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Abstract 
This article proposes an innovative method for modeling financial markets 
using multifractional Brownian motion (mBm). Unlike traditional fractional 
Brownian motion, mBm offers variable local memory, providing a more accu-
rate representation of the multifractal volatility and long-range dependencies 
found in financial time series. We present a precise mathematical formulation 
of mBm, sophisticated techniques for estimating the Hurst function, efficient 
numerical simulation algorithms, and a detailed empirical study covering sev-
eral major stock indices. The results indicate that mBm more accurately re-
flects price dynamics, significantly improves risk analysis, and provides more 
precise pricing of exotic options compared to traditional models. 
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1. Introduction 

Financial markets exhibit complex movements characterized by periods of tran-
quility and unexpected upheavals, volatility clustering, and non-stationary long-
range dependencies. Traditional models such as Black-Scholes, standard Brown-
ian motion, or even fractional Brownian motion with constant Hurst exponent 
fail to fully capture these phenomena, particularly the variable long memory and 
multifractal structure that characterize financial returns [1] [2]. 

The objective of this article is to employ multifractional Brownian motion (mBm) 
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to represent financial series with variable local memory [3] [4]. The mBm model 
allows for adjusting the Hurst index ( )H t  over time, providing a more faithful 
representation of fluctuating volatility phases [5]. This approach is particularly 
suitable for volatility modeling, risk management, exotic option pricing, and early 
detection of financial crises. 

To establish our approach on theoretical foundations and highlight the limita-
tions of existing models addressed by mBm, we begin with a review of fundamen-
tal concepts of long memory and fractional and multifractional Brownian pro-
cesses. 

2. Theoretical Background 
2.1. Long Memory and Financial Time Series 

A time series is said to have long memory if its autocorrelation decays hyperboli-
cally rather than exponentially. In finance, this means that returns or volatilities 
are correlated over long periods, which has significant implications for forecasting 
and risk management. 

Formally, a process ( )X t  is said to have long memory if its autocovariance 
function ( )hγ  satisfies: 

( ) ( ) 2 2~ asHh L h h hγ − →∞  

where ( )L h  is a slowly varying function and H  is the Hurst exponent in the 
interval ( )0.5,1 . 

2.2. Fractional Brownian Motion (fBm) 

The centered Gaussian process ( )HB t , with H  in the interval ( )0,1 , is an fBm 
with covariance defined as [1] [6]: 

( ) ( ) ( )2 2 21
2

H H HH HE B t B s t s t s  = + − −   

Key characteristics: 
 0.5H = : standard Brownian motion (process with independent increments). 
 0.5H > : persistent dependence (long memory effect). 
 0.5H < : anti-persistent dependence (increased mean reversion). 
 Self-similarity: ( ) ( )dH H HB at a B t=  for all 0a > . 
 Stationary increments. 

3. Multifractional Brownian Motion (mBm) 
Multifractional Brownian motion (mBm) extends fractional Brownian motion 
(fBm) by allowing the Hurst exponent H  to vary over time [3]-[5]. It is denoted 

( ) ( )HB t⋅  for 0t ≥ . 

Formal Definition 
By Stochastic Integral 
The canonical definition of mBm is given by the following stochastic integral: 
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( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

0 1 2 1 2

1 2

0

1 d
1 2

d

H t H tH t

H tt

B t t s s W s
H t

t s W s

− −

−

−

∞
= − − −Γ +

+ − 

∫

∫
 (1) 

where: 
 ( )Γ ⋅  denotes Euler’s Gamma function. 
 ( ) ( ): 0,1H t + →  is the instantaneous Hurst function. 
 ( )W s  is a standard Brownian motion. 

To ensure the existence and continuity of the trajectories of multifractional 
Brownian motion, the instantaneous Hurst function ( )H t  must satisfy: 
 Value condition: ( ) ( )0,1H t ∈  for all 0t ≥ .  
 Hölder condition: 0C∃ > , ( )supt H tβ >  such that  

( ) ( )H t H s C t s β− ≤ − . 

 Uniform boundedness: ( )min max0 1H H t H< ≤ ≤ < .  
Under these assumptions, the trajectories of mBm are almost surely continuous, 

with local regularity governed by ( )H t . 

