red lines) and flux (arrows).
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(c)Att=2h

Figure 16. Vauclin’s test case, spatial distribution of penalization parameters and mesh at selected times.
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Figure 17. Vauclin’s test case, evolution along time of time-steps (left) and number of elements (right).
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Appendix
Proofs on Theoretical Results
Proof of Lemma 4. For agiven u €V}’ (&,) and choosing v, =u, in (32) yields

Yu, €V (&), a,(u,u,)= NZ_[ K (x,)(u, )2 dx—iﬂK (x, ﬁ)””}xn [[”h :[]x"

n=0

o+
. % |I ]] ; th o, [[”h]]; +O;l—N|Iuh]]iN

(82)

An upper bound to the term Z {|K X, uh|} [[uh]] needs to be estab-

lished to prove the coercivity of a,. Using Hypothesis (H, ) and definition of

average:

Vne{l,---,N—l}

‘“K(xﬁ)””}xn S%(K(JC ,ﬁ(x;) (x )‘+‘K(x+ ( ))uh(f)) (83)
S b o AL )

Recalling the trace inequality [48] in the case of an orthonormal polynomial ba-

sis: for an interval [,

vuelP’(1,), ‘u(x;) <C,, "u%%(]”) , ‘u(x,;l) <C,, "u%%([”) (84)
we get, Vnell,--,N-1}:
_ Ky K" cl
[ e, [l _[— bl Sl i),
' n 1 ' n 1 " " " l Cl(r',lplf)l [[
In-1 (n-1) \/ n-1) \/z U Xn
e =
I, 2@\/1((()”) \/ﬁ
At the boundary nodes X, and x,, we have
_ , K .
N R e e e S A
., — — ' K(N—I) C(er
‘{|K(x,u)uh|}x,v ‘[[uh]]m <Je™ D IK(EN ) ||uh||1N7] \/g(N*I; \/K(N - t p 1 [[Mh]] ‘ (87)
0

Gathering the bounds on the boundary and the interior nodes, we get
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S

, KO
<N il T f
[ (n-1) ' (n-1) () Ct(rr,l;—)l
+z ” "1 0 (n-1) \/K(,,_l) \/Z u
0

n
Ir,p—l

{|K X, U uh|}

[ ]]xo

(88)

hlly,

J_ J
Nl il T

Nl)

=i

Then, using Cauchy-Schwarz’s and Young’s inequality, we have:
=0 {|K ()C, 17) u]; |}xn [[uh ]]Xn
2 2
REP (K (°)Cfr°L 1) [, (&7 Tl
- P 0 h S(N_I)KSN_I) h

Nl(Kf wl) [, (k1) [,

2w 2¢K () 2h

0

Ctr,p 1
(N-1

N-1)
N/ [, ]]XN

N-1

X

(89)

From the above inequality, we deduce a lower bound of

a, (uy,u,;u),Yu, e ' (€,)

4 (1) ) vi(o, o, )+(o, -0,
(Ké")_%J"“l;"iﬁ;T(o -0 ll (0,-0 );[[uh]]z
+(a, —O';)%[uhﬂio +(oy —a;)%[[u,,]];

2

dh(uh,uh)>

3
Il
S

where

(ks
o =

n

W’ Vne {1,,N—1}
2
(k9
FOKO
(KI(N—I)C(N—I) )2

tr,p-1

8(N—1)K(gN—1)

Oy = (91)

*
Oy =

Finally, thanks to the inequality (90), a, (32) is coercive if
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g"<2, vnelo,,N-1}
0'”>0'£, Vne{l,---,N—l} (92)
o, >0,
oy >0y

which ends the proof. i

ProofofLemma. For agiven i €1}’ (&,),an upper bound for |Zzh (), v,10)

Vu,,v, €’ (€,) needstobe established in order to prove continuity of d, . Firstly,

start bounding above the volume contribution using Hypothesis ( H, ):

