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Abstract

This article proposes an innovative method for modeling financial markets
using multifractional Brownian motion (mBm). Unlike traditional fractional
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Brownian motion, mBm offers variable local memory, providing a more accu-
rate representation of the multifractal volatility and long-range dependencies
found in financial time series. We present a precise mathematical formulation
of mBm, sophisticated techniques for estimating the Hurst function, efficient
numerical simulation algorithms, and a detailed empirical study covering sev-
eral major stock indices. The results indicate that mBm more accurately re-
flects price dynamics, significantly improves risk analysis, and provides more
precise pricing of exotic options compared to traditional models.
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1. Introduction

Financial markets exhibit complex movements characterized by periods of tran-
quility and unexpected upheavals, volatility clustering, and non-stationary long-
range dependencies. Traditional models such as Black-Scholes, standard Brown-
ian motion, or even fractional Brownian motion with constant Hurst exponent
fail to fully capture these phenomena, particularly the variable long memory and
multifractal structure that characterize financial returns [1] [2].

The objective of this article is to employ multifractional Brownian motion (mBm)
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to represent financial series with variable local memory [3] [4]. The mBm model
allows for adjusting the Hurst index H (t) over time, providing a more faithful
representation of fluctuating volatility phases [5]. This approach is particularly
suitable for volatility modeling, risk management, exotic option pricing, and early
detection of financial crises.

To establish our approach on theoretical foundations and highlight the limita-
tions of existing models addressed by mBm, we begin with a review of fundamen-
tal concepts of long memory and fractional and multifractional Brownian pro-

Cesses.

2. Theoretical Background

2.1. Long Memory and Financial Time Series

A time series is said to have long memory if its autocorrelation decays hyperboli-
cally rather than exponentially. In finance, this means that returns or volatilities
are correlated over long periods, which has significant implications for forecasting
and risk management.

Formally, a process X (t) is said to have long memory if its autocovariance

function y(h) satisfies:
y(h)~L(h)h*"?* ash— oo

where L(h) isa slowly varying function and H is the Hurst exponent in the
interval (0.5,1).

2.2. Fractional Brownian Motion (fBm)

The centered Gaussian process BH (t) ,with  H in the interval (0,1) ,isan fBm

with covariance defined as [1] [6]:
E[B" (1)B" (5)] =%(|t|2H s —fe-s)

Key characteristics:

H =0.5: standard Brownian motion (process with independent increments).

L]

H >0.5: persistent dependence (long memory effect).

L]

H <0.5: anti-persistent dependence (increased mean reversion).
Self-similarity: B" (at)£a"B" (t) forall a>0.

Stationary increments.

3. Multifractional Brownian Motion (mBm)

Multifractional Brownian motion (mBm) extends fractional Brownian motion
(fBm) by allowing the Hurst exponent H  to vary over time [3]-[5]. It is denoted
BH0) (t) for t>0.

Formal Definition

By Stochastic Integral
The canonical definition of mBm is given by the following stochastic integral:
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gH® (t): 1 0 ((t_S)H(t)fl/Z_(_S)H(t)fl/Z)dW (S)

SEEEIE

futes) O aw (s)|

(1

where:
* T(:) denotes Euler’s Gamma function.
e H (t) R > (0,1) is the instantaneous Hurst function.
* W(s) isastandard Brownian motion.
To ensure the existence and continuity of the trajectories of multifractional
Brownian motion, the instantaneous Hurst function H (t) must satisfy:
* Value condition: H(t)e(0,1) forall t>0.
* Hélder condition: 3C>0, B>sup,H(t) such that

H(t)-H(s)|<Ct-s".
* Uniform boundedness: 0<H_, <H(t)<H_, <1.

Under these assumptions, the trajectories of mBm are almost surely continuous,

with local regularity governed by H (t).
4. Key Characteristics of Multifractional Brownian Motion
4.1. Intuitive Interpretation of the Hurst Exponent H (t)

Consider H (t) as the “mode” or “mood” of the market at time t:
H(t)>05 (Calm & Trending Market):

- Behavior: Persistence. The market has “memory”. An upward movement

tends to be followed by another upward movement, a downward movement
by another downward movement. The trend persists.

- Analogy: Walking in a straight line on the beach.

