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Abstract 
In this article, we study the convergence of an IIPG (Incomplete Interior Pen-
alty Galerkin) Discontinuous Galerkin numerical method for the Richards 
equation. The Richards equation is a degenerate parabolic nonlinear equation 
for modeling flows in porous media with variable saturation. The numerical 
solution of this equation is known to be difficult to calculate numerically, due 
to the abrupt displacement of the wetting front, mainly as a result of highly 
nonlinear hydraulic properties. As time scales are slow, implicit numerical 
methods are required, and the convergence of nonlinear solvers is very sensi-
tive. We propose an original method to ensure convergence of the numerical 
solution to the exact Richards solution, using a technique of auto-calibration 
of the penalty parameters derived from the Galerkin Discontinuous method. 
The method is constructed using nonlinear 1D and 2D general elliptic prob-
lems. We show that the numerical solution converges toward the unique so-
lution of the continuous problem under certain conditions on the penalty pa-
rameters. Then, we numerically demonstrate the efficiency and robustness of the 
method through test cases with analytical solutions, laboratory test cases, and 
large-scale simulations. 
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1. Introduction 

The behavior of flows in variably saturated porous media can be modeled by the 
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Richards’ Equation (RE). One of the key advantages of RE is its ability to represent 
the porous medium, incorporating both saturated and unsaturated zones. While it 
doesn’t consider the air phase, RE effectively incorporates the effects of gravity and 
capillarity, enabling the modeling of complex processes across various scales. No-
tably, RE is a nonlinear parabolic equation that can transform into an elliptic equa-
tion under complete saturation conditions. 

The history of RE begins with Darcy’s law, which was formulated experimentally 
by Darcy in 1856 [1] for saturated porous media. This result was later extended to 
multiphase flows by Buckingham in 1907 [2], resulting in the Darcy-Buckingham 
law, which serves as the cornerstone for the derivation of RE. The equation was first 
established by Richardson in 1922 [3], although it was later attributed solely to Rich-
ards, who independently published the equation in 1931 [4]. Initial attempts to 
numerically solve the RE date back to the late 1960s with the works of Rubin [5] and 
Cooley [6]. From the 1980s, RE was extensively studied from both theoretical and 
numerical perspectives. 

In this paper, RE is introduced by providing its expression and constitutive laws. 
As the main objective of this work is to solve RE using Discontinuous Galerkin (DG) 
methods, the weak problem associated with RE is given and its discretization using 
the Incomplete Interior Penalty Galerkin (IIPG) formulation. Additionally, an over-
view of the penalization method is provided. The fully discrete IIPG formulation is 
derived through time integration using the implicit Backward Differentiation For-
mula (BDF) method. Due to the nonlinear nature of RE, its fully discretized nonlin-
ear formulation is linearized using Picard’s fixed-point method. Theoretical results 
related to the solution of stationary nonlinear elliptic problem are produced, includ-
ing existence, uniqueness, and convergence results. Furthermore, an automatic cali-
bration method is obtained for penalization parameters. The solution of RE using the 
previously mentioned IIPG formulation is implemented in an in-house numerical 
code named RIVAGE, which is then validated against numerical benchmarks. 

2. Governing Equation 

RE is a classical nonlinear parabolic equation used to describe flow in both unsatu-
rated and saturated zones of an aquifer (for a detailed derivation of the equation, 
please refer to Clément’s 2021 thesis [7]). 

The so-called mixed formulation of the RE, commonly used in hydrology, is  

 ( ) ( )( ) 0h z h z hθ − −∇⋅ − ∇ =  (1) 

where :h zψ= +  is the hydraulic head with ψ  the pressure head, z  is the eleva-
tion, θ  is the water content and   is the hydraulic conductivity tensor. 

The tensor of hydraulic conductivity   is split, in general, into two parts: the 
intrinsic or saturated hydraulic conductivity tensor s  and the relative hydrau-
lic conductivity rK :  
 ( ) ( ).s rKψ ψ=   (2) 

The intrinsic hydraulic conductivity tensor s  depend on the material of the 
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porous media. 
The relative hydraulic conductivity is a function of the pressure head control-

ling the behavior of groundwater flow within the porous media and it is defined 
as  

 ( ) ( ),law

1 if ,
otherwise

e
r

e
K

K
ψ ψ

ψ
ψ

≥
= 


 (3) 

where ,laweK  is given by empirical laws, see Table 1 and Figure 1. The quantity 

eψ , corresponding to the entry of the air pressure, the pressure head transition value 
between the saturated and unsaturated zones. The saturated zone corresponds to 

eψ ψ≥  and the unsaturated zone to eψ ψ< . The water table corresponds to 

eψ ψ=  by definition. 
 

Table 1. Hydraulic relations for hydraulic conductivity and effective saturation. 

Name Expression Parameters 

Gardner-Irmay  
relations (1954) [8]  

e

e

m
e

r

S

K

αψ

αψ

=

=
 α : Pore-size distribution 

m : Tortuosity 

Vachaud’s  
relations (1971) [9]  

e D

r B

CS
C

AK
A

ψ

ψ

=
+

=
+

 ,A B : Empirical shape parameters 
,C D : Empirical shape parameters 

Van Genuchen-Mualen 
relations (1980) [10]  

( )( )
2

1

1

1 1

mn
e

m
l m

r e e

S

K S S

α ψ
−

= +

   = − −     

 

0.5l = : Pore connectivity 
α : Linked to air entry pressure inverse 

1n > : Pore-size distribution 
11m
n

= − : Pore-size distribution 

 

 
Figure 1. Hydraulic laws for effective saturation and hydraulic conductivity. 

 
The water content law is expressed in terms of the effective saturation eS :  
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 ( ) ( ) ,r
e

s r

S
θ ψ θ

ψ
θ θ

−
=

−
 (4) 

where rθ  is the residual water content and sθ  is the saturated water content cor-
responding to the minimal and maximal saturation, respectively. The effective sat-
uration is defined as follows  

 ( ) ( ),law

1 if ,
otherwise,

e
e

e
S

S
ψ ψ

ψ
ψ

≥
= 


 (5) 

where ,laweS  is given by empirical laws, see 1 and 1. 

Remark. The nonlinear behavior of the constitutive laws ,laweS  and ,lawrK  
(see Table 1 and Figure 1) are responsible of the fails of the convergence of the 
numerical methods and a particular attention have been done. In particular, we 
have: 
• In the saturated zone, hydraulic properties remain constant and RE becomes 

an elliptic equation characterized by fast diffusion.  
• In the unsaturated zone, hydraulic properties approach very close to zero, which 

halts diffusion and can cause numerical inconvenience.  
• For a specific set of parameters, when 0ψ −→ , constitutive laws may display 

extremely steep gradients.  
To overcome, regularization techniques can be employed as in [11], for instance, 

which make slight modifications to the functions to avoid some types of degener-
acy to improve convergence properties. In this paper, we will see that in the frame-
work of DG, we show that whenever some numerical parameters are well-chosen, 
the modification of such constitutive laws is not necessary.  

Equation (1) together with Equation (2) and Equation (4) can be completed with 
Dirichlet and/or Neumann boundary conditions as done in this work. One can also 
use more realistic boundary condition in view of real life simulation, such as the seep-
age boundary condition (we refer to [12] for details). 

3. Numerical Methods 

This section focusses on the presentation of the numerical solution of RE using DG 
methods. The solution is sought within a trial space due to the similarity of these 
methods to Finite Element (FE) methods, resulting in a weak problem. 

Let { }1,2,3d ∈  be the space dimension, the porous medium can be represented 

by the computational domain dΩ⊂   of boundary D N∂Ω = Γ ∪Γ  for which 
the subscript D  and N  stands for, respectively, Dirichlet and Neuman. Let 

*T +∈  be the final time. 

The problem is:  
Find ( ) ( ), : 0,h t TΩ× → x  such that:  

 

( ) ( )( ) ( )
{ }
( )

( ) ( )

0

0, in 0, ,

, in 0 ,
, on 0, ,

, on 0,
D D

N N

h z h z h T

h h
h h T

h z h q T

θ − −∇⋅ − ∇ = Ω×


= Ω×


= Γ ×
− − ∇ ⋅ = Γ ×



 n

 ( NL ) 
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where ( )( )2 0,h L T∈ Ω×  represents the solution of RE. Additionally,  

( )2
0h L∈ Ω , ( )( )2 ; 0,D Dh L T∈ Γ , and ( )( )2 ; 0,N Nq L T∈ Γ  correspond to the ini-

tial condition, the Dirichlet boundary condition, and the Neumann boundary con-
dition, respectively. 

The matrix-valued function   depends monotonically on h , is symmet-
ric positive definite, and is uniformly bounded below and above (see Equation (2), 
Table 1 and Figure 1). Similarly, the function θ , also depends monotonically on 
h , is uniformly bounded below and above (see Equation (4), Table 1 and Figure 
1). Both   and θ  are continuous functions within a given porous medium but 
may be discontinuous at the interface of heterogeneous materials. 

3.1. Settings 

The time duration ( )0,T  is subdivided into N  time intervals such that  
0 10 Nt t t T= < < < = . Let n∈ , 0 n N< < , if the time interval  

1,n n nT t t + =    is considered, the corresponding time step is 1Δ n n nt t t+= − . 

Let us define n  a partition of the computational domain Ω valid for all nt T∈ . 
For the sake of simplicity, it is assumed that Ω is a polygonal domain in two space 
dimensions so that n  covers Ω exactly. The mesh n  is composed of quadrilat-
eral and triangular elements not necessarily conformal. 

For all elements nE∈ , Ed  is its diameter defined as the ratio between its sur-

face ( Es ) and perimeter ( Ep ) and ( ): max n
n

EE
d d

∈
=


. 

The set of all open faces of all elements nE∈  is denoted by  . Moreover, 
one can define two subsets of  , ∂  for the boundary faces and in  for the 
interior faces: 

 in: and : \ .
F

F ∂

∈∂Ω

= =


     (6) 

For a given element nE∈ , there exists a set of face { }: |E F F E= ∈ ∈∂   
which defines boundaries of E . Then, for all interior faces of E , i.e.,  

inEF∀ ∈ ∩  , there exists a neighboring element rE  such that rE E F∩ = . 

Consequently, the normal unit vector ( )T
: ,x yn n=Fn  pointing from E  to rE  

can be defined. An example of interior face is given Figure 2(a). Moreover for all 

boundary faces of E , i.e., EF ∂∀ ∈ ∩  , there exists E∂  a fictitious element 
such that E E F∂∩ = . Consequently, the normal unit vector Fn  pointing always 
from E  to E∂  can be defined.  

Example 1. Figure 2(a) gives a graphical representation for an example mesh 
composed of triangles and quadrilaterals. In this example, the mesh is composed  
of 7 elements, i.e., { }, 1, ,7n

iE i= ∈  . Thus, the set of faces { }, 1, ,19iF i= ∈   

is defined. It can be split into two subsets, the first one { }, 1, ,9iF i∂ = ∈   
boundary faces of  , depicted with dashed lines on Figure 2. The second one 

{ }in , 10, ,19iF i= ∈   interior faces of  . Figure 2(b) gives graphical repre-
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sentation for two elements 5E  and 7E . Faces are also depicted with their normal 
vectors.  
 

 
Figure 2. Example of a mesh. 