4. Key Characteristics of Multifractional Brownian Motion 

4.1. Intuitive Interpretation of the Hurst Exponent ( )H t  

Consider ( )H t  as the “mode” or “mood” of the market at time t : 
 ( ) 0.5H t >  (Calm & Trending Market): 
- Behavior: Persistence. The market has “memory”. An upward movement 

tends to be followed by another upward movement, a downward movement 
by another downward movement. The trend persists. 

- Analogy: Walking in a straight line on the beach. 
 ( ) 0.5H t =  (Standard Random Market): 
- Behavior: Random walk. No memory. Past movements do not predict future 

movements. 
- Analogy: Moving erratically without purpose (random walk). 
 ( ) 0.5H t <  (Agitated & Erratic Market): 
- Behavior: Anti-persistence. The market “corrects itself”. An upward move-

ment is frequently followed by a downward movement (mean reversion) or 
vice versa. High volatility. 

- Analogy: Constantly zigzagging, correcting trajectory to avoid obstacles. 
Innovation of the mBm model: ( )H t  is not fixed; it evolves over time. Thus, 

we can model a market that naturally transitions from calm, directional phases 
( 0.5H > ) to turbulent, nervous phases ( 0.5H < ); this represents a much more 
realistic modeling of financial dynamics. 

Multifractional Brownian motion (mBm) extends standard Brownian motion 
by allowing the Hurst exponent ( )H t  to be time-dependent. This change makes 
the roughness of the process unstable over time and provides the degree of free-
dom needed to better model many natural phenomena. 
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4.2. Local Variance 

The instantaneous variance of the process at time t  is of the order ( )2H tt . The 
volatility at a given time thus depends on both time t  and the value of the Hurst 
exponent ( )H t . If ( )H t  is large, then the local volatility increases more rapidly. 

4.3. Local Self-Similarity 

Considering a zoom around a given point t  (at the infinitesimal scale “ 0ε → ”), 
the recentered and renormalized process is similar in law to a fractional Brownian 
motion (fBm) with fixed parameter ( )H t . Locally, mBm therefore has a fractal 
structure corresponding to the instantaneous value ( )H t . 

4.4. Regularity of Trajectories 

The continuity of trajectories is ensured by sufficient regularity of the function 
( )H t . If ( )H t  is Hölder continuous with exponent β  strictly greater than the 

supremum of ( )H t , then the trajectories are almost surely continuous. In prac-
tice, this means not perturbing the evolution of ( )H t  too much over time. 

4.5. Non-Stationarity of Increments 

The increments of mBm have different properties from those of fBm: they are 
non-stationary, their statistical properties (such as variance) vary over time. This 
non-stationarity allows for the description of phenomena such as volatility clus-
tering that are frequently found in finance where phases of high turbulence tend 
to persist. 

4.6. Multifractality 

mBm has a rich structure of local scalings, which can be studied using multifractal 
tools (e.g., spectrum of singularities), making it a suitable model for describing 
complex systems with intermittency [2] [7]. 

5. Simulation and Estimation Methods for mBm 

Recent advances in estimation techniques [8] [9] and simulation methods [10] [11] 
have made mBm more accessible for financial applications. 

5.1. Estimation of the Hurst Function ( )H t  

Various methods allow for local estimation of the Hurst exponent: 

5.1.1. Wavelet Estimation 
This technique relies on the wavelet transform which quantifies local regularity. 
Let ψ  be a mother wavelet and ( ),Xd j k  the wavelet coefficients of process 
X . We observe that: 

( ) ( )( )2 2 1, ~ 2 with 2kj H t j
X kd j k C t k− 

 
⋅ =


  

Estimation of ( )H t  is performed by logarithmic regression on these coeffi-
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cients. 

5.1.2. Estimation by Local Variance 
This method determines the Hurst exponent from the evaluation of an iterative 
calculation module based on a sliding window centered at time t :  

( ) ( )
( )2
21 lo

2 ˆg
V̂

H t
V

δ
δ

 
=   

 
 

where ( )V̂ δ  corresponds to the variance of increments at scale δ . 

5.1.3. Local Maximum Likelihood 
A statistically optimal method for Gaussian processes but computationally inten-
sive. It operates within a parametric advancement of ( )H t  within a sliding win-
dow. 

5.1.4. Multifractal Methods 
We aim to reconstruct the distribution of local singularities from the multifractal 
spectrum. 

5.2. Simulation of mBm 
5.2.1. Discretization of the Stochastic Integral 
Direct methods, costly (complexity ( )2O n ) involving discretization of the inte-
gral definition of the process. 