* H(t)=05 (Standard Random Market):

- Behavior: Random walk. No memory. Past movements do not predict future
movements.

- Analogy: Moving erratically without purpose (random walk).

* H(t)<05 (Agitated & Erratic Market):

- Behavior: Anti-persistence. The market “corrects itself”. An upward move-
ment is frequently followed by a downward movement (mean reversion) or
vice versa. High volatility.

- Analogy: Constantly zigzagging, correcting trajectory to avoid obstacles.

Innovation of the mBm model: H (t) is not fixed; it evolves over time. Thus,
we can model a market that naturally transitions from calm, directional phases

(H >0.5) to turbulent, nervous phases ( H < 0.5); this represents a much more

realistic modeling of financial dynamics.

Multifractional Brownian motion (mBm) extends standard Brownian motion
by allowing the Hurst exponent H (t) to be time-dependent. This change makes
the roughness of the process unstable over time and provides the degree of free-

dom needed to better model many natural phenomena.
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4.2. Local Variance

The instantaneous variance of the process at time { is of the order 2" The
volatility at a given time thus depends on both time t and the value of the Hurst

exponent H(t).If H(t) islarge, then thelocal volatility increases more rapidly.

4.3. Local Self-Similarity

Considering a zoom around a given point { (at the infinitesimal scale “& —07),
the recentered and renormalized process is similar in law to a fractional Brownian
motion (fBm) with fixed parameter H (t) Locally, mBm therefore has a fractal

structure corresponding to the instantaneous value H (t).

4.4. Regularity of Trajectories

The continuity of trajectories is ensured by sufficient regularity of the function
H(t).If H(t) isHolder continuous with exponent S strictly greater than the
supremum of H (t), then the trajectories are almost surely continuous. In prac-

tice, this means not perturbing the evolution of H(t) too much over time.

4.5. Non-Stationarity of Increments

The increments of mBm have different properties from those of fBm: they are
non-stationary, their statistical properties (such as variance) vary over time. This
non-stationarity allows for the description of phenomena such as volatility clus-
tering that are frequently found in finance where phases of high turbulence tend

to persist.

4.6. Multifractality

mBm has a rich structure of local scalings, which can be studied using multifractal
tools (e.g., spectrum of singularities), making it a suitable model for describing
complex systems with intermittency [2] [7].

5. Simulation and Estimation Methods for mBm

Recent advances in estimation techniques [8] [9] and simulation methods [10] [11]

have made mBm more accessible for financial applications.

5.1. Estimation of the Hurst Function H (t)

Various methods allow for local estimation of the Hurst exponent:

5.1.1. Wavelet Estimation

This technique relies on the wavelet transform which quantifies local regularity.
Let ¥ be a mother wavelet and d, (j,k) the wavelet coefficients of process
X . We observe that:

B [de (1.K)f |- 2" with , =27k

Estimation of H(t) is performed by logarithmic regression on these coeffi-
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cients.

5.1.2. Estimation by Local Variance
This method determines the Hurst exponent from the evaluation of an iterative
calculation module based on a sliding window centered at time {:

H (t):%logz(MJ

V(9)
where V (6) corresponds to the variance of increments at scale & .

5.1.3. Local Maximum Likelihood
A statistically optimal method for Gaussian processes but computationally inten-
sive. It operates within a parametric advancement of H (t) within a sliding win-

dow.

5.1.4. Multifractal Methods
We aim to reconstruct the distribution of local singularities from the multifractal

spectrum.

5.2. Simulation of mBm

5.2.1. Discretization of the Stochastic Integral
Direct methods, costly (complexity O(nz)) involving discretization of the inte-

gral definition of the process.

5.2.2. Spectral Method
We adopt an approach through Fourier transform where the process is generated

by its coordinates in the spectral domain.

5.2.3. Recursive Algorithm
In another efficient approach, we exploit the Markovian structure of our process

by stochastic ascent.