 
Let two neighbouring elements lE  and rE  sharing one face F ∈ . There are 

two traces of a function v  on lE  ( lv ) and on rE  ( rv ):  
 ( ) ( ) ( ) ( )

0 0
: lim and : lim , .l F r Fv v v v F

ε ε
ε ε

− +→ →
= + = + ∀ ∈x x n x x n x  (7) 

In addition, on any boundary faces F ∂∈  the trace of v  is only defined on 
the left side of the face:  
 ( ) ( )

0
: lim ,l Fv v F

ε
ε

−→
= + ∀ ∈x x n x  (8) 

Using these trace definitions, one can define the jump and the average on any 
face of the mesh (as displayed in 1D on Figure 3). On an interior face inF ∈ , 
the jump and the average are respectively defined as:  

 
 

( ) ( ) ( ) { }( ) ( ) ( )( )1, : and : .
2r l r lF v v v u v v∀ ∈ = − = +x x x x x x x  (9) 

Moreover, on a boundary face F ∂∈ , the jump and the average are respectively 
defined as:  

 
 

( ) ( ) { }( ) ( ), : and : .l lF v v u v∀ ∈ = =x x x x x  (10) 
 

 
Figure 3. Definition of the mean and jump opera-
tors for two elements lE  and rE  in 1D. 

 

The solution of Problem ( NL ) is sought in a subspace of the well-known bro-
ken Sobolev space, taken to be:  

 ( ) ( ) ( ){ }2: | ,p n p n
Ev L v E E= ∈ Ω ∈ ∀ ∈    (11) 
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where ( )p E  stands for the set of polynomial functions of degree less than or equal 
to p∈  on E . It is called the DG space. For more detailed and general defini-
tions of this set, see [13]. 

3.2. Semi-Discrete Weak Formulation 

Keeping in mind that  

 ( )    { } { } , , ,P nu v uv u v u v∀ ∈ = +   (12) 

assuming that the flux of RE is continuous at the interfaces of elements:  

 ( ), 0,
F

F h z h∀ ∈ − ∇ ⋅ = 

 

 Fn  (13) 

the Neumann boundary condition arises naturally in the weak formulation, mul-
tiplying Problem ( NL ) by a test function ( )p nϕ∈   and integrating on each 

element of  , we get  

( ) ( )( )

( )( )  
( )( )

( )

( )

in

0

d d

d d

d 0, on 0,

d d ,

on 0, .,

D

N

E E
E E

F F
F F

NF
F

E E
E E

D D

h z E h z h E

h z h F h z h F

q F t T

h E h E

h h T

θ ϕ ϕ

ϕ ϕ

ϕ

ϕ ϕ

∈ ∈

∈ ∈

∈

∈ ∈

 − + − ∇ ⋅∇


− − ∇ ⋅ − − ∇ ⋅

+ = ∈



=


= Γ ×

∑ ∑∫ ∫

∑ ∑∫ ∫

∑ ∫

∑ ∑∫ ∫

 

 

 



 
 

 



 

F Fn n

 (14) 

To enforce the continuity of the solution and the Dirichlet boundary condition, 
two penalty terms are added:  

 ( )
  

in

1, : d
2

r

r

inin
EE

I F
E EF

J h h F
d d

σσϕ ϕ
∈

 
= +  

 
∑ ∫


 (15) 

 ( ) ( ), : d
D

E
D DF

EF

J h h h F
d
σϕ ϕ

∂

∈

= −∑ ∫


 (16) 

where, IJ  represents the penalization terms that constrain the continuity of the 
solution on the interior of the domain, and, DJ  for the Dirichlet boundary con-
ditions. in

Eσ  and Eσ ∂  are the penalization parameters for the interior and for 
the Dirichlet boundary condition where, we recall that, Ed  is the diameter of an 
element E . 

Remark. This method is known as the IIPG method [12] [14]-[16]. The role of 
these parameters is essential to ensure the convergence of the method and will be 
studied in Section 4 for the first time, up to our knowledge, in the nonlinear case. 
The linear case has been dealt in [17].  

Using Equation (15) and Equation (16) in Equation (14), the semi-discrete non-
linear weak formulation of Problem ( NL ) is, nt T∀ ∈ ,  

 
( )

( )( ) ( ) ( ) ( )
Find such that :

, , ; , ,

p n

p n
n n n

h

m h z a h h lθ ϕ ϕ ϕ ϕ

 ∈


− + = ∀ ∈

 

 
 ( NLSD ) 
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where nm , na , and nl  are given by:  

 ( ), d
n

n E
E

m q q Eϕ ϕ
∈

= ∑ ∫


 (17) 

 

( ) ( )( )

( )( ){ } 

  

( )( )

in

in

, ; d

d

1 d
2

d d

n

r

r

D D

n E
E

F
F

inin
EE

F
E EF

E
F F

EF F

a h h h z h E

h z h F

h F
d d

h z h F h F
d

ϕ ϕ

ϕ

σσ ϕ

σϕ ϕ

∈

∈

∈

∂

∈ ∈

= − ∇ ⋅∇

− − ∇ ⋅

 
+ +  

 

− − ∇ ⋅ +

∑ ∫

∑ ∫

∑ ∫

∑ ∑∫ ∫













 

F

F

n

n

 (18) 

 ( ) d d .
ND

E
n D NF F

E FF

l h F q F
d
σϕ ϕ ϕ

∂

∈∈

= − ∑∑ ∫ ∫


 (19) 

3.3. Time Discretization 

The aim of this section is to present the time discretisation through the implicit  
BDF method for Problem ( NLSD ). In the following, we make use of notation: 

n∀ ∈ , ( ) ( ): ,n
nu u t=x x , for any function ( )( )2 0,u L T∈ Ω× . Let us recall that 

the time step is defined by 1n n nt t t+∆ = −  and the time interval by 1,n n nT t t + =   . 

Due to their stability properties, the BDF methods are commonly used to solve 
stiff differential equations such as Problem ( NL ). These linear multi-step meth-
ods allow to construct time approximation up to order 6q ≤ . The analysis of 
these methods can be found in [18]. The 1-step BDF method corresponds to the 
classical backward Euler scheme. BDF methods have been used in [19] [20] up to 
6th-order. BDF methods are well-known to balance space and time errors and 
particularly well-designed in combination with DG methods. BDF methods can 
be constructed both with a constant time step [18] or a variable [21]. The case of 
variable time step is more pertinent for Problem ( NLSD ) concerned. The method 
of order q  is derived from the Newton interpolation polynomial of degree q , 
which interpolates jh  at time jt  for 1, , 1j n n q= + + −

, using the method of 
divided difference. 

The backward divided difference for a given function y  is defined by a recur-
sive division process:  

 

0 1 1 1

0 1 0 1
1 1 1

1 1

1 1 1 12 1 1 1
1 1

1 1 1
1 1 1

1

0

,

, ,

, , ,

, , ,

n n n

n n n n
n n n

n n

n n n n

n n n nn n n n
n n n n

j n j n
j n n n n j

j n k
k

y y y

y y y yy y y
t t

y y y y
y y t ty y y y
t t t t

y yy y y y
t

δ

δ δδ

δ δδ

δ δδ

+ + +

+ +
+ +

+ −

+ −
+ + −

− −

− + −
+ + + −

− −
=

 = = 
− − = = =  ∆ ∆

− −
−− ∆ ∆ = = =  ∆ + ∆ ∆ + ∆

− = =  ∆∑



 .















 (20) 
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For a given ode, for instance ( )d ,
d
u f u t
t
=  with initial condition, the implicit 

BDF method of order q  is given by:  

( )

( )

1 1
1 1 1 1

,
1 1 0 0

1
1 1 1

,0 , 1
0

, ,

,

q j qk
n l j n n j n n

q j
j k l j

q
n n n n j

q q j
j

t u u f u t

u f u t u

δ α

α α

− −
− + + − + +

= = = =

−
+ + + −

+
=

  ∆ = =  
  

− = −⇔

∑ ∏ ∑ ∑

∑
 where ,q jα  are the lin-

ear combination coefficients obtained from the divided differences of u . For in-
stance, for the 2-order BDF method, the coefficients are:  

 ( )

( )

2,0 1

2,1 1 1 1

2,2 1 1

1 1 ,

1 1 ,

.

n n n

n

n n n n n n

n

n n n

t t t
t

t t t t t t

t
t t t

α

α

α

−

− − −

− −

 = + ∆ ∆ + ∆
∆ = − − −

 ∆ ∆ + ∆ ∆ ∆ + ∆

 ∆

=
∆ ∆ + ∆

 (21) 

Remark. (Stability.) BDF methods of order 1 and 2 are A -stable, and L -stable 
[22]. BDF methods of order 3 to 6 are ( )A α -stable where α  decreases as the 
order increases [23]. BDF methods of order 6q >  are unconditionally unstable. 
The use of variable time steps is recommended to enhance the stability of the method. 
In practical applications, variations in time step sizes are limited by an upper bound 
known as the swing factor to ensure stability and robustness Table 2 (see [24]). In 
the following, swing factors are used. 
 
Table 2. Maximum swing 2 1n nt t+ +∆ ∆  for BDF methods with variable time steps. 

Order q  1 2 3 4 5 6 

Maximum swing 2 1n nt t+ +∆ ∆  - 2.6 1.9 1.5 1.2 1.05 

 
Applying the BDF method to Problem ( NLSD ), we get  

( ) ( )
( ) ( ) ( ) ( )

1

0

1 1 1
,

0

Find as equence of such that :

, , ; , .
n

n p n
n N

q
n j n n p n

n q j n n
j

h

m h a h h L
ψ

θ ψ
α ϕ ϕ ϕ ϕ

ψ +

≤ ≤

+ − + +

=

 ∈


  ∂
  + = ∀ ∈  ∂  

∑

 

 
 ( NLFD ) 

where nm , na  and nl  are given, respectively, by Equation (17), Equation (18), 
Equation (19) with h zψ = − . 

The time integration method needs an initialization step to compute the solu-
tion for further time steps. The initialization uses the prescribed initial condition 
to start the first-time step. A direct and simple way is to write the corresponding 
discontinuous weak formulation:  

 ( ) ( ) ( )0 0 0
0 0Find such that : , ,ph m h fϕ ϕ∈ =   (22) 

where 0m  is defined by Equation (17) and 0f  is the linear form defined by:  
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 ( ) ( )
0

0
0 0 d , .p

E
E

f h Eϕ ϕ ϕ
∈

= ∀ ∈∑ ∫


   (23) 

3.4. Nonlinear Iterative Process 

Problem ( NLFD ) being nonlinear, several iterative methods can be used such as 
the Newton-Raphson method or the classical first-order fixed-point method Pi-
card’s method. Due to the strong nonlinearities of the constitutive laws Equation 
(2) and Equation (4) (see also Remark 1), the convergence of the iterative methods 
may fail [25] [26]. We will see in Section 4 that in the case of IIPG methods one 
can enhance the convergence of the iterative methods, at least in the case of a 
Picard’s fixed-point method, whenever the penalization terms Equation (15) and 
Equation (16) are well-chosen. Therefore, in what follows, we present the Picard’s 
fixed-point method for Problem ( NLFD ). 