5.2.2. Spectral Method 
We adopt an approach through Fourier transform where the process is generated 
by its coordinates in the spectral domain. 

5.2.3. Recursive Algorithm 
In another efficient approach, we exploit the Markovian structure of our process 
by stochastic ascent. 

5.3. Comparison of Simulation Methods and Limitations 

Summary of simulation methods and limitations in high frequency: 
Regarding simulation methods, we can distinguish: 

 Direct discretization, which is exact but very complex to implement (cost O(N2)), 
making it unsuitable for long series;  

 A spectral method using FFT, which is efficient (O(NlogN)) but provides a less 
accurate approximation for simulating H(t); 

 Recursive approximation algorithms, which offer a good balance (O(N3/2)) but 
remain complex to implement.  

We observe limitations not only in their implementation cost for high-fre-
quency data: 
 sequential methods are very slow due to the millions of observations used; 
 estimation of H(t) at a fine time scale is difficult to obtain; 
 microstructural effects, such as jumps, asynchrony, bias the estimation of H(∙) 
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in practice; 
 ultra-rapid variation of H(t) is difficult to model and capture; 
 in multivariate settings, complexity becomes explosive. 

Perspectives to overcome these limitations would include promoting multi-
scale methods, the need for hybridization with jump processes, but also deep 
learning, and high-performance computing (Table 1). 
 
Table 1. Synthesis of the comparison of mBm simulation methods. 

Method Time Complexity Memory Complexity Precision 

Direct Discretization ( )2O N  ( )2O N  Excellent 

Spectral Method (FFT) ( )logO N N  ( )O N  Good 

Recursive Algorithm ( )3 2O N  ( )3 2O N  Very Good 

 
We now have all the methodological tools at our disposal to simulate the pro-

cess ( ) ( )( )H tB t  and estimate the function ( )( )H t  on empirical data to build a 
complete financial valuation model. We establish an asset price dynamics incor-
porating mBm and examine its implications for valuation and risk management. 

6. Pricing Model Based on Multifractional Brownian Motion 

mBm, or multifractional Brownian motion, offers a more adaptable representa-
tion of financial prices than classical Brownian motion, allowing for local varia-
bility through the Hurst exponent ( )H t . 

6.1. Main Equation 

The initial model is as follows: 

( )d d d H tt
t

t

S t B
S

µ σ= +  

where: 
 tS : asset value at time t . 
 µ : average rate of return (drift). 
 σ : constant volatility. 
 ( )H t

tB : a multifractional Brownian motion. 

6.2. Exponential Form 

This equation has the solution: 

( ) ( )22
0

1exp
2

H t H t
t tS S t t Bµ σ σ = − + 

 
 

This version extends the Black-Scholes model by incorporating long memory 
and regular variability through ( )H t . 

6.3. Proof of Exponential Form 

For the initial model using multifractional Brownian motion: 
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( )d d d H t
t t t tS S t S Bµ σ= +  

Let ( ) lnt tf S S= . The derivatives are: 

( ) ( ) 2
1 1,t t

t t

f S f S
S S

′ ′′= = −  

The differential of ln tS  is: 

( ) ( )2

2

dd 1d ln
2

tt
t

t t

SSS
S S

= −  

Substitute ( )d d d H t
t t t tS S t S Bµ σ= + : 

( )
( ) ( )( )2

2

d dd d 1d ln
2

H tH t
t t tt t t

t
t t

S t S BS t S BS
S S

µ σµ σ ++
= −  

Simplify: 

( ) ( ) ( )( )221d ln d d d
2

H t H t
t t tS t B Bµ σ σ= + −  

For multifractional Brownian motion, the quadratic variance is: 

( )( ) ( ) ( )2 2d d H tH t
tB t=  

Thus: 

( ) ( ) ( ) ( )221d ln d d d
2

H tH t
t tS t B tµ σ σ= + −  

Integrate from 0 to t : 

( ) ( ) ( ) ( )22
0 0 0 0

1d ln d d d
2

H uH u
u u

t t t t
S u B uµ σ σ= + −∫ ∫ ∫ ∫  

Which gives: 

( ) ( )22
0

1ln ln
2

H t H t
t tS S t B tµ σ σ− = + −  

Hence the exponential solution: 

( ) ( )22
0

1exp
2

H t H t
t tS S t B tµ σ σ = + − 

 
 

7. Model with Stochastic Volatility 

To capture the phenomenon of volatility clustering, we combine mBm with a sto-
chastic volatility model. This combined model was implemented in our empirical 
tests to ensure a fair comparison against GARCH models. 