N-1 N-
ZL K (x,u )ujv;dx Z 1 hvhdx‘
n=0 " n=0
1 (93)
N 2 Nl 2
<(Zrmt, (£ J |
n=0
Then, penalization terms are bounded above
o, o, +0o,
- ] v, + Z 2[w,], 0], +2> o],
| (94)
o o, 2 O 2 |2
<[Stul.+ ;Tﬂ””ﬂxﬁf[”hj
L TN RS Suecr ) s
h " 0 n=1 Zh h h v (95)
<max[ao,a,v, max [ j]"uh""vh"
and one can write
N
{|K X u)uh|} . [[vh]]X”
_ _ 2
< 2N71 (n ( trp 1) [[ h:[] (KI(N l)Ct(r],vaI)) [[vh]]iN
= nZ:OS ” h” FOKO A AT 4 (96)

T GRS e Voo P
N-l (K1 C ) (Kl C ) v

tr,p—1 tr,p—1 hx,

+ + —
HZ:; zg(nfl)K(()nfl) 28(}7)K(§n) 2h

From those inequalities, we obtain an upper bound Vu,,v, € ¥ (&,), as fol-

lows
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|a, u,,v,;i )| (ZK

! 1
— I n ’ 2 2

1
Vgt +0: o, 2
N L S S S,

[z 26"
n
m( oy (%)l

< max (Kl(" )”uh"”vh" (97)

n=0,-N-1

+\/n—¥)r,-l-e-l,)1(v-1(28(")K( ))maX(O'O,O'N,n Ilna§ 1{7”)] ”uh""vh"
a0, (%l

< Clsy

where
N (n) (n) g (n) . .,
C(f)—n:{){?ﬁ’]&,l(Kl )+\/nror}§)]<vl<25 K, )maX[O'O,O'N, mag& 1( > D )

O,
+ max O'O,O'N, max .
n=l,--,N-1 2

Proof of Lemma 6. An upper bound for |l(vh )| is established using Poin-

O

caré inequality and Cauchy Schwarz: Vv, €}’ (h),

ZJ fod| < lefll [l <

<z, j( J <3|

2 )2
) .

ProofofLemmal2.Foragiven u )}’ (E,),let v, beasequencein V' (&,)

(99)

N-1
with B= mai1 n)(Z:

bounded in the |||| -norm and let peC;(Q). Forall heR], set @, =m0
where 7, denotes the [’-orthogonal projection onto V) (&, ). Since p=>1,

infer ||(0—7zh(p||}:>00 . Owing to Equation (67) and since G/ (¢)=¢' because
peCy(Q), obtain forall p>0
G/ (m,p) — ¢’ strongly in I (Q) (100)
One can observe that

a, (v, mpit) = _[QK(x,E) Gr (v,)G! (myp)dx +5, (v,,m,0):=F, +F, (101)

Clearlyas »—o0, T — IQK (x,i)v'¢'dx owing to the weak convergence of
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é,f’ (vh) to v and to the strong convergence of G/ (ﬂhgo) to ¢'.Furthermore,

using Cauchy-Schwarz inequality yields:

T, |=|sh Vi ﬂh(p)|

\ o], [l + 3 22 % ], Trgl, + 2], Tmel,,

n=l1

2 2 \3 - 2 % (102)
[ Dl o v [[V"“xn+a;[["}NNZ[[ "w]]x”}

n=1 h n=0 h
< C|"h|1 |”h¢|1

where

2
+
C:max{oﬁ,w,aﬁ,} (103)

Since |vh |J is bounded by assumption and since |7rhqo|J = |(o—7rh(p|J h—>00 ,in-
fer T, >0. m
h—0
Proof of the Theorem 13. For a given i €}’ (&, ), owing to the discrete coer-
civity of 4, , the sequence u, isbounded in the |||| -norm. Theorem 11 implies
that thereis ve H,(Q) such that up to a subsequence, u, Vv in L*(Q) and
forall p>0, G/ (u,)—=V' weaklyin L*(Q) as »—o0.Let peCy(Q).Ow-
ing Lemma 12, a, (u,,7,p;it) > a(v,@) as h—0.Since u, solves the discrete
linearized problem (VVh ) ,inferas #-—0
a, (u, = my@.u, = w300 = G, (., — 7,050 = @, (7, 0.1, — 7,030
> a(v,v-p)-a(e,v-9) (104)
- Iﬂ(v—go)fdx—.[QK(x,LT)(p’(v—go)’ dx
Hence, using a, (v,,v,;#)=C v, ||2 from Lemma 4

o "”h _”hCD" < dh U, —7,0,u, _”h(";_)