Remark. (Choice of the Picard linearization.) Although Newton-Raphson iter-
ations may offer quadratic convergence, we adopted a Picard fixed-point linear-
ization for robustness in strongly nonlinear configurations such as the Vauclin in-
filtration case. In preliminary tests, Newton iterations often diverged without reg-
ularization of the hydraulic functions, whereas the Picard approach provided sta-
ble convergence at a moderate computational cost. Similar observations have been 
reported in [7] [27], highlighting that Picard iterations remain preferable when 
the Jacobian varies sharply near saturation thresholds. 

Linearization of Problem ( NLFD ) is done by a Picards’ iterative procedure. For 
0,k =  , the problem is:  

( ) ( ) ( )
( ) ( )

( ) ( )

1,

1,

1, 1, 1

1, 1 1, 1 1,
,0

1

, 1
0

For a given , find such that, :

, , ;

, .

n k

n k

n k p n n k p n p n

n k n k n k
n q n

q
n j

n n q j
j

h h

m h a h h

l m h

ψ

ψ

ϕ

θ ψ
α ϕ ϕ

ψ

θ ψ
ϕ α ϕ

ψ

+

+

+ + +

+ + + + +

−
−

+
=

 ∈ ∈ ∀ ∈

  ∂
   +  ∂  


  ∂
 = −  ∂  

∑

     

 ( LFD ) 

where nm , na  and nl  are given, respectively, by Equation (17), Equation (18), 
Equation (19) with h zψ = − . n jh −  stands for the solution at the rank k  of the 
iterative process (see Figure 4). 
 

 
Figure 4. Scheme of the general proof. 

https://doi.org/10.4236/jamp.2025.1311227


C. Poussel et al. 
 

 

DOI: 10.4236/jamp.2025.1311227 4093 Journal of Applied Mathematics and Physics 
 

The global algorithm of the Picard’s fixed-point iteration, for a positive n , is: 
1) Start with an initial guess 1,0nh + ;  
2) Compute the solution of Problem ( LFD ) with 1,0nh +  to get 1,1nh + ;  
3) Start again with 1,1nh + ;  
4) Compute the solution of Problem ( LFD ) with 1,n kh +  to get 1, 1n kh + + ;  
5) Start again with 1, 1n kh + +  until the stopping criteria are satisfied;  
6) Set 1 1, 1n n kh h+ + += .  
The stopping criterion is one important choice in determining accuracy for a 

nonlinear iterative process. For RE, the stopping criterion can be specified in 
terms of absolute error for pressure head or water content between two successive  

iterations [12]. For this study, we have used: 
( )
( ) 1

,
,

n

n

r h
a h

ϕ
ε

ϕ
<  and 2

k
kh

δ
ε< , 

where 1k k
k h hδ −= −  and ( ) ( ) ( ) ( ), , ; , ;n n n nr h m h h a h h lϕ ϕ ϕ ϕ= + − . 1ε  and 

2ε  are user-defined tolerances. These two criteria are relative and independent of 
the characteristic quantities of the problem. 

3.5. Adaptive Time Stepping 

Time adaptation is motivated by the convergence of the nonlinear solver. On one 
hand, transient simulations have difficulties to converge if the time step is too large 
but, on the other hand, shorter time steps mean more time steps and so, a longer 
computational time. That is the reason why time adaptation is very attractive and 
common for Richards’ equation. Different strategies can be used to adjust the time 
step [28]-[30], either heuristic and mainly based on convergence performance of 
the nonlinear solver or rational and based on error control. The latter ones are 
generally more efficient but heuristic methods remain a relevant approach due to 
their simplicity. 

In this study, the time step is adjusted heuristically based on the number of iter-
ations itN  from the nonlinear solver, as discussed in [29] [31]. The size of the time 
step directly influences the convergence of the solver. The simulations start with 
a time step 0Δt , and subsequent time steps are calculated according to the fol-
lowing rule: the time step remains unchanged if convergence is achieved between 

itm  and itM  nonlinear iterations; it is increased by an amplification factor 
1ampλ >  if convergence is achieved in fewer than itm  nonlinear iterations; and it 

is decreased by a reduction factor 1redλ <  if convergence requires more than itM  
nonlinear iterations. If convergence fails due to solver issues (poor initial guess, bad 
condition number) or exceeds a prescribed maximum bound itW , the time step is 
recalculated using a reduced step size ( 1redλ < ). The calculation of the next time step 

1Δ nt +  from the previous one Δ nt  follows this time-stepping scheme:  

( )

1

Δ if ,
Δ Δ if ,

Δ if ,

Δ Δ if or if the solver has failed time step is started again ,

n
amp it it

n n
it it it

n
red it it it

n n
red it it

t N m
t t m N M

t M N W

t t N W

λ

λ

λ

+

  ≤
 = < ≤
  < ≤
 = >

 (24) 
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where itN  is the number of nonlinear iterations.  
Remark. By studying the full-time-dependent problem, as done in Section 4 in 

the case of the steady problem, the time step can be adjusted automatically and this 
work is in progress.  

Remark. In the numerical code RIVAGE, Adaptive Mesh Refinement can be also 
employed. We refer to [7] [12] [32]-[34] for more details.  

4. Theoretical Study and Estimation of the Optimal 
Penalization Parameters 

In this section, we present the main result of this work, namely, the way to get a 
convergent iterative scheme by constructing a robust method to compute auto-
matically the penalization parameters (see Equation (15) and Equation (16)). This 
is achieved by studying the theoretical properties and convergence of the solution 
of the discrete problem Problem ( NLFD ) to the mathematical problem Problem 
( NL ). To this end and for the sake of simplicity, we will consider a toy model sim-
ilar to the stationary RE for which we study, as depicted in Section 4. 

1) The existence and uniqueness of the weak solution to the nonlinear problem 
in Section 4.2.  

2) The existence and uniqueness of the weak solution to the discrete linearized 
problem in Section 4.3.  

3) The method to compute optimal penalization parameters to ensure the con-
vergence of the nonlinear solver at the discrete level in Section 4.4.  

4) The convergence of the discrete linearized weak problem to the continuous 
linearized weak problem in Section 4.5. 

Proofs of this section are given in Appendix and can be easily extended to sev-
eral space dimensions. However, since the computations are rather technical to 
get the optimal penalization parameters in the two-dimensional case, for the sake 
of completeness, the 2D case for the existence and uniqueness of the weak solution 
to the discrete linearized problem is considered in Section 4.3. We will see that the 
construction of the optimal penalization parameters is essentially based on the 
constants appearing in the discrete continuity and the discrete coercivity of the 
operator. 

4.1. Toy Model 

Let us consider the following toy problem ( ) on the interval [ ],a bΩ = ⊂  : 

 

( ) ( )

( )( )

2For a given , find : such that :

, , , in

0, on

f L u x

A x u u f

u

∈ Ω Ω→

 ′′− = Ω

 = ∂Ω



 ( ) 

with ( ) ( ), , ,A x s K x sξ ξ=  where the real function K  intends to mimick the 
properties of   (Equation (2)). Following [35] and in view of the properties of 
  (Equation (2)), assuming that  
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( )
( ) ( ) ( )

*
0 1 0 1

2
1 2 1 2 1 2

, , , , ,
,

, , , , , ,lip lip

K K K K x u K x u
K K x u K x u K u u x u u

+

+

∃ ∈ ≤ ≤ ∀ ∈Ω ∀ ∈
∃ ∈ − ≤ − ∀ ∈Ω ∀ ∈

 

 

 ( 1 ) 

we deduce that A  is straightforwardly a Carathéodory function, which we recall 
hereafter,  

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )( )

2

2

2

2

1 0 s.t. , , , ,0 ,

2 0, s.t. , , ,

3 0 s.t. , , , , | | ,

4 0, s.t. , , , , .

A x s A x s

h L A x s h x s

A x s A x s

h L A x s A x t s t h x s t

α ξ ξ α ξ

β ξ β ξ

γ ξ η ξ η γ ξ η

δ ξ ξ δ ξ

∃ > − ≥

∃ > ∃ ∈ Ω ≤ + +

∃ > − − ≥ −

∃ > ∃ ∈ Ω − ≤ − + + +

 ( 2 ) 

This problem can be cast into the weak formulation by multiplying by a test func-
tion ( )1

0v H∈ Ω  and integrating over Ω:  

 ( ) ( ) ( ) ( )1 1
0 0Find such that : , ,u H a u v l v v H∈ Ω = ∀ ∈ Ω  ( ) 

where  

( ) ( ) ( ), , d , d .a u v K x u u v x l v fv x
Ω Ω

′ ′= =∫ ∫  

Problem ( ) being nonlinear, we use the Picard’s iterations method as in Prob-
lem ( NLFD ) to get  

 
( ) ( )

( ) ( ) ( )

2 1
0

1
0

For a given , find such that :

, ; ,

u L u H

a u v u l v v H

 ∈ Ω ∈ Ω


= ∀ ∈ Ω 
 (  ) 

with  

 ( ) ( ), ; , d .a u v u K x u u v x
Ω

′ ′= ∫  (25) 

Given 0u , we solve the Problem (  ) with 0u u=  to obtain 1u . Then, we solve 

the Problem (  ) with 1u u=  to obtain 2u  and so on. The sequence of solutions 
of the linearized problem is denoted by ( )n

n
u

∈
 and its limit when n  goes to 

infinity is expected to be the solution to the nonlinear Problem ( ). In the fol-
lowing, we note ( )1n nu T u+ =  the fixed point. 

4.2. Existence and Uniqueness of the Weak Solution to the  
Nonlinear Problem ( ) 

The first step is to show that Problem ( ) has a unique solution in ( )1
0 ΩH . The 

existence of solution of Problem ( ) can be achieved by using the Schauder fixed-
point theorem to the operator T  while the uniqueness can be obtained through 
the technique proposed in [35]. 

Thus, we have  
Lemma 1. (Existence of a solution to Problem ( ).) Under Hypothesis ( 1 ), 

( )1
0u H∃ ∈ Ω ; ( )T u u= .  

Then, one can obtain uniqueness through the following result  
Lemma 2. (Uniqueness of the solution to Problem ( ).) Under Hypothesis 

( 1 ), the solution ( )1
0u H∈ Ω  of Problem ( ) is unique.  

These results hold for the dimension 3d ≤  and the proofs are rather classical 
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and left to the reader. 

4.3. Existence and Uniqueness of the Weak Solution to the 
Discrete Linearized Problem (  ) 

One-dimensional case 
To solve numerically Problem (  ), we use DG methods as in Section 3. Let 

00 1Nx x= < < =  be a partition h  of Ω (see Figure 5) and denote  

[ ]1,n n nI x x +=  a sub-interval. The size of a sub-interval is defined as  
1:nI h
N

= = , { }0, , 1n N∀ ∈ −
 with N —the number of elements in the par-

tition. The solution is sought in the DG space ( )0 h
p   defined as:  

 ( ) ( ) ( ){ } ( )2 2
0 | 0; ,

n

p p
n n hIh v L v v I I L

∂Ω
= ∈ Ω = ∈ ∀ ∈ ⊆ Ω    (26) 

 

 
Figure 5. Representation of h  in the one-dimension case. 

 
As in Section 3, we define  

 ( ) ( ) ( ) ( )
0 0
0 0

lim , lim ,n n n nv x v x v x v x+ −

→ →
> >

= + = −
 
 

   (27) 

 
  ( ) ( ) { } ( ) ( )( ) { }1, , 1, , 1 ,

2n n
n n n nx x

v v x v x v v x v x n N− + − += − = + ∀ ∈ −  (28) 

and  

 
  ( ) { } ( )   ( ) { } ( )

0 0
0 0, , , .