( )

( )
d d d
d d d

H t
t t t t t

t t t t

S S t S B
t W

µ σ
σ κ θ σ ξσ

 = +


= − +
 

where: 
 tσ : stochastic volatility process. 
 κ : mean reversion rate. 
 θ : long-term volatility level. 
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 ξ : volatility of volatility. 
 tW : standard Wiener process (potentially correlated with ( )H t

tB ). 

7.1. Adjusted Risk Measures 
7.1.1. Conditional Value at Risk 
The Value at Risk at confidence level α  is then: 

( ) ( ) ( )( )2 1VaR exp 1 1H t
tt S t tα µ σ α− = ∆ + ∆ Φ − −  

 

where 1−Φ  represents the inverse of the standard normal quantile function. 

7.1.2. Expected Shortfall 
The coherent risk measure, Expected Shortfall, is formulated as: 

( ) ( )
0

1ES VaR dut t u
α

α α
= ∫  

This method captures the extreme aspect of the loss distribution beyond the 
VaR level. 

7.2. Benefits of the mBm Approach 

 Flexibility: ( )H t  allows adjusting the process regularity according to market 
conditions. 

 Long Memory: captures long-range dependencies observed empirically. 
 Variable Volatility Modeling: represents calm and turbulent phases. 
 Faithful Representation: allows a more faithful representation of tail distribu-

tions. 

7.3. Proof of the Model with Stochastic Volatility 

For the system: 

( )

( )
d d d
d d d

H t
t t t t t

t t t t

S S t S B
t W

µ σ
σ κ θ σ ξσ

 = +


= − +
 

The demonstration requires a more sophisticated method since volatility tσ  
is itself a random process. 

7.3.1. Volatility Formula 
The formula for tσ  represents a geometric Ornstein-Uhlenbeck type process: 

( )d d dt t t tt Wσ κ θ σ ξσ= − +  

This equation has an explicit solution. Let lnt tY σ= . Applying Itô’s lemma: 

( )

( )

2

2

2

dd 1d
2

d 1d d
2

tt
t

t t

t
t

t

Y

t
W t

σσ
σ σ

κ θ σ
ξ ξ

σ

= −

−
= + −

 

This equation can be solved numerically. 
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7.3.2. Pricing Equation 
With tσ  stochastic, the price tS  now follows a stochastic process: 

( )d d d H t
t t t t tS S t S Bµ σ= +  

Reusing Itô’s lemma for ln tS : 

( ) ( )

( ) ( ) ( )

2

2

22

dd 1d ln
2

1d d d
2

tt
t

t t

H tH t
t t t

SSS
S S

t B tµ σ σ

= −

= + −

 

Integration yields: 

( ) ( ) ( )22
0 0 0

1ln ln d d
2

H uH u
t u u u

t t
S S t B uµ σ σ= + + −∫ ∫  

Unlike before, the presence of stochastic tσ  prevents a closed-form solution. 
The solution must be approximated numerically using discretization techniques 
such as Euler-Maruyama. 

7.3.3. Joint Simulation 
To simulate the system, we discretize time and apply an approximation method: 

( )
( ) ( ) ( )221exp

2

t t t t t t

H tH t
t t t t t t

t W

S S t B t

σ σ κ θ σ ξσ

µ σ σ

+∆

+∆

 = + − ∆ + ∆

  = ∆ + ∆ − ∆   

 

where Δ tW  and ( )Δ H t
tB  are correlated increments of Brownian motions. 

This model captures both long memory through ( )H t  and volatility analysis 
through the stochastic model tσ , thus providing a more faithful illustration of 
financial markets. 

Theoretical Links and Comparisons 
Link to Rough Volatility 
The rough volatility model [12] [13] could appear as a special case of mBm with 

a constant and low ( )H t  function ( 0.1H ≈ ), insofar as both approaches model 
the roughness of trajectories, but mBm goes further by allowing memory to vary 
according to market regimes. 

Comparison with Fractional Models 
mBm is by definition non-stationary (unlike fBm which relies on a constant 

Hurst exponent), which allows it to better account for market regime changes. 
Link with Multifractal Models 
mBm shares with multifractal models [2] [7] the idea of variable local regularity, 

with the advantage of a continuous formulation and Gaussian dependence that 
gives it better mathematical tractability [14]. 