5.3. Comparison of Simulation Methods and Limitations

Summary of simulation methods and limitations in high frequency:
Regarding simulation methods, we can distinguish:
* Direct discretization, which is exact but very complex to implement (cost O(NV)),
making it unsuitable for long series;
* A spectral method using FFT, which is efficient (O(MogAN)) but provides a less
accurate approximation for simulating A(4);
* Recursive approximation algorithms, which offer a good balance (O(N*?)) but
remain complex to implement.
We observe limitations not only in their implementation cost for high-fre-
quency data:
* sequential methods are very slow due to the millions of observations used;
e estimation of H({) at a fine time scale is difficult to obtain;

* microstructural effects, such as jumps, asynchrony, bias the estimation of /(-)
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in practice;
e ultra-rapid variation of H(?) is difficult to model and capture;
* in multivariate settings, complexity becomes explosive.
Perspectives to overcome these limitations would include promoting multi-
scale methods, the need for hybridization with jump processes, but also deep
learning, and high-performance computing (Table 1).

Table 1. Synthesis of the comparison of mBm simulation methods.

Method Time Complexity Memory Complexity Precision
Direct Discretization 0 ( N? ) 0 ( N? ) Excellent
Spectral Method (FFT) O(NlogN) O(N) Good
Recursive Algorithm O( N¥2 ) 0 ( N¥? ) Very Good

We now have all the methodological tools at our disposal to simulate the pro-
cess (BH(t) (t)) and estimate the function (H (t)) on empirical data to build a
complete financial valuation model. We establish an asset price dynamics incor-

porating mBm and examine its implications for valuation and risk management.

6. Pricing Model Based on Multifractional Brownian Motion

mBm, or multifractional Brownian motion, offers a more adaptable representa-
tion of financial prices than classical Brownian motion, allowing for local varia-
bility through the Hurst exponent H (t).

6.1. Main Equation

The initial model is as follows:
ﬁ = pdt + o-dBlH(‘)
S,
where:
* S, :asset value at time t.
*  u:average rate of return (drift).
* o :constant volatility.

. BtH(t) : a multifractional Brownian motion.

6.2. Exponential Form
This equation has the solution:

S, =S, exp(,ut —%JZIZH(U +GBIH(t)j

This version extends the Black-Scholes model by incorporating long memory
and regular variability through H (t).

6.3. Proof of Exponential Form

For the initial model using multifractional Brownian motion:
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ds, = uS,dt+o0S,dB!""

Let f(S;)=InS,. The derivatives are:

, 1 Y 1
f(St)=S—, f (St)=—?
t t

The differential of InS, is:

ds, 1(ds,)
a(ins) - -1
t t

Substitute dS, = xS,dt+ o*StdBlH(t) :

(Y S dt+oS,dBH0)
4S,dt+oS,dB, ( l(/u (Al + 075,05, )
d(ln St)z S —E 52

t t

Simplify:
2
d(InS,) = dt + odB™ _%62 (dB")

For multifractional Brownian motion, the quadratic variance is:
2
(dBtH(t)) :(dt)ZH(t)
Thus:

d(InS,) = udt +odB!" _%O_z (d)

Integrate from 0 to t:
t t t o 1 t (u
[;d(Ins,)=[ udu+o| dBy't )—Eozfo(du)ZH )

Which gives:

InS,—InS, = ut +0'BtH(I) —%GZtZH(I)

Hence the exponential solution:

S =S, exp(/ﬂ + O'BtH(t) —%GthH(t)J

7. Model with Stochastic Volatility

To capture the phenomenon of volatility clustering, we combine mBm with a sto-
chastic volatility model. This combined model was implemented in our empirical

tests to ensure a fair comparison against GARCH models.

ds, = uS,dt+0,5,dB""
do, = k(0 —o0,)dt+ o ,dW,

where:
* 0, : stochastic volatility process.
* k:mean reversion rate.

* 6:long-term volatility level.
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*  £:volatility of volatility.
W, : standard Wiener process (potentially correlated with B/ W,

7.1. Adjusted Risk Measures

7.1.1. Conditional Value at Risk
The Value at Risk at confidence level « is then:

VaR, (t) =S5, [exp(,uAt +oVar o (1- a)) —1}
where @' represents the inverse of the standard normal quantile function.

7.1.2. Expected Shortfall
The coherent risk measure, Expected Shortfall, is formulated as:

ES, (t) :éfo VaR, (t)du

This method captures the extreme aspect of the loss distribution beyond the
VaR level.

7.2. Benefits of the mBm Approach

* Flexibility: H(t) allowsadjusting the process regularity according to market
conditions.