N N
N Nx xx x

v v x v v x v v x v v x+ + − −= − = = =  (29) 

The DG space ( )0 h
p   is associated with the norm:  

 
 

1 1
22 2 2 2

0 0 0

1
n nn

N N N

I I Jx
n n n

v v v v v
h

− −

= = =

′ ′= + = +∑ ∑ ∑  (30) 

where 
nI⋅  is the usual norm ( )2

nL I  and 
 

22
0

1:
n

N
nJ xv v

h=
= ∑  is the jump 

semi-norm. With this definition of the norm, jumps are controlled. One can ob-
serve that ⋅  is a norm on ( )0 h

p  . One can note that ( )0 h
p   is a complete 

Banach space, i.e., a complete normed vector space for ⋅ . Lastly, the concept of 
broken gradient is introduced to specify when only the regular part of the gradient 

is considered. The broken gradient ( ) ( )2
0: p

h h L∇ → Ω   is defined that, for all 

( )0
p

hv∈  ,  

 ( ) ( ), : .h h Eh EE v v∀ ∈ ∇ = ∇  (31) 

The linearized weak formulation Problem (  ) can be discretized using the IIPG 
formulation as in Section 3 to get  
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( ) ( )

( ) ( ) ( )
0 0

0

For a given , find such that :

, ; ,

p p
h

p
h h h h h

h

h

h

h

u u

a u v u l v v

 ∈ ∈


= ∀ ∈ 

   

 
 ( h

 ) 

with 

 

( ) ( ) ( ){ }  

       

   

0 0

1

0 0
1

0 1

1

, , , d ,

2

,

nn n

n n

N N

N N

h h h h h h xI h xn n
N

n n
h h h hx x x x

n

N
h hx x

a u v u K x u u v x K x u u v

u v u v
h h

u v
h

σ σ σ

σ

−

= =

−
−

=

′ ′ ′= −

+
+ +

+

∑ ∑∫

∑



 (32) 

( ) d .h h hl v fv x
Ω

= ∫  

At the discrete level, one can write Hypothesis ( 1 ) as follows: for all  
{ }0, , 1n N∈ −

:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

*
0 1 0 1

2
1 2 1 2 1 2

, , , , , ;

, , , , , ,

n n n n
n

n
lip n lip

K K x I u K K x u K

K x I u u K x u K x u K u u
+

+

∃ ∈ ∀ ∈ ∀ ∈ ≤ ≤

∃ ∈ ∀ ∈ ∀ ∈ − ≤ −

 

 
 ( n ) 

where  

 ( ) ( ) ( )
1 1 0 00, , 1 0, , 1 0, , 1

: min , : max and max .n n n
lip lipn N n N n N

K K K K K K
= − = − = −

= = =
  

 (33) 

Existence and unicity for the solution to Problem ( h
 ) is obtained using the 

Lax-Milgram theorem. We have the following result.  
Theorem 3. (Existence and uniqueness of the weak solution to the discrete lin-

earized Problem ( h
 ).) Under Hypothesis ( n ) for all n , for a given  

( )0
p

hu ∈  , then ( )0! h
pu∃ ∈   such that ( ) ( ), ;h h h h ha u v u l v= ,  

( )0 h
p

hv∀ ∈  .  

This existence and uniqueness result is obtained thanks to the below-following 
lemmas.  

Lemma 4. (Discrete coercivity of ha .) Under Hypothesis ( n ) for all n , for 

any vector of positive numbers ( )( )
0, , 1

n

n N
ε

= −
=



 , there exists a constant  

( )* 0C >  such that  

( ) ( ) ( ) 2*
0 , , ;h

p
h h h h hu a u u u C u∀ ∈ ≥    

if  

( ) { }
{ }

( ) ( )( )
( ) ( ) { }

( ) ( )( )
( ) ( )

( ) ( )( )
( ) ( )

2

1 tr, 1*

0
20 0*

1 tr, 1*
* 0 0 0

0 0 0
*

21 1
1 tr, 1*

1 1
0

, 1, , 1
22, 0, , 1

, 1, , 1 with

n n
p

n n n
n

pn n

N N N N
p

N N N

K
n N

Kn N
Kn N

K

K

K

C

C

C

σ
εε

σ σ
σσ σ ε

σ σ

σ
ε

−

−

− −
−

− −


 = ∀ ∈ −

 < ∀ ∈ −
 > ∀ ∈ − 
  => 
 > 

 =






  (34) 
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and  

( ) ( )
( ) *

* * *
0 0 00, , 1 0, , 1

min min 1 , , , min .
2 2

n
n n n

N Nn N n N
C K σ σε σ σ σ σ

= − = −

     − = − − −             
 

  (35) 

Lemma 5. (Discrete continuity of ha .) Under Hypothesis ( n ) for all n , for 

any vector of positive numbers ( )( )
0, , 1

n

n N
ε

= −
=



 , there exists a constant  

( ) 0C >   such that  

( ) ( ) ( )0, , , ;p
h h h h hh h hu v a u v u C u v∀ ∈ ≤     

where  

 
( ) ( )( ) ( ) ( )( )

*
* *

1 1 00, , 1 0, , 1 1, , 1

0 1, , 1

max max 2 max , , max
2

max , , max .
2

n n n n
Nn N n N n N

n
N n N

C K K
σ

ε σ σ

σ
σ σ

= − = − = −

= −

  
= +      

  +   
  

  



 
 (36) 

Lemma 6. (Discrete continuity of hl .) There exists a constant 0B >  such that 

( )0 h
p

hv∀ ∈  , ( )h h hl v B v≤ . 

Remark. Trace constantly involved in bounds for penalization parameters are 
a function of the polynomial degree p , the type of polynomial basis used. In the 
one-dimensional case, with an orthonormal basis and for ( )0

p
hu∈  , the trace 

constant for nI  is given by:  

 ( )
tr , : 1.n

pC p= +  (37) 

Proofs of Lemmas 4, 5, and 6 can be found in Appendix. The proof of Theorem 
3 is a straightforward application of the Lax-Milgram theorem and is left to the 
reader.  

Two-dimensional case 
We propose to extend the previous results to the dimension 2. Let us consider 

the two-dimensional extension of Problem ( h
 )  

 
( ) ( ) ( )

( ) ( )
0 0 0For a given , find such that, :

, ; .
h h h

p p p
h h

h h h h h

u u v

a u v u l v

 ∈ ∈ ∀ ∈


= 

     
 ( 2

h
 ) 

where  

( ) ( )( ) ( )( ){ } 

  

in

, ; , d , d

1 d d
2

n

r

D
r

h h h h h hE F
EE

inin
EE E

h h h hF F
E E E EE

a u v u u u v E u u v F

u v F u v F
d d d

σσ σ

∈∈

∂

∈ ∈

= ∇ ⋅∇ − ∇ ⋅

 
+ + +  

 

∑ ∑∫ ∫

∑ ∑∫ ∫

Fx x n  


 

 

( ) d .h h hl v fv x
Ω

= ∫  

The two-dimensional version of the discrete hypothesis on   is given by: For 
all E∈ :  

 ( ){ *
0 1 0 12

, , , , , ;E E E EK K E u K u K+∃ ∈ ∀ ∈ ∀ ∈ ≤ ≤  x x  ( 2
E ) 
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with ( )1,22 maxi ii==  . In addition, 1 1max E
EK K∈=   and 0 0min E

EK K∈=   
denotes global bound of  . 

The DG space is associated with the following norm:  

 
   

in

2 22 2 2 21 1 1:
r

E E JF F
E EE E EE E

v v v v v v
d d d∂∈ ∈∈ ∈

 
= + + + = +  

 
∑ ∑ ∑ ∑
  

 (38) 

where 2
Ev  is the usual 2L  norm on E , 2

Fv  is the 2L  norm on F  and 
2
Jv  is the jump semi-norm. This norm has the same characteristics as in the one-

dimensional case. We obtain the following result. 
Theorem 7. (Existence and uniqueness of the weak solution to the discrete lin-

earized Problem ( h
 ).) If K  satisfies Hypothesis ( 2

E ) for all E∈  and for 

a given ( )0
p

hu ∈  , then ( )0! h
pu∃ ∈   such that ( ) ( ), ;h h h h ha u v u l v= ,  

( )0 h
p

hv∀ ∈  .  

As before, this result is a consequence of the Lax-Milgram theorem through the 
following lemmas:  

Lemma 8. (Discrete coercivity of ha .) If K  satisfies Hypothesis ( 2
E ) for all 

E∈  and for any vector of positive numbers ( )E
E

ε
∈

=


 , there exists a con-

stant ( )* 0C >  such that  

( ) ( ) ( ) 2*
0 , , ;h

p
h h h h hu a u u u C u∀ ∈ ≥    

if  

( )

( )

tr
2

1 1,

0, ,* in
2

, 1 1,

0

,

tr ,

2,
4

and , with

,
2

r r

E E
pinE

E E E
in in in in
E E E E

E E
p

E

E

E
E E

E

E

CD K
E

K

D K
K
C

F E

F

σε
ε

σ σ σ σ

σ σ σ
ε

−∗

∗

∂ ∂ ∗ ∂ −∂ ∗


 =< ∀ ∈
 > > ∀ ∈ ∀ ∈ 

 > ∀ ∈ =



 



 (39) 

and ED  is the number of edges of the element E . Moreover  

 ( ) ( )
,*

* ,*
0min min 1 ,min , min .

2 2

E in in
E E E

E EE E F
C K ε σ σ σ σ

∂

∂ ∂

∈ ∈ ∈

     − = − −     
        

  (40) 

Lemma 9. (Discrete continuity of ha .) If K  satisfies Hypothesis ( 2
E ) for all 

E∈  and for any vector of positive numbers ( )E
E

ε
∈

=


 , there exists a con-

stant ( ) 0C >   such that  

( ) ( ) ( )0, , , ;p
h h h h hh h hu v a u v u C u v∀ ∈ ≤     

where 

 

( ) ( )

( )

1

,*
,*

1

max max max ,max
2

2max max max ,max .
2

in
E E

EE E F

in
E E E

EE E F

C K

K

σ σ

σε σ

∂

∂

∂

∈ ∈ ∈

∂

∈ ∈ ∈

   = +   
   

   +   
   



  

  



 (41) 
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Lemma 6 still holds in the two-dimensional case and is left to the reader. Proofs 
of Lemmas 7, 8 and 9 are similar to proofs in the one-dimensional case. The main 
difference is in the expression of trace constants. In two dimensions, they are linked 
to the element’s shape. For an orthonormal basis and for ( )0

p
hu∈  , the trace 

constant of E∈  is given by:  

 

( ) ( )

tr ,

1 2
, if is a triangle,

2
1, if is a quadrilateral.

2

p
E

p p
E

p E
C

 + +
= 

+


 (42) 

4.4. Optimal Penalization Parameters 

Thanks to the previous results on the discrete linearized problem Problem ( h
 ), 

one can now construct a method to set automatically penalization parameters. 
They must be chosen to ensure the coercivity and continuity of the linearized dis-
crete problem, i.e., ( )* 0C >  and ( ) 0C >  . Moreover, using Céa’s Lemma 10, 
they are set to minimize the distance between the weak and discrete solutions.  