8. Empirical Study 
8.1. Data and Methodology 

The objective of this empirical research is to analyze the effectiveness of the mul-
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tifractional Brownian motion (mBm) model for modeling and forecasting returns 
of major stock indices. The study focuses on four key indicators of the global econ-
omy: 
 S&P 500 (United States). 
 CAC 40 (France). 
 Nikkei 225 (Japan). 
 DAX (Germany). 

These indices were selected as they represent major developed markets across 
different geographical regions (North America, Europe, and Asia), providing a 
comprehensive view of global financial dynamics. The findings are expected to 
generalize to other liquid equity markets with similar characteristics. 

Covering the period from 2000 to 2023. 
The approach used relies on a multi-phase methodology: 
1) Estimation of the Hölder exponent function ( )H t  using wavelet analysis 

on sliding windows of 250 business days. This window size was chosen as it rep-
resents approximately one trading year, providing sufficient data points for robust 
estimation while being short enough to capture meaningful market regime shifts 
[15] [16]. 

2) Modeling of price trajectories using the mBm model, including the combined 
stochastic volatility model described in Section 8. 

3) Comparison with GARCH(1, 1), fBm, and standard Brownian motion mod-
els. 

4) Performance evaluation using statistical indicators such as RMSE, MAE, and 
log-likelihood.  

8.2. Statistical Tests and Validation 

To verify our findings, we conducted numerous tests on the residuals of the vari-
ous models. 

8.2.1. Autocorrelation Test (Ljung-Box) 

( ) ( ) ( )2

1
2

ˆh

k

k
Q h n n

n k
ρ

=

= +
−∑  

where ( )ˆ kρ  is the autocorrelation of order k  of the residuals. 

8.2.2. Unit Root Tests 
Unit root tests (ADF—Augmented Dickey-Fuller and KPSS) allow checking the 
stationarity of the series: 
 ADF test: Null hypothesis—presence of a unit root (non-stationary series). 
 KPSS test: Null hypothesis—absence of a unit root (stationary series). 

8.2.3. Confidence Intervals for Performance Measures 
95% confidence intervals for RMSE and MAE were obtained by Bootstrap with 
1000 resamplings. The confidence interval for RMSE is given by the following for-
mula: 
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( ) ( )95% 0.975 0.975
ˆ ˆ ˆ, ˆCI z SE z SEθ θ θ θ = − ⋅ + ⋅   

where θ̂  is the estimate of RMSE or MAE, 0.975z  is the 97.5% quantile of the 
normal distribution, and ( )ˆSE θ  is the standard error estimated by bootstrap. 

8.3. Results and Analysis 

 For the Ljung-Box test: a p-value > 0.05 indicates no significant autocorrela-
tion. 

 For the ADF test: a p-value < 0.05 rejects the presence of a unit root (station-
arity). 

 For the KPSS test: a p-value > 0.05 does not reject stationarity. 
 

Table 2. Comparative performance of models (S&P 500). 

Model RMSE [CI 95%] MAE [CI 95%] Log-lik. VaR (95%) 

Brownian 0.152 [0.148, 0.156] 0.118 [0.115, 0.121] 1256.3 89.2% 

fBm (constant H) 0.138 [0.134, 0.142] 0.105 [0.102, 0.108] 1324.7 92.1% 

GARCH 0.126 [0.122, 0.130] 0.097 [0.094, 0.100] 1389.5 94.3% 

mBm 0.109 [0.106, 0.112] 0.086 [0.083, 0.089] 1452.8 95.7% 

 
Table 3. Results of statistical tests on model residuals (S&P 500). 

Model 
Ljung-Box (p-value) 

ADF (p-value) KPSS (p-value) 
Lag 5 Lag 10 

Standard Brownian 0.023 0.041 0.152 0.032 

fBm (constant H) 0.087 0.125 0.043 0.215 

GARCH(1, 1) 0.254 0.318 0.008 0.467 

mBm (our model) 0.512 0.603 0.003 0.721 

 
Table 2 summarizes the comparative results of the different models. Our mBm 

model largely dominates all benchmark approaches across all metrics. Non-over-
lapping confidence intervals allow us to assert the significance of these differences. 