* Long Memory: captures long-range dependencies observed empirically.

* Variable Volatility Modeling: represents calm and turbulent phases.

* Faithful Representation: allows a more faithful representation of tail distribu-

tions.

7.3. Proof of the Model with Stochastic Volatility

For the system:

ds, = uS,dt +,5,d8!""
do, = k(6 —o,)dt +Eo,dW,

The demonstration requires a more sophisticated method since volatility o,

is itself a random process.

7.3.1. Volatility Formula

The formula for o, represents a geometric Ornstein-Uhlenbeck type process:
do, =x(0-0,)dt+ o, dW,

This equation has an explicit solution. Let Y, =Ino, . Applying Itd’s lemma:

2
ay, :ﬂ_l(d(f;)
o, 2 o
:—K(Q_G‘)dt+§dwt—%§2dt

t

This equation can be solved numerically.
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7.3.2. Pricing Equation
With o, stochastic, the price S, now follows a stochastic process:

ds, = uS,dt +,5,dB!""
Reusing Itd’s lemma for InS, :

ds, 1(ds,)’
t t

= pdt+5,dB"" —%af (dt)?""

Integration yields:
t Hw Lot 2H(u)
IS, =InSy+ pt+ | o,dB;" LEjoaj (du)

Unlike before, the presence of stochastic o, prevents a closed-form solution.
The solution must be approximated numerically using discretization techniques

such as Euler-Maruyama.

7.3.3. Joint Simulation
To simulate the system, we discretize time and apply an approximation method:

O =0y +K(0—0,) At + o, AW,

St+At = St eXp(ﬂAt + UtABtH ) _%Gtz (At)ZH(t)j

where AW, and AB ) are correlated increments of Brownian motions.

This model captures both long memory through H (t) and volatility analysis
through the stochastic model o, thus providing a more faithful illustration of
financial markets.

Theoretical Links and Comparisons

Link to Rough Volatility

The rough volatility model [12] [13] could appear as a special case of mBm with
a constant andlow H (t) function (H ~0.1), insofar as both approaches model
the roughness of trajectories, but mBm goes further by allowing memory to vary
according to market regimes.

Comparison with Fractional Models

mBm is by definition non-stationary (unlike fBm which relies on a constant
Hurst exponent), which allows it to better account for market regime changes.

Link with Multifractal Models

mBm shares with multifractal models [2] [7] the idea of variable local regularity,
with the advantage of a continuous formulation and Gaussian dependence that

gives it better mathematical tractability [14].

8. Empirical Study
8.1. Data and Methodology

The objective of this empirical research is to analyze the effectiveness of the mul-
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tifractional Brownian motion (mBm) model for modeling and forecasting returns
of major stock indices. The study focuses on four key indicators of the global econ-
omy:

e S&P 500 (United States).

¢ CAC 40 (France).

* Nikkei 225 (Japan).

* DAX (Germany).

These indices were selected as they represent major developed markets across
different geographical regions (North America, Europe, and Asia), providing a
comprehensive view of global financial dynamics. The findings are expected to
generalize to other liquid equity markets with similar characteristics.

Covering the period from 2000 to 2023.

The approach used relies on a multi-phase methodology:

1) Estimation of the Holder exponent function H (t) using wavelet analysis
on sliding windows of 250 business days. This window size was chosen as it rep-
resents approximately one trading year, providing sufficient data points for robust
estimation while being short enough to capture meaningful market regime shifts
[15] [16].

2) Modeling of price trajectories using the mBm model, including the combined
stochastic volatility model described in Section 8.

3) Comparison with GARCH(1, 1), fBm, and standard Brownian motion mod-
els.

4) Performance evaluation using statistical indicators such as RMSE, MAE, and
log-likelihood.

8.2. Statistical Tests and Validation

To verify our findings, we conducted numerous tests on the residuals of the vari-

ous models.

8.2.1. Autocorrelation Test (Ljung-Box)

a(h)=n(n+2)3 2K

h
iz n—k

where ﬁ(k) is the autocorrelation of order k of the residuals.

8.2.2. Unit Root Tests

Unit root tests (ADF—Augmented Dickey-Fuller and KPSS) allow checking the
stationarity of the series:

¢ ADF test: Null hypothesis—presence of a unit root (non-stationary series).