Lemma 10. (Céa’s lemma). Let V  be a real Hilbert space with the norm ⋅ . 
Let :a V V× →   be a bilinear form and :l V →   a linear form satisfying the 
Lax-Milgram theorem. Let hV  be a closed subspace of V . Then, there exists a 
unique h hu V∈  such that  

 ( ) ( ) *, , and ,h h h h h h h
Cv V a u v l v u u u v v V
C

∀ ∈ = − ≤ − ∀ ∈


 (43) 

where C  is the continuity constant and *C  the coercivity constant.  
Firstly, as a reminder, positivity of continuity and coercivity constants enforce  

that for all { }0, , 1n N∈ −
, ( ) 2nε <  and { }0, ,n N∀ ∈ 

, *
n nσ σ> . They are 

given by:  

( ) ( )
( ) *

* * *
0 0 00, , 1 1, , 1

min min 1 , , , min ,
2 2

n
n n n

N Nn N n N
C K σ σε σ σ σ σ

= − = −

     − = − − −             
 

  (44) 

and  

( ) ( )( ) ( ) ( )( )
*

* *
1 1 00, , 1 0, , 1 1, , 1

0 1, , 1

max max 2 max , , max
2

max , , max .
2

n n n n
Nn N n N n N

n
N n N

C K K σε σ σ

σσ σ

= − = − = −

= −

  
= +      

  +     

  



 
 (45) 

For the sake of simplicity, let us consider that the variable ε  is the same for 
every element: { }0, , 1n N∀ ∈ −

, ( ) 2nε ε= < , and in addition, because penali-
zation parameters are bounded below, let us consider that they are above the lower 
bound of an amount α  constant for every element:  

{ }
( ) ( )( )

( )

2

1 1* * t* *
0 0

0

r,
1, 1, , 1 , , , with .

2

n
p

n n N N n

n

n

K
n N

C

K
α α αα σ σ σ σ σ σ σ
ε ε ε

−
∀ > ∀ ∈ − = = = =

     (46) 
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Using previous assumptions, it can be noticed that *C  and C  are functions 
of ε  and α  and can be rewritten:  

 ( )*
0 0 1, , 1

1 1 1, min 1 , , , min
2 4

n
N n N

C K σε α α αα ε σ σ
ε ε ε= −

 − − −   = −    
    



   (47) 

and  

 
( )

*
* *

1 1 0 1, , 1

0 1, , 1

12 max , , max
4

max , , max .
4

n
N n N

n
N n N

C K K σε σ σ
ε

σα σ σ
ε

= −

= −

  
= +      

  +     









 



 


 (48) 

One can see that two quantities are involved in the two previous definitions:  

min 0 max 01, , 1 1, , 1
min , , min and max , , max

4 4
n n

N Nn N n N

σ σσ σ σ σ σ σ
= − = −

      = =      
       

 

       (49) 

to have the final write:  

( ) ( )*
0 min 1 1 max max

1, min 1 , and , 2
2

C K C K Kε α αα ε σ α ε σ σ
ε ε
−  = − = + +  

  


    (50) 

These new expressions of *C  and C  show that *C  has two different states 

and C  is continuous concerning α  and ε . The aim of this section can now 

be reformulated as find α  and ε  such that ( ) ( )
( )*

,
,

,
C
C

α ε
γ α ε

α ε
=


 is minimal. 

First, *C  and C  are studied separately, then γ  is observed. *C  has two dif-
ferent states, is continuous and well defined for all ( ) ( ) ( ), 1, 0, 2α ε ∈ +∞ × . It can 
be rewritten as follows:  

 ( ) ( ) ( ), 1, 0, 2 ,α ε∀ ∈ +∞ ×  (51) 

 ( )
( )

( ) ( )
*

min
* * 0

min
0

1 , if
, with 2 1.

21 , otherwise
2

KC
K

α σ α α
εα ε α ε ε

ε σ

− ≤= = − +
  −   






  (52) 

where C  is continuous and well defined for all ( ) ( ) ( ), 1, 0, 2α ε ∈ +∞ × . *C  

and C  are now explicitly characterized and now ( ) ( )
( )*

,
,

,
C
C

α ε
γ α ε

α ε
=


 can be 

studied. ( ),opt optα ε  are looked for such that γ  is minimal and it is given by:  

 ( ) ( ) ( ), 1, 0, 2 ,α ε∀ ∈ +∞ ×  (53) 

 ( )
( ) ( ) ( )

( )

*
1

max
max

min min

max max

1

1 1
0

2 , if
1 1

,
2 2 , otherwise
2

K K

K K
K

ε σσ
σ σ

σ

α α α
α α

γ α ε
α

ε ε
σ

 + + ≤ − −= 
  + +  −  





 

 



 (54) 

where γ  is studied on its different open subdomains and the boundary between 

them. On 1 , for all ( ) ( )( ) ( )*, , 0, 2α ε α ε∈ +∞ × , it gives:  
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 ( ) ( )
1 max max1

0 0

21, with 2 and 2 .
2 2

K K
a b a b

K K
αγ α ε

ε ε ε
σ σ+

= + = =
− −





 (55) 

Then, looking at its variations, it gives that:  

 ( ) ( ) ( )

*

*

*

0, if 0
, 0, if and , 0

2
0, if 2

b
ε α

ε ε
γ α ε ε ε γ α ε

ε ε
ε ε

< < <


∂ = = ∂ = >
−> < <

 (56) 

with 
( )* 2

0
b a b b

a
ε

+ −
= > . And finally noting that γ → +∞  when α → +∞  

and when 0ε →  or 2ε →  it gives that γ  is minimal for *ε ε=  and  

( )* *α α ε→ . 

On 2 , for all ( ) ( )( ) ( )*, 1, 0, 2α ε α ε∈ ×  it gives:  

 ( ) ( ) ( )1 1
max

max
min min

, 2 .
1 1

K Kε αγ
σ

σ
σ σ

α ε
α α

= + +
− −





 

 (57) 

Then, looking at its variations, it gives that:  

 

( ) ( )

( )
( )

( )

max

min

max
max

min mi

1 1

1 12
n

2
, 0 and

1

1, 2 0.
1

K K

K K

ε

α

γ α ε
α

εγ α ε
α

σ
σ

σ
σ

σ σ

+
∂ = >

−

 
∂ = − + + < 

−  









 

 (58) 

And finally, noting that γ → +∞  when 1α →  it gives that γ  is minimal 

for ( )*α α ε→ . On the boundary between 1  and 2 , for all ( )*α α ε=  

and ( )0,2ε ∈  it gives:  

 
( )( ) ( )

max

max max

m n

1 1*

0 i

0

21 1, with 2 ,
2 2

2 and .

K K
a b c a

K

b c
K

σ

σ σ

γ α ε ε

σ

ε ε ε
+

= + + =
− −

= =



 



 (59) 

Then, looking at its variations, it gives that:  

( )( ) ( )*

0, if 0
2

, 0, if with 0.
0, if 2

opt

opt opt

opt

b a b b
aε

ε ε
γ α ε ε ε ε ε

ε ε

< < <
+ −∂ = = = >

> < <

 (60) 

The expression of ( ),opt optα ε  can be summarized as follows:  

 

( )

( )

1 1

0

max max

min

0

0

2 2
with 2 and 2 and

2 1.
2

opt

opt opt opt

b a b b K K
a b

a K K
K

ε

α ε ε

σ σ

σ

+ − +
= = =

= − +







 (61) 

Finally, in one dimension, the auto-calibration of penalization parameters is given 
by:  
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{ }

( ) ( )( )
( )

* * *
0 0

t

2

1 1*

0

r,

1, , 1 , , ,
2

with .

opt opt opt
n n N N

opt opt opt

n
p

n n

n

n N

K C

K

α α α
σ σ σ σ σ σ

ε ε ε

σ
−

∀ ∈ − = = =

=






 

 (62) 

In two dimensions, the auto-calibration of penalization parameters is given by:  

 
( )

in * *

tr,
2

1 1*

0*

, ,
2 2

with
2

,

r r

opt optin in
E E E E E E

opt opt p
E E E

opt
E E

opt

EF
D K

K
F

C
α α

σ σ σ σ
ε ε

σ
α ε

σ σ
ε

−

∂ ∂


∀ ∈ = =
 =
∀ ∈ =




 (63) 

and ED  is the number of edges of the element E  and 1tr, p
EC −  is the trace con-

stant defined in Equation (42). 
Extension to multi-dimensional meshes. In multi-dimensional settings, the 

penalization term given in Equation (62) is extended by replacing the one-dimen-
sional element length Ed  with a local characteristic size derived from the ratio 
between the element volume and its boundary surface area, i.e., Ed E E= ∂ . 
For non-quadrilateral (triangular or polygonal) cells, this characteristic measure 
ensures that the penalty parameter scales consistently with the element geometry. 
Therefore, no additional geometric constant is required, and the same penalization 
formula applies naturally in two and three dimensions. 

4.5. Convergence of the Discrete Linearized Weak Problem to the 
Continuous Linearized Weak Problem 

Previously, it has been proven that the Problem ( h
 ) has a unique solution. This 

problem is part of a fixed-point method, and it has been proven in Section 4.2 that 
this fixed point has a unique solution also. To solve the nonlinear weak formula-
tion Problem ( ), one step needs to be added to prove the well-posedness of the 
problem. It is addressed in the following; the goal is to prove that the solution of 
Problem ( h

 ) converges towards the solution of Problem (  ) and prove that 
the bilinear form ha  of Problem ( h

 ) converges to Problem ( ). 
The work in this section is based on the book of Pietro and Ern published in 

2012 [13]. They proved convergence in the case of a Symmetric Interior Penalty 
Galerkin method and sketch the proof in the case of an Incomplete Interior Penalty 
method. The following study provides detailed proof of the IIPG case. 

The key idea is to revisit the concept of consistency and introduce a new point 
of view based on asymptotic consistency. This new form of consistency and the usual 
stability of the discrete bilinear form are the two main ingredients for asserting con-
vergence to the minimal regularity solutions. The discrete bilinear form ha  needs 
to be reformulated to consider only the contribution of K  on the mesh elements, 
not the interfaces; consequently, lifting operators are introduced. They map func-
tions defined on mesh faces to functions defined on mesh elements. In the context 
of DG methods, liftings act on interfaces and boundary jumps. Bassi and Rebay 
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introduced them [36] in the context of compressible flows and analyzed by Brezzi 
et al. [37] in the context of the Poisson problem. Liftings have many useful applica-
tions. They can be combined with the gradient to define discrete gradients. Discrete 
gradients play an essential role in the design and analysis of DG methods. Indeed, 
they can be used to formulate the discrete problem locally on each element using 
numerical fluxes.  