<:>111}1$;1pC ||uh—7rh¢||<hmsupah(uh TPy, — 7,030 )

<

Jo(v=0) e [, K () (v= )

< ||f||L2(Q) [v- (p"LZ(Q) +K, ||(0'||L2(Q) (v-

¢)’H (105)
()
1

)
LZ(Q)J

(v-9)

<c, (||v—¢||;m)+

sCp, ”V - ¢||HI(Q)

1

with C, (||f||L2 +K, o' ||L2(Q ) . As a consequence,
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. 1
limsup|u, ~,0]| < == Cp [v =0l ) (106)

One can observe that the choice for G{ satisfy the stability property

v, eV’ (&), “éhp (v,) . Clvi (107)
for C independent of 4. As aresult,
. A A A 1
limsup|GF (1,) = GF (7,0)] 5,0, < C o= Crolv =0l (108)
because
|7 ()Gt ()] 1, < Clhs =m0
< limsup “éf (u,)-G! (ﬂ'h¢)”L2 < Climsuplju, - 7,9 (109)
h0 (@) h>0

A1
< CF Cro "v - gD"HI(Q)

And since G’,f (m,p) strongly convergesto @' in L*(Q), this yields

. . , 1
hr?_i}lp‘G{ (u,)-¢ ”LZ(Q) < CFCMJ ||v—¢)||H,(Q). (110)

Since ¢ isarbitraryin C; (Q), and since this space is dense in H, (Q), the
term on the right hand side can be made as small as desired taking ¢ = v, infer

G? (uh)}jov’ strongly in L* (Q) (111)

Asaresult, taking ¢ arbitraryin Cy (Q) yields
K (x, ﬁ)v'(p'dx;:onK(x,ﬁ)u;ﬂWrdx =a, (u,,7,0) = jgf;zhgo:ojgfgodx (112)

using Lemma 12., i.e, v solves the Poisson problem by density of C; () in
H' (Q) . Since the solution u to the Poisson problem is unique, the whole sequence
u, strongly convergesto u in L’ (Q) and,forall p>0, the sequence

(G,f’ (u, ))h .- weakly convergesto ' in Q).

a, (uh,uh;b_t) = IQK(x,U)G,f (uh)G,f’ (uh)dx+sh (uh,uh) (113)
> -[QK(X,E)(A;: (u,)GY (u,)dx
Thus

liminf @, (. u,:7) > lir;ljgffg)K(x,ﬁ)é{ (0,)G} (w,)dx > [ K (x,i)u'u'dx (114)

Furthermore

[ K (o) GY (w,)GF (w, ) dx <@, (uy,u,;20) = | fin,dx (115)

yielding with Equation (112)

limsupIQK(x,ﬁ)éf (u,)G? (u, )dx <limsupa, (u,,u,;u)
h—0 h—0
(116)
= llrzljglpjgfuhdx < J.QK(x,u)u u'dx
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Thus, [ K(x.7)G} (u,)G} (w,)dx = | K (xit)u'u'dx strongly. Moreover,
a, (1, 1,377) = [ K (x,it)u'wdx strongly. Owing that

dh(uh,uh;ﬁ):j'QK(x,ﬁ) 2 (u,)GY (uy, )dx +s, (u,,u,)

> [ K (x.7)Gf (4,) Gy (u,)dx+ min (o)

uh|i <a, (uh,uh)—.[QK(x,ﬁ) 5

2
uh|J (117)

< min (O'n) hp(uh)G,f7 (uh)dx

n=0,,N

and since min (o, )>0 and the right-hand side tends to zero, |uh | , 0.
n=0,--,N

o _Apr o
o =120y = |G (1) = s 0 (118)
O
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