The results of statistical tests performed on the residuals are presented in Table 
3: 
 The mBm model is the only one that shows no significant autocorrelation in 

its residuals (Ljung-Box p-values > 0.05). 
 Unit root tests demonstrate that the residuals of the mBm model are stationary 

(ADF p-value < 0.05, KPSS p-value > 0.05). 
 Other models show residual autocorrelations and/or non-stationarity prob-

lems. 
These observations attest that the mBm model more effectively captures the 

data structure and generates residuals that adhere to the essential assumptions of 
time series models. 
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8.4. Results Obtained 

The results highlight the predominance of the mBm model in identifying the es-
sential characteristics of financial series: 
 Estimation of ( )H t : The Hölder exponent fluctuates considerably over time, 

typically between 0.4 and 0.7, indicating medium-term persistence. 
 Forecast accuracy: The mBm model outperforms traditional techniques by 

reducing RMSE by 15% - 25% depending on the index considered. 
 Data fit: The mBm model consistently shows higher log-likelihood, attesting 

to its better concordance with observed distributions. 

8.5. Implementation in Risk Management 

We calculated risk indicators VaR and ES for an equally weighted portfolio of the 
four indices. The conclusions indicate that: 

mBm GARCH standard
99% 99% 99%

mBm GARCH standard
99% 99% 99%

VaR VaR VaR

ES ES ES

< <

< <
 

The mBm model demonstrates a more accurate representation of extreme 
losses, particularly during crisis periods (such as the 2008 financial crisis and 
COVID-19). Figure 1 demonstrates this predominance during market stress pe-
riods. 
 

 
Figure 1. Comparison of the evolution of VaR and Expected Shortfall (99%) during the 
COVID-19 crisis. 

 
The chart above shows the simultaneous progression of Value at Risk (VaR) 

and Expected Shortfall (ES) at a 99% confidence level during the COVID-19 crisis. 
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A notable increase in these two financial risk indicators is observed at the onset of 
the pandemic, illustrating the growing uncertainty and volatility in financial mar-
kets. Expected Shortfall, being a more conservative measure than VaR, generally 
shows higher values, highlighting its ability to more accurately capture risks re-
lated to distribution extremes. This comparison is particularly appropriate in 
times of crisis, when distribution extremes are essential for risk assessment. 
 

 
Figure 2. Time evolution of the local Hurst exponent ( )H t  estimated by the wavelet 

method for the S&P 500 index (2010-2023). 

 
Integrated analysis of visual results 
Analysis of price trajectories 
The figure comparing price trajectories highlights the ability of the mBm model 

to reproduce observed market dynamics, particularly its capacity to capture vola-
tility clustering, typical of financial markets where periods of high volatility tend 
to aggregate. The mBm model can illustrate this phenomenon, unlike the standard 
model which shows a much smoother volatility pattern and is less consistent with 
market mechanisms. 

Analysis of the local Hurst exponent 
As shown in Figure 2, the time evolution of the local Hurst exponent clearly 

highlights alternating persistent and anti-persistent phases, confirming the mul-
tifractional behavior of financial markets. The figure of the local Hurst exponent’s 
evolution points to the multifractional nature of financial markets. Indeed, the 
Hurst exponent varies significantly over time, ranging from persistent phases 
( 0.5H > ), favoring trend continuation, to anti-persistent phases ( 0.5H < ), 
where prices tend to revert to their mean. This temporal variability explains why 
the mBm model, with a time-varying Hurst exponent, provides better results than 
constant-Hurst models. 

Link with numerical results 
The superior accuracy of the mBm model (lower RMSE and MAE) stems from 

its ability to reproduce volatility clustering, as observed in the price trajectory fig-
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ure. The same goes for its higher log-likelihood and better VaR coverage, due to 
its ability to capture the time evolution of market persistence, as evidenced by the 
temporal evolution of the Hurst exponent. 

Consequences for financial modeling 
This dual approach proves that financial modeling is better suited when ac-

counting for two key phenomena: volatility clustering and the time evolution of 
market persistence. Since mBm incorporates both, it is a better reflection of com-
plex market dynamics, naturally justifying its use in advanced applications of risk 
management and option pricing. 

8.6. Conclusion of the Empirical Analysis 

The empirical analysis confirms the relevance of the mBm model for financial 
modeling: 
 Better capture of long memory and local variability. 
 More accurate estimation of extreme risks. 
 Adaptive flexibility to different market conditions. 
 Superior performance during turbulent periods. 