* KPSS test: Null hypothesis—absence of a unit root (stationary series).

8.2.3. Confidence Intervals for Performance Measures
95% confidence intervals for RMSE and MAE were obtained by Bootstrap with
1000 resamplings. The confidence interval for RMSE is given by the following for-

mula:
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Clggy, = [é —Zyg75 - SE (é) J 0+ Zogrs - SE (é)]

where @ is the estimate of RMSE or MAE, Zyg75 1S the 97.5% quantile of the
normal distribution, and SE (9) is the standard error estimated by bootstrap.

8.3. Results and Analysis

* For the Ljung-Box test: a p-value > 0.05 indicates no significant autocorrela-
tion.

¢ For the ADF test: a p-value < 0.05 rejects the presence of a unit root (station-
arity).

¢ For the KPSS test: a p-value > 0.05 does not reject stationarity.

Table 2. Comparative performance of models (S&P 500).

Model RMSE [CI 95%)] MAE [CI 95%)] Log-lik. VaR (95%)
Brownian 0.152 [0.148, 0.156] 0.118 [0.115, 0.121] 1256.3 89.2%
fBm (constant H) 0.138 [0.134, 0.142] 0.105 [0.102, 0.108] 1324.7 92.1%
GARCH 0.126 [0.122, 0.130] 0.097 [0.094, 0.100] 1389.5 94.3%
mBm 0.109 [0.106, 0.112] 0.086 [0.083, 0.089] 1452.8 95.7%

Table 3. Results of statistical tests on model residuals (S&P 500).

Ljung-Box (p-value)

Model ADF (p-value) KPSS (p-value)
Lag 5 Lag 10
Standard Brownian 0.023 0.041 0.152 0.032
fBm (constant H) 0.087 0.125 0.043 0.215
GARCH(1, 1) 0.254 0.318 0.008 0.467
mBm (our model) 0.512 0.603 0.003 0.721

Table 2 summarizes the comparative results of the different models. Our mBm
model largely dominates all benchmark approaches across all metrics. Non-over-
lapping confidence intervals allow us to assert the significance of these differences.

The results of statistical tests performed on the residuals are presented in Table

¢ The mBm model is the only one that shows no significant autocorrelation in
its residuals (Ljung-Box p-values > 0.05).

* Unitroot tests demonstrate that the residuals of the mBm model are stationary
(ADF p-value < 0.05, KPSS p-value > 0.05).

¢ Other models show residual autocorrelations and/or non-stationarity prob-
lems.

These observations attest that the mBm model more effectively captures the
data structure and generates residuals that adhere to the essential assumptions of

time series models.
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8.4. Results Obtained

The results highlight the predominance of the mBm model in identifying the es-

sential characteristics of financial series:

* Estimation of H (t):The Hélder exponent fluctuates considerably over time,
typically between 0.4 and 0.7, indicating medium-term persistence.

* Forecast accuracy: The mBm model outperforms traditional techniques by
reducing RMSE by 15% - 25% depending on the index considered.

* Data fit: The mBm model consistently shows higher log-likelihood, attesting

to its better concordance with observed distributions.

8.5. Implementation in Risk Management

We calculated risk indicators VaR and ES for an equally weighted portfolio of the
four indices. The conclusions indicate that:
mBm GARCH standard
VaRgg, <VaRgy — <VaRgg,
mBm GARCH standard
ESsew < ESsew < ESggy
The mBm model demonstrates a more accurate representation of extreme

losses, particularly during crisis periods (such as the 2008 financial crisis and

COVID-19). Figure 1 demonstrates this predominance during market stress pe-

riods.
Comparison of Value at Risk (VaR 99%) Evolution During Covid-19 Crisis
6.0 Standard Brownian
—— GARCH(L,1)
5.5 | === mBm (our model)
' COVID-19 crisis period
£s.0f
9
S45
o
240
3.5
3.0k . L
0 20 40 60 80 100
Comparison of Expected Shortfall (ES 99%) Evolution During Covid-19 Crisis
Standard Brownian -
— 7.01 —— GARCH(1,1) »7 >4
S 7/ e ~
[ == = mBm (our model) 7’ o ~~\\\\
$6.5 COVID-19 crisis period yavad e S
> e e marE T o -
«0.1 6 0 / /,
T L
ol il
555 P
& pose
T 50 ///
e X
] Vs
g ~
%4 5 -
i ’,,r'
4.0 2
0 20 40 60 80 100

Time (days during 2020)

Figure 1. Comparison of the evolution of VaR and Expected Shortfall (99%) during the
COVID-19 crisis.