Liftings: Definition 
For any point nx , and for all { }( )2

nL xϕ∈  the lifting operator  

{ }( ) ( )2
0:p p

n n hr L x →    is defined as the solution of the following problem:  

 ( ) { } ( ) ( )0d , .
n

p p
n h h n h hx

r x xϕ τ τ ϕ τ
Ω

= ∀ ∈∫    (64) 

For any v  in ( )0 h
p  , the global lifting of its interface and boundary jumps 

is defined as follows:  

 
 ( )  ( ) ( )0

0
: .h

N
p p p

h n
n

R v r v
=

= ∈∑    (65) 

Discrete gradients: Definition 
The discrete gradient operator ( ) ( )2

0:p p
h nhG L I→   is defined as follows: for 

all v  in ( )0 h
p  ,  

 ( )
 ( ): .p p

h h hG v v R v= ∇ −  (66) 

In addition, there exists a bound on the discrete gradient operator:  

 ( )
( )2

p
h L

G v vα
Ω
≤  (67) 

where ⋅  is the norm associated with the IIPG formulation defined Equation 
(30). 

Theorem 11. (Regularity of the limit and weak asymptotic consistency of dis-

crete gradients.) Let 0p ≥ . Let hv  be a sequence in ( )0 h
p   bounded by the 

. -norm. Then, there is a function ( )1
0v H∈ Ω  such that as 0h → , up to a sub-

sequence,  

 ( )2strongly in ,hv v L→ Ω  (68) 

and for all 0p ≥ , the discrete gradients defined by Equation (66) are such that  

 ( ) ( )2weakly in .p
h hG v v L′ Ω  (69) 

Proof of Theorem 11 is available in [13] (pp. 194-195). 
Because of the shape of the IIPG formulation, the modified discrete gradient 

operator ( ) ( )2
0

ˆ :p p
hh nG L I→   is defined as follows: for all v  in ( )0 h

p  , 

 ( ) :ˆ .p
h hG v v= ∇  (70) 

Using liftings and discrete gradients, surface contributions of the flux in Equa-
tion (32) are transformed to volume contribution. It makes working with the bilin-
ear form ha  easier. For a given ( )0

p
hu ∈  , it can be rewritten as follows:  
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− −

= = =

− −

= =

∀ ∈

= ∇ ∇ − ∇ +

= ∇ − +

= ∇ − +

∑ ∑∫

∑ ∑∑∫ ∫

∑ ∑∫ ∫



 

( )

( ) ( ) ( ) ( )
1

0

,

ˆ, d ,
n

h

N
p p

h h h h h h hI
n

v

K x u G u G v x s u v
−

=

= +∑ ∫

 (71) 

with  

( ) ( )
       

   

0 0

1
0 1

0
1

, , ,
2

.

n n

N N

N
p n n

h h h h h h h h hx x x x
n

N
h h

h

x x

u v s u v u v u v
h h

u v
h

σ σ σ

σ

−
−

=

+
∀ ∈ = +

+

∑ 
 (72) 

Consider that ( ) 0, ,n n Nσ
= 

 are chosen according to Lemma 4 that implies dis-

crete coercivity in the . -norm, and hence well-posedness of the discrete linear-

ized problem ( )h
 .  

Definition 1. (Asymptotic adjoint consistency.) The discrete bilinear form ha  

is asymptotically adjoint consistent with the exact bilinear form a  on ( )0 h
p   

if for any subsequence hv  in ( )0 h
p   bounded in the . -norm and for any 

smooth function ( )0Cϕ ∞∈ Ω , there is a subsequence hϕ  in ( )0 h
p   converging 

to ϕ  in the . -norm and such that, up to a subsequence 

 ( ) ( )
0

lim , , dh h hh
a v a v v xϕ ϕ ϕ

Ω→
′ ′= = ∫  (73) 

where ( )1
0v H∈ Ω  is the limit of the subsequence identified in Theorem 11.  

Lemma 12. (Asymptotic adjoint consistency of ha .) The discrete bilinear form 

ha  of Problem ( h
 ) is asymptotically adjoint consistent with the exact bilinear 

form a  of Problem (  ) on ( )0 h
p  .  

Finally, we deduce the following result. 
Theorem 13. (Convergence to minimal regularity solutions.) Let 1p ≥ . Let hu  

be a sequence of approximate solutions generated by solving the discrete linear-
ized problem ( )h

  with ha  defined by Equation (32) and with penalty parameters 
ensuring coercivity. Then, as 0h →  

 ( )2strongly inhu u L→ Ω  (74) 

 ( )2strongly inh hu u L′∇ → Ω  (75) 

 0h Ju →  (76) 

where ( )1
0u H∈ Ω  is the unique solution of the strong problem.  

Proofs of Lemma 12 and Theorem 13 can be found in Appendix. 
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4.6. Concluding Results 

In the current section, several theorems have been proven. It is proven that there 
exists a unique solution to Problem ( ) using Lemma 1 and Lemma 2. Then, it 
is proven that for a given u , there exists a unique solution to Problem ( h

 ) us-
ing Lemma 3. Lastly it is proven that for a given u , the solution of Problem ( h

 ) 
converges to the solution of Problem (  ). These results proven in a general case 
for a given u  can be used to solve the toy problem. Figure 6 gives a graphical 
representation of the whole loop of resolution with different paths. 
 

 
Figure 6. Scheme of the whole loop of resolution with the different linearization methods. 
 

The nonlinear problem, Problem ( ) can be linearized directly at the contin-
uous level by employing a fixed-point method. The continuous level linearization  

 
( ) ( )

( )

1 1
0 0:T H H

u T u u

Ω → Ω

=

 (77) 

stands for: find u  solution of Problem (  ) for a given ( )1
0u H∈ Ω . One can 

define the following sequence defined by ( )0 1
0u H∈ Ω  an initial guess and 

( )1n nu T u+ =  for n∈ . Lemma 1 and Lemma 2 ensure that taking lim n
n u→∞  

gives the solution of Problem ( ). 
A discretization step is needed to compute the solution of Problem ( ). Con-

sequently, the projector ( ) ( )1
0 0: p

h hP H Ω →    is introduced. It projects a func-
tion living in an infinite-dimensional space to a finite-dimensional space, espe-
cially it projects a function to the DG space ( )0 h

pV  . Then, at a discrete level, the 
linearization method  

 
( ) ( )

( )
0 0: p p

h hh

h h

T V V

u T u u

→

=

 
 (78) 

stands for: find hu  discrete solution of Problem ( h
 ) for a given ( )0 h

pu V∈  . 

One can notice that for a given ( )1
0u H∈ Ω , it has been proven (Theorem 13) that 

( )( )h h hT P u u=  converges to u  given by ( )CT u . 

Lastly, the linearization method of Problem ( ) going through a discretization 
step is defined as  
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( ) ( )

( ) ( ) ( )

1 1
0 0

0

:

lim
D

D h hh

T H H

u T u T P u u
→

Ω → Ω

= = 

 (79) 

Using DT  one can define a new sequence ( )0 1
0v H∈ Ω  an initial guess and 

( ) ( ) ( )1
0limn n n

D h h hv T v T P v+
→= =   for n∈ . Taking the limit when n  goes 

to infinity gives the solution of Problem ( ). 
The previously explained method uses two limits, h  goes to 0 then n  goes 

to infinity. One can also consider limits in the opposite order. Using proof of Lemma 
1 applied to the nonlinear discrete problem and then using Theorem 13, one can 
prove that the solution of the nonlinear discrete problem converges to the solution 
of the nonlinear continuous problem. 

5. Numerical Results 

Following the numerical methods and theoretical results presented in the previous 
sections, the RIVAGE code is validated against numerical test cases. Two analyti-
cal test cases are used to compute convergence rates and validate the code. These 
analytical test cases are obtained by considering the problem’s aimed solution and 
choosing the source term according to the solution and the hydraulic conductivity 
function. They are built upon the nonlinear Poisson’s equation. The first case is a non-
linear one-dimensional problem in its stationary form. The second case is a nonlin-
ear two-dimensional problem in its stationary form. These numerical experiments 
are inspired by literature. In 2008, Rivière [14] and in 2021, Clément et al. [12] com-
puted convergence rates for linear problems, also for nonlinear problems. 

Stationary problems are considered since theoretical results are given on this type 
of problem. Moreover, they are more difficult to solve since they solve the problem 
at infinite time. Consequently, the nonlinear solver has to find the solution without 
getting time sub-steps. 

Experimental test cases are solved with the RIVAGE code. These problems aim 
at confirming the performance of the adaptive strategy proposed in this work. 
Moreover, they allow to test RIVAGE of problems encountered in the hydrology 
field. These experiments are based on the work of Haverkamp et al. [38] and Vau-
clin et al. [39]. 
 

Table 3. Solver and time-integration settings used in all numerical experiments. 

Parameter Symbol/Setting Description 

Nonlinear tolerance 6
NL 10ε −=  Residual tolerance for Picard iterations 

Maximum Picard iterations max
Pic 40N =  Upper bound before step rejection 

Time-step size adaptive Automatically reduced if residual increases 

Minimum time-step 4
minΔ s10t −=  Stability safeguard 

Linear solver Conjugate Gradient (CG) Preconditioned by ILU(0) 

Spatial polynomial degree 1,2p =  Depending on the test case 

Penalty parameters Equation (63) Auto-calibrated during iteration 
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These settings (see Table 3) were kept identical for all test cases unless explic-
itly stated otherwise. 

5.1. One-Dimensional Analytical Test Case 

For this first test case, theoretical convergence rates of the IIPG methods are checked, 
and numerical stability is evaluated concerning penalty values and penalization 
methods. The following problem is considered:  

 
( )( ) ( ) [ ]

( )
( )

in 1,1

1 1,

1 1,

K u u f x

u

u

− = Ω = −
 − =
 = −

 (80) 

with ( ) ( )tanh 5 1.01K u u= +  and f  obtained by replacing u  by exu  in the 

problem. The chosen analytical solution is ( ) sin
2exu x xπ = −  

 
. The analytical 

solution is chosen not to be polynomial but to span the interval [ ]1,1− . The hy-
draulic conductivity is chosen to have a nonlinear problem with a similar shape of 
law given in Table 1. tanh has been chosen because it is a smooth function con-
venient for the computation of convergence rates and looks like constitutive laws 
for RE. Moreover, a factor of 200 between the maximum and the minimum value 
of K  with 0 0.01K = . The problem is solved with the IIPG method. Three types 

of penalization are used. The first one 1Eσ σ= =  for all E∈ , the second one 

100Eσ σ= =  for all E∈  and the third one Eσ  are auto-calibrated using the 
method presented in Section 4. For each type of penalization, the solution is ap-
proximated by a piecewise linear function ( 1p = ), a piecewise quadratic function 
( 2p = ), and a piecewise cubic function ( 3p = ). Moreover, lastly, four different 
mesh sizes are used 20,40,80,160xN =  with xN —the number of elements in the 
equally spaced partition of Ω.  
 

Table 4. 2L -error, convergence rates and number of iterations for the one-dimensional benchmark. 