The chart above shows the simultaneous progression of Value at Risk (VaR)
and Expected Shortfall (ES) at a 99% confidence level during the COVID-19 crisis.
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A notable increase in these two financial risk indicators is observed at the onset of
the pandemic, illustrating the growing uncertainty and volatility in financial mar-
kets. Expected Shortfall, being a more conservative measure than VaR, generally
shows higher values, highlighting its ability to more accurately capture risks re-
lated to distribution extremes. This comparison is particularly appropriate in

times of crisis, when distribution extremes are essential for risk assessment.

Time evolution of the local Hurst exponent H(t)
for the S&P 500 index (2010-2023)

0.8 — Hurst exponent H(t)
-=- Random walk (H=0.5)

0.7}
0.6}

0.5 ==fmmmmmm e mmm oo TR | | A ———

Hurst Exponent H(t)

0.4}

0.3

0 25 50 75 100 125 150 175
Time (months)

Figure 2. Time evolution of the local Hurst exponent H(t) estimated by the wavelet
method for the S&P 500 index (2010-2023).

Integrated analysis of visual results

Analysis of price trajectories

The figure comparing price trajectories highlights the ability of the mBm model
to reproduce observed market dynamics, particularly its capacity to capture vola-
tility clustering, typical of financial markets where periods of high volatility tend
to aggregate. The mBm model can illustrate this phenomenon, unlike the standard
model which shows a much smoother volatility pattern and is less consistent with
market mechanisms.

Analysis of the local Hurst exponent

As shown in Figure 2, the time evolution of the local Hurst exponent clearly
highlights alternating persistent and anti-persistent phases, confirming the mul-
tifractional behavior of financial markets. The figure of the local Hurst exponent’s
evolution points to the multifractional nature of financial markets. Indeed, the
Hurst exponent varies significantly over time, ranging from persistent phases
(H>0.5), favoring trend continuation, to anti-persistent phases ( H <0.5),
where prices tend to revert to their mean. This temporal variability explains why
the mBm model, with a time-varying Hurst exponent, provides better results than
constant-Hurst models.

Link with numerical results

The superior accuracy of the mBm model (lower RMSE and MAE) stems from
its ability to reproduce volatility clustering, as observed in the price trajectory fig-
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ure. The same goes for its higher log-likelihood and better VaR coverage, due to
its ability to capture the time evolution of market persistence, as evidenced by the
temporal evolution of the Hurst exponent.

Consequences for financial modeling

This dual approach proves that financial modeling is better suited when ac-
counting for two key phenomena: volatility clustering and the time evolution of
market persistence. Since mBm incorporates both, it is a better reflection of com-
plex market dynamics, naturally justifying its use in advanced applications of risk

management and option pricing.

8.6. Conclusion of the Empirical Analysis

The empirical analysis confirms the relevance of the mBm model for financial
modeling:
* Better capture of long memory and local variability.
* More accurate estimation of extreme risks.
* Adaptive flexibility to different market conditions.
* Superior performance during turbulent periods.
These results support the adoption of the multifractional Brownian motion

model for risk management applications and option pricing in financial markets.

9. Application to Risk Management and Discussion

Recent applications of multifractal approaches in risk management [7] [17] and
the growing literature on rough volatility models [12] [13] provide strong theo-

retical support for the mBm framework.

9.1. Application to Risk Management

The graphical results obtained from the previous figures have a direct application
in the field of risk management. Our analysis shows that the mBm model, through
its ability to better capture volatility clustering and time-varying persistence, al-
lows for a more accurate evaluation of risk measures such as Value at Risk (VaR)
and Expected Shortfall (ES), particularly during financial crises when traditional

models tend to underestimate extreme risks.

9.2. Strengths of the mBm Model

The superiority of the mBm model lies in several fundamental advantages: on the
one hand, it effectively captures local memory variability and the non-stationarity
inherent in financial markets, as shown by the time evolution of the Hurst expo-
nent; on the other hand, its adaptive flexibility enables it to handle different mar-
ket regimes—calm phases or extreme turbulence—leading to better data fitting and

improved risk measures, confirming its practical power for financial institutions.

9.3. Limitations and Current Challenges

The Markovian modeling in bilateral form of the mBm presents some challenges.
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Although the mBm achieves superior performance, the complexity of its estima-
tion and simulation procedures constitutes a practical obstacle. The choice of es-
timation window sizes strongly influences the results and requires careful calibra-
tion. Furthermore, high-frequency estimation remains problematic, and potential

arbitrage issues arise in pricing applications.

9.4. Discussion and Future Research Perspectives

This research raises several considerations regarding limitations, potential exten-
sions, and practical uses of the model.
1) Identified limitations
The main drawback lies in the sensitivity of instantaneous Hurst parameter
H(t) estimation to market microstructures and high-frequency data, which may
cause instability in empirical fitting techniques.
2) Theoretical extensions
Two main directions emerge for improving the model:
* Combining with jump processes to better capture sudden market fluctuations.
* Linking mBm with rough volatility models (where H (t)<0.1 locally) to pro-
vide a more precise description of volatility.
Developing advanced numerical approaches for option pricing also represents
a crucial extension.
3) Practical perspectives
On a practical level, the mBm model offers considerable potential for:
* A more robust risk management approach, notably for VaR and Expected Short-
fall (ES).
* Identifying early warning signals of financial crises through the analysis of
H(t) fluctuations.
* Incorporating deep learning structures for real-time estimation and forecast-
ing of H(t).
Several promising research avenues arise from this study:
* Developing more efficient estimation methods to make the model more user-
friendly.
* Extending the model to the multivariate case to better capture relationships
between financial assets.
* Applying the results to pricing exotic options and structured products as a nat-
ural field of application.
* Coupling machine learning with the model to forecast H(t) would extend
its analytical rigor with predictive power.
* Further investigation of its mathematical properties, including stochastic cal-
culus and limit theorems, would strengthen its theoretical foundations.
The mBm model represents a unifying framework encompassing both rough
volatility (low H ) and long-memory (high H ) models. Its flexibility allows for
a better modeling of stylized market facts. The major challenges remain: develop-

ing robust H(t) estimators, multivariate extensions, hybridization with ma-
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chine learning, and applications to exotic option pricing.

Future research, especially those integrating machine learning and artificial in-
telligence, promises to significantly expand the scope of this model while over-
coming its current computational challenges.

* Integration of Al and Machine Learning: Combining the ability of mBm to
generate credible market data with AI's power to identify complex patterns,
optimizing forecasts and early crisis detection.

* Proactive financial regulation: Developing scalable stress tests and systemic
monitoring tools based on multifractal characteristics for more preventive and
adaptive regulation.

* Adaptive portfolio management: Designing investment strategies that auto-
matically adjust to market regime shifts detected by real-time multifractal anal-
ysis.

* Computational challenges and quantum computing: Overcoming current
computational limitations through algorithmic optimization and exploring
quantum computing for large-scale simulations and optimizations.

Thus, the multifractional Brownian motion paves the way toward a more robust,
precise, and adaptive finance. Its large-scale implementation will require strong
interdisciplinary collaboration at the intersection of mathematics, physics, and

computer science.

10. Conclusions

The mathematical foundations of mBm [3] [5] [6] [11] and its connections to
modern volatility modeling [12] [13] establish it as a rigorous framework for finan-
cial applications. Future research should build upon recent advances in estimation
techniques [8] [9] and applications to high-frequency data [10] [17].

Multifractional Brownian motion (mBm) constitutes a significant breakthrough
in contemporary financial modeling. Its ability to capture time-varying long memory,
the multifractal structure of markets, and reproduce empirically observed com-
plex dynamics makes it a powerful tool. The results obtained, both visual and nu-
merical, demonstrate its superiority for price modeling, risk evaluation, and de-
tection of market regime shifts.

The potential applications of mBm in quantitative finance are vast, covering
portfolio optimization, institutional risk measurement, the design of algorithmic

trading strategies, and the development of a more robust regulatory framework.
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