 1p =  2p =  3p =  

σ  xN  2L -error r  ( )t s  2L -error r  ( )t s  2L -error r  ( )t s  

1 20 3.21 × 10−1  0.21 1.33 × 10−1  1.94 2.29 × 10−4  6.21 

- 40 1.29 × 10−1 1.31 0.46 3.41 × 10−2 1.97 3.17 1.42 × 10−5 4.01 11.85 

- 80 3.77 × 10−2 1.78 1.02 8.53 × 10−3 2.00 5.97 8.88 × 10−7 4.00 23.94 

- 160 9.83 × 10−3 1.94 2.08 2.13 × 10−3 2.00 12.09 5.62 × 10−8 3.98 52.83 

- Fitted  1.69   1.99   4.00  

100 20 8.33 × 10−3  0.21 1.36 × 10−3  1.48 2.33 × 10−6  5.89 

- 40 2.10 × 10−3 1.99 0.51 3.41 × 10−4 2.00 2.97 1.44 × 10−7 4.02 11.87 

- 80 5.27 × 10−4 2.00 1.03 8.53 × 10−5 2.00 5.94 9.74 × 10−9 3.89 24.03 

- 160 1.31 × 10−4 2.00 2.08 2.13 × 10−5 2.00 12.16 1.37 × 10−9 2.83 53.20 

- Fitted  1.99   2.00   3.61  
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Continued 

auto 20 3.53 × 10−2  0.24 1.69 × 10−2  1.43 3.46 × 10−6  5.88 

- 40 8.88 × 10−3 1.99 0.51 4.40 × 10−3 1.94 2.86 1.61 × 10−7 4.42 11.92 

- 80 2.17 × 10−3 2.03 1.05 1.13 × 10−3 1.95 5.95 9.45 × 10−9 4.10 24.07 

- 160 5.32 × 10−4 2.03 2.55 2.90 × 10−4 1.97 12.13 1.33 × 10−9 2.82 53.25 

- Fitted  2.02   1.96   3.81  

 

 
Figure 7. Penalization parameters for the one-dimensional test case in the case of auto-
penalization. 

 
Table 4 shows 2L -error and convergence rate for each computation. It can be 

noticed that computed convergence rates correspond to the theoretical ones found 
in literature [14] and [40] (pp. 64-84). For the IIPG formulation with penalization, 
p  is odd in order 1p + , it is optimal, and if p  is even, the order is p , it is 

suboptimal. Moreover, for a penalization speed set by the user to 1 (outside of the 
range specified by theoretical results), errors are about 100 times greater than in 
other computations. The fixed-point method converges to a less accurate solution. 
Computation times are also given. It can be noticed that auto-penalization is not 
greatly slower than user-defined penalization and can even be faster due to the 
quickest convergence of the iterative method. 

Moreover, Figure 7 shows penalization values in the case of auto-calibration. 
One can observe that penalization values are not constant on Ω and vary accord-
ing to the polynomial degree of approximation. On the domain, some part needs a 
small amount of penalization, whereas others need a higher amount. 

5.2. Two-Dimensional Analytical Test Case 

This second experiment focuses on the ability of the IIPG method to solve RE in 
two dimensions. Its convergence rates are computed, and numerical stability is eval-
uated concerning penalty values and penalization methods. The following problem 
is considered:  
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 ( )( ) ( ) [ ] [ ]in 1,1 1,1

0 on ,

K u u f

u

−∇ ⋅ ∇ = Ω = − × −


= ∂Ω

x
 (81) 

with ( ) ( )tanh 1.01K u u= +  and similarly to the previous test case f  is ob-

tained by replacing u  by exu  in the problem. The chosen analytical solution is 

( ), sin sin
2 2exu x y x yπ π   =    

   
. The problem is solved similarly to the one-dimen-

sional test case. Three types of penalization are used. The first one 1Eσ σ= =  for 

all E∈ , the second one 100Eσ σ= =  for all E∈  and the third one Eσ  
are auto-calibrated. For each type of penalization, the solution is approximated by 
a piecewise linear function ( 1p = ), a piecewise quadratic function ( 2p = ), and a 
piecewise cubic function ( 3p = ). Lastly, three different meshes are used. They are 
all composed of quadrilaterals of identical size, and each space direction is discre-
tized with 10,20,40N =  elements. It gives a mesh with 100,400,1600EN =  el-
ements. 
 

Table 5. 2L -error, convergence rates and number of iterations for the two-dimensional benchmark. 

 1p =  2p =  3p =  

σ  xN  2L -error r  ( )t s  2L -error r  ( )t s  2L -error r  ( )t s  

1 10 6.45 × 10−2  0.29 4.83 × 10−2  1.54 8.60 × 10−4  5.07 

- 20 1.51 × 10−2 1.99 1.00 1.11 × 10−2 2.11 7.21 4.69 × 10−5 4.20 27.21 

- 40 3.53 × 10−3 2.10 7.57 2.65 × 10−3 2.07 59.51 2.74 × 10−6 4.09 279.59 

- Fitted  2.10   2.09   4.15  

100 10 3.80 × 10−2  0.25 2.02 × 10−3  1.14 7.32 × 10−5  4.83 

- 20 9.53 × 10−3 1.99 0.99 2.72 × 10−4 2.90 6.78 4.59 × 10−6 4.00 30.23 

- 40 2.38 × 10−3 2.00 8.37 4.08 × 10−5 2.74 61.62 2.87 × 10−7 4.00 290.86 

- Fitted  2.00   2.82   4.00  

auto 10 3.37 × 10−2  0.25 2.52 × 10−3  1.15 7.41 × 10−5  4.93 

- 20 8.11 × 10−3 2.06 1.03 5.90 × 10−4 2.09 6.88 4.71 × 10−6 3.98 30.15 

- 40 2.02 × 10−3 2.00 8.49 1.51 × 10−4 1.96 60.85 2.97 × 10−7 3.99 288.50 

- Fitted  2.03   2.03   3.98  

 
Table 5 shows 2L -error and convergence rate for each computation. It can be 

noticed that computed convergence rates correspond to the theoretical ones found 
in literature [14] and [40] (pp. 64-84). For the IIPG formulation with penalization, 
p  is odd in order 1p + , it is optimal, and if p  is even, the order is p  and 

suboptimal. Moreover, for a penalization speed set by the user to 1 (outside of the 
range specified by theoretical results), errors are about 100 times greater than 
in other computations. The fixed-point method converges to a less accurate solu-
tion. Computation times are also given. It can be noticed that auto-penalization is 
not greatly slower than user-defined penalization and can even be faster due to 
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the quickest convergence of the iterative method as in the one-dimensional case. 
Moreover, Figure 8 shows penalization values in the case of auto-calibration. One 

can observe that penalization values are not constant on Ω and vary according to 
the polynomial degree of approximation. On the domain, some part needs a small 
amount of penalization, whereas others need a higher amount. 

 

 
Figure 8. Penalization parameters for the two-dimensional test case in the 
case of auto-penalization. 

5.3. Application to Groundwater Flows I: Haverkamp’s Test Case 

The two problems considered here, one-dimensional and two-dimensional, aim 
to validate the numerical resolution of RE using DG methods and auto-calibration 
of penalization parameters. Numerical results are compared to numerical simula-
tions in the literature and experimental data. 

The first experimental validation of solving RE with DG methods is a one-
dimensional test case. The numerical results are compared with data sourced from 
the literature. This particular numerical test case was initially presented by Celia 
et al. [41]. It is based on an experiment conducted by Haverkamp et al. [38], who 
referred to the availability of a quasi-analytical solution provided by Philip [42]. 
Subsequently, it was used by others such as [43] [44], and represents a set of well-
established test cases, for instance, see [30]. Despite its simplicity, this case offers 
insights into the fundamental physics of a wetting front resulting from infiltra-
tion. 
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This scenario involves the one-dimensional infiltration into a soil column meas-
uring 40 cm in height and 8 cm in width. The hydraulic head at the top and bottom 
is governed by Dirichlet boundary conditions: 19.3 cmtoph =  and  

61.5 cmbottomh = − , resulting in cumulative downward infiltration. The sides are 
impermeable. The initial condition is 0 61.5 cmh z= − + . Although this case is one-
dimensional, it is solved on a two-dimensional domain. Therefore, homogeneous 
Neumann boundary conditions are applied along the boundary in the infiltration 
direction. For a visual representation of this setup, refer to Figure 9.  
 

 
Figure 9. Haverkamp’s test case configuration. 

 
Hydraulic properties use Vachaud’s relations in Table 1 with 61.175 10A = × , 

4.74B = , 61.611 10C = × , 3.96D = , 10.0094 cm ssK −= ⋅ , 0.287sθ = , and 
0.075rθ = . The simulation is done on a mesh of 160 elements along the z -axis. 

The solution is piecewise linear ( 1p = ), and time integration is BDF of order 2. 
Penalization parameters are set automatically using results from Section 4. In ad-
dition, stopping criteria are set to 10−6 for this computation. The solution to this prob-
lem is computed at 600 sT = . 

Figure 10 displays the comparison of numerical results with results from Man-
zini et al. [44], the pressure head distribution at 360 st =  and the penalization 
parameters distribution at 360 st = . Numerical results are in good agreement with 
the literature results for this test case. The pressure head distribution shows a ver-
tical progression of the wetting front with a steep transition from the initial ψ  to 
ψ  imposed at the boundary condition. Moreover, the distribution of penalization 
parameters shows that the penalization parameters are not constant on the whole 
domain and are higher on the wetting front. 

This test case validates a real, evolving test case for the DG method. Moreover, 
it gives a good insight into the behavior of automatic penalization. Penalization pa-
rameters are auto-calibrated as long as the solution evolves. Moreover, automatic 
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penalization impacts a full nonlinear problem because the nonlinear solver needs 
fewer iterations to converge to the solution. 
 

 
Figure 10. Haverkamp’s test case, numerical solution for 160 elements, 1p =  and BDF-2 method. 

5.4. Application to Groundwater Flows II: Vauclin’s Test Case 

Vauclin, Vachaud, and Khanji conducted a series of laboratory experiments in the 
1970s, the details of which can be found in [39]. These experiments explored water 
table recharge and drainage in a slab of sandy soil. The work by Vauclin et al. [39] 
specifically focuses on simulating water flow recharge through a soil slab and pro-
vides experimental details and results. The experiment involved a 6 m by 2 m box, 
with only one half simulated due to symmetry. The left, top (for 50 cmx > ), and 
bottom sides were impervious, with a prescribed constant flux on the top for 

50 cmx ≤  of 114.8 cm hg
−⋅ = − ⋅u n . The water level was maintained at a con-

stant 65 cmh =  in the ditch on the right for 65 cmz ≤ , while the remaining 
boundary on the right for 65 cmz >  accounted for a seepage boundary condi-
tion. The initial state was at hydrostatic equilibrium with the water table at 65 mz = . 
For further reference, please see Figure 11 for a schematic representation of the 
setup. The complete simulation of water table recharge by Vauclin et al. [39] has 
been used by numerous studies to evaluate their methods (see, for instance, [45]-
[47]). The MODFLOW code validation partially relies on this experimental dataset 
[31]. 

Hydraulic properties use Vachaud’s relations in Table 1 with 62.99 10A = × , 
5.0B = , 40000C = , 2.9D = , 135 cm hsK −= ⋅ , 0.3sθ = , and 0.0rθ = . The 

simulation is carried on an evolving mesh. The mesh is adapted along the compu-
tation according to the gradient of h . Mesh adaptive parameters are set to 50cβ =  
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and 50rβ = . The solution is sought piecewise linear ( 2p = ) and time integra-
tion is BDF of order 3. Penalization parameters are set automatically using results 
from Section 4. In addition, stopping criteria are set to 10−6 for this computation. 
The solution of this problem is computed until 10 hT = . 
 

 
Figure 11. Vauclin’s test case configuration. 
 

In the initial mesh displayed in Figure 12, the refinement below the water entry 
edge aims to assist in simulating the steep wetting front. Figure 13 compares the 
water table’s position at 2,3,4,8 ht =  with data from Vauclin et al. [39]. The nu-
merical results closely match the experimental profile, although there are small dis-
crepancies in the middle of the water table, which may be due to the non-perfect iso-
tropic and homogeneous nature of the sandy soil. 

Figure 14 and Figure 15 illustrate the field distribution of hydraulic head, flux, 
and the positions of the water table and capillary fringe at 0.29θ = . These figures 
also show the isolines of the hydraulic head. The numerical results are in agreement 
with the data from Vauclin et al. [39]. 

Additionally, in Figure 16, the evolution of penalization parameters during the 
computation is presented. At selected times, the evolution of the mesh reflects the 
capture of the steep front. 

Finally, Figure 17 displays the evolution of time-steps and the number of ele-
ments over time. The adaptation of time steps and the number of elements is evi-
dent, with the time steps initially small due to the strong nonlinearity induced by 
the steep wetting front. As the front smoothens, the number of elements decreases, 
stabilizing at 600eleN =  after 3 ht = . 

This test case is a test case, which is a typical problem where auto-calibration of 
penalization parameters is essential. Since the problem is strongly nonlinear and 
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evolving, with a basic penalization and user defined parameters, the nonlinear solver 
failed to capture the solution or necessitates some combination of fixed-point solver 
and Newton-Raphson method such as in the work of [7]. 

Discussions on possible limitations. A potential limitation of the proposed 
approach arises when hydraulic parameters (e.g., sK , α , n ) exhibit abrupt 
spatial variations between adjacent elements. In such cases, the optimal scaling of 
the penalty parameter may deteriorate, leading to sub-optimal convergence rates. 
Similarly, the application of capillary-pressure regularization can alter the local 
nonlinearity of the constitutive laws, thereby reducing the effectiveness of the au-
tomatic penalization scheme. Future work will investigate adaptive penalty strat-
egies that account for local parameter contrasts and regularized constitutive mod-
els. 
 

 
Figure 12. Vauclin’s test case, initial mesh. 

 

 
Figure 13. Vauclin’s test case, numerical water table position compared to experimental 
data from Vaulin et al. [39]. 
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Figure 14. Vauclin’s test case, at 3 ht = , spatial distribution of hydraulic head, water table position (white line), contour plot of 
hydraulic head (red lines) and flux (arrows). 

 

 
Figure 15. Vauclin’s test case, at 8 ht = , spatial distribution of hydraulic head, water table position (white line), contour plot of 
hydraulic head (red lines) and flux (arrows). 
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Figure 16. Vauclin’s test case, spatial distribution of penalization parameters and mesh at selected times. 

 

 
Figure 17. Vauclin’s test case, evolution along time of time-steps (left) and number of elements (right). 
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Appendix 
Proofs on Theoretical Results 

Proof of Lemma 4. For a given ( )0
p

hu ∈   and choosing h hv u=  in (32) yields  
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An upper bound to the term ( ){ }  0 ,
nn

N
h hn xx

K x u u u
=

′∑  needs to be estab-

lished to prove the coercivity of ha . Using Hypothesis ( n ) and definition of 
average:  
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Recalling the trace inequality [48] in the case of an orthonormal polynomial ba-
sis: for an interval nI ,  
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we get, { }1, , 1n N∀ ∈ − :  
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At the boundary nodes 0x  and Nx , we have  
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Gathering the bounds on the boundary and the interior nodes, we get  
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Then, using Cauchy-Schwarz’s and Young’s inequality, we have:  
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From the above inequality, we deduce a lower bound of  
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where  
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Finally, thanks to the inequality (90), ha  (32) is coercive if  

https://doi.org/10.4236/jamp.2025.1311227


C. Poussel et al. 
 

 

DOI: 10.4236/jamp.2025.1311227 4123 Journal of Applied Mathematics and Physics 
 

 

( ) { }
{ }*

*
0 0

*

2, 0, , 1
, 1, , 1

n

n n

N N

n N
n N

ε
σ σ
σ σ
σ σ

 < ∀ ∈ −


> ∀ ∈ −


>
 >



  (92) 

which ends the proof.                                               □ 
Proof of Lemma 5. For a given ( )0

p
hu ∈  , an upper bound for ( ), ;h h ha u v u , 

( )0, h
p

h hu v∀ ∈   needs to be established in order to prove continuity of ha . Firstly, 

start bounding above the volume contribution using Hypothesis ( n ):  
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 (93) 

Then, penalization terms are bounded above  

 

           

     

0 0

0

1
0 1

1

1
1 22 2 20 1

1

2

2

n n N N

n N

N
n n N

h h h h h hx x x x x x
n

N
n n N

h h hx x x
n

u v u v u v
h h h

u u u
h h h

σ σ σ σ

σ σ σ σ

−
−

=

−
−

=

+
+ +

+
≤
 

+


+ 


∑

∑
 (94) 

 
     

0

1
1 22 2 20 1

1

0 1, , 1

2

max , , max
2

n N

N
n n N

h h hx x x
n

n
N h hn N

v v v
h h h

u v

σ σ σ σ

σ
σ σ

−
−

=

= −

 
 

+
+ +

  ≤   
  

 
∑



 (95) 

and one can write  
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 (96) 

From those inequalities, we obtain an upper bound ( )0, h
p

h hu v∀ ∈  , as fol-
lows  
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where  
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□ 
Proof of Lemma 6. An upper bound for ( )hl v  is established using Poin-

caré inequality and Cauchy Schwarz: 0   ( ),p
h hv∀ ∈  

 

1 1 1

0 0 0

1 1
1 12 222 2

0 0

d
n nn nn

n n

N N N

h n hI II II
n n n

N N

n h hI I
n n

fv x f v f v

f v B v

β

β

− − −

= = =

− −

= =

′≤ ≤

   ′≤ ≤   
   

∑ ∑ ∑∫

∑ ∑
 (99) 

with ( ) ( )
1

21 2
00, , 1

max
n

N
n n In N

B fβ −

== −
= ∑



.                                 □ 

Proof of Lemma 12. For a given ( )0
p

hu ∈  , let hv  be a sequence in ( )0 h
p   

bounded in the . -norm and let ( )0Cϕ ∞∈ Ω . For all *h +∈ , set h hϕ π ϕ=  

where hπ  denotes the 2L -orthogonal projection onto ( )0 h
p  . Since 1p ≥ , 

infer 
0
0h h

ϕ π ϕ
→

− → . Owing to Equation (67) and since ( )p
hG ϕ ϕ′=  because 

( )0Cϕ ∞∈ Ω , obtain for all 0p ≥  

 ( ) ( )2strongly inp
h hG Lπ ϕ ϕ′→ Ω  (100) 

One can observe that  

 ( ) ( ) ( ) ( ) ( ) 1 2, ; , d ,ˆ :p p
h h h h h h h h h ha v u K x u G v G x s vπ ϕ π ϕ π ϕ

Ω
= + = +∫ T T  (101) 

Clearly as 0h → , ( )1 , dK x u v xϕ
Ω

′ ′→ ∫T  owing to the weak convergence of 
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( )ˆ p
h hG v  to v′  and to the strong convergence of ( )p

h hG π ϕ  to ϕ′ . Furthermore, 
using Cauchy-Schwarz inequality yields: 
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where  
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12 2

0max , , .
4

n n
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  
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Since h Jv  is bounded by assumption and since 
0
0h hJ J h

π ϕ ϕ π ϕ
→

= − → , in-

fer 2 0
0

h→
→T .                                                      □ 

Proof of the Theorem 13. For a given ( )0
p

hu ∈  , owing to the discrete coer-

civity of ha , the sequence hu  is bounded in the . -norm. Theorem 11 implies 

that there is ( )1
0v H∈ Ω  such that up to a subsequence, hu v→  in ( )2L Ω  and 

for all 0p ≥ , ( )p
h hG u v′  weakly in ( )2L Ω  as 0h → . Let ( )0Cϕ ∞∈ Ω . Ow-

ing Lemma 12, ( ) ( ), ; ,h h ha u u a vπ ϕ ϕ→   as 0h → . Since hu  solves the discrete 

linearized problem ( )h
 , infer as 0h →  
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Hence, using ( ) 2*, ;h h h ha v v u C v≥  from Lemma 4  
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 (105) 

with ( ) ( )( )2 2

1
2 2 2

, 1f L LC f Kϕ ϕ
Ω Ω

′= + . As a consequence,  
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 ( )1,*
0

1limsup .h h f H
h

u C v
C ϕπ ϕ ϕ

Ω
→

− ≤ −  (106) 

One can observe that the choice for ˆ p
hG  satisfy the stability property  

 ( ) ( )
( )20 , ˆ ˆp p

h h h hLhv G v C v
Ω

∀ ∈ ≤   (107) 

for Ĉ  independent of h . As a result,  
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 (109) 

And since ( )ˆ p
h hG π ϕ  strongly converges to ϕ′  in ( )2L Ω , this yields  

 ( )
( ) ( )12 ,*

0

ˆ 1li p ˆmsu .p
h h f HLh
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ΩΩ→
′− ≤ −  (110) 

Since ϕ  is arbitrary in ( )0C∞ Ω , and since this space is dense in ( )1
0H Ω , the 

term on the right hand side can be made as small as desired taking vϕ = , infer  

 ( ) ( )2

0
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h h h
G u v L

→
′→ Ω  (111) 

As a result, taking ϕ  arbitrary in ( )0C∞ Ω  yields  
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using Lemma 12., i.e., v  solves the Poisson problem by density of ( )0C∞ Ω  in 

( )1H Ω . Since the solution u  to the Poisson problem is unique, the whole sequence 

hu  strongly converges to u  in ( )2L Ω  and, for all 0p ≥ , the sequence  

( )( ) *
p

h h h
G u

+∈
 weakly converges to u′  in ( )2L Ω .  
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Thus  
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Furthermore  
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yielding with Equation (112) 
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Thus, ( ) ( ) ( ) ( )
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and since ( )
0, ,

min 0nn N
σ

=
>



 and the right-hand side tends to zero, 0h Ju → .  
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□ 

https://doi.org/10.4236/jamp.2025.1311227

	Optimal Penalization and Nonlinear Solver Convergence for a DG-Based Richards’ Equation Model of Variably Saturated Flows
	Abstract
	Keywords
	1. Introduction
	2. Governing Equation
	3. Numerical Methods
	3.1. Settings
	3.2. Semi-Discrete Weak Formulation
	3.3. Time Discretization
	3.4. Nonlinear Iterative Process
	3.5. Adaptive Time Stepping

	4. Theoretical Study and Estimation of the Optimal Penalization Parameters
	4.1. Toy Model
	4.2. Existence and Uniqueness of the Weak Solution to the Nonlinear Problem ()
	4.3. Existence and Uniqueness of the Weak Solution to the Discrete Linearized Problem ()
	4.4. Optimal Penalization Parameters
	4.5. Convergence of the Discrete Linearized Weak Problem to the Continuous Linearized Weak Problem
	4.6. Concluding Results

	5. Numerical Results
	5.1. One-Dimensional Analytical Test Case
	5.2. Two-Dimensional Analytical Test Case
	5.3. Application to Groundwater Flows I: Haverkamp’s Test Case
	5.4. Application to Groundwater Flows II: Vauclin’s Test Case

	Acknowledgements
	Conflicts of Interest
	References
	Appendix
	Proofs on Theoretical Results