These results support the adoption of the multifractional Brownian motion 
model for risk management applications and option pricing in financial markets. 

9. Application to Risk Management and Discussion 

Recent applications of multifractal approaches in risk management [7] [17] and 
the growing literature on rough volatility models [12] [13] provide strong theo-
retical support for the mBm framework. 

9.1. Application to Risk Management 

The graphical results obtained from the previous figures have a direct application 
in the field of risk management. Our analysis shows that the mBm model, through 
its ability to better capture volatility clustering and time-varying persistence, al-
lows for a more accurate evaluation of risk measures such as Value at Risk (VaR) 
and Expected Shortfall (ES), particularly during financial crises when traditional 
models tend to underestimate extreme risks. 

9.2. Strengths of the mBm Model 

The superiority of the mBm model lies in several fundamental advantages: on the 
one hand, it effectively captures local memory variability and the non-stationarity 
inherent in financial markets, as shown by the time evolution of the Hurst expo-
nent; on the other hand, its adaptive flexibility enables it to handle different mar-
ket regimes—calm phases or extreme turbulence—leading to better data fitting and 
improved risk measures, confirming its practical power for financial institutions. 

9.3. Limitations and Current Challenges 

The Markovian modeling in bilateral form of the mBm presents some challenges. 
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Although the mBm achieves superior performance, the complexity of its estima-
tion and simulation procedures constitutes a practical obstacle. The choice of es-
timation window sizes strongly influences the results and requires careful calibra-
tion. Furthermore, high-frequency estimation remains problematic, and potential 
arbitrage issues arise in pricing applications. 

9.4. Discussion and Future Research Perspectives 

This research raises several considerations regarding limitations, potential exten-
sions, and practical uses of the model. 

1) Identified limitations 
The main drawback lies in the sensitivity of instantaneous Hurst parameter 
( )H t  estimation to market microstructures and high-frequency data, which may 

cause instability in empirical fitting techniques. 
2) Theoretical extensions 
Two main directions emerge for improving the model:  

 Combining with jump processes to better capture sudden market fluctuations. 
 Linking mBm with rough volatility models (where ( ) 0.1H t <  locally) to pro-

vide a more precise description of volatility. 
Developing advanced numerical approaches for option pricing also represents 

a crucial extension. 
3) Practical perspectives 
On a practical level, the mBm model offers considerable potential for: 

 A more robust risk management approach, notably for VaR and Expected Short-
fall (ES). 

 Identifying early warning signals of financial crises through the analysis of 
( )H t  fluctuations. 

 Incorporating deep learning structures for real-time estimation and forecast-
ing of ( )H t .  

Several promising research avenues arise from this study: 
 Developing more efficient estimation methods to make the model more user-

friendly. 
 Extending the model to the multivariate case to better capture relationships 

between financial assets. 
 Applying the results to pricing exotic options and structured products as a nat-

ural field of application. 
 Coupling machine learning with the model to forecast ( )H t  would extend 

its analytical rigor with predictive power. 
 Further investigation of its mathematical properties, including stochastic cal-

culus and limit theorems, would strengthen its theoretical foundations.  
The mBm model represents a unifying framework encompassing both rough 

volatility (low H ) and long-memory (high H ) models. Its flexibility allows for 
a better modeling of stylized market facts. The major challenges remain: develop-
ing robust ( )H t  estimators, multivariate extensions, hybridization with ma-
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chine learning, and applications to exotic option pricing. 
Future research, especially those integrating machine learning and artificial in-

telligence, promises to significantly expand the scope of this model while over-
coming its current computational challenges. 
 Integration of AI and Machine Learning: Combining the ability of mBm to 

generate credible market data with AI’s power to identify complex patterns, 
optimizing forecasts and early crisis detection.  

 Proactive financial regulation: Developing scalable stress tests and systemic 
monitoring tools based on multifractal characteristics for more preventive and 
adaptive regulation. 

 Adaptive portfolio management: Designing investment strategies that auto-
matically adjust to market regime shifts detected by real-time multifractal anal-
ysis.  

 Computational challenges and quantum computing: Overcoming current 
computational limitations through algorithmic optimization and exploring 
quantum computing for large-scale simulations and optimizations.  

Thus, the multifractional Brownian motion paves the way toward a more robust, 
precise, and adaptive finance. Its large-scale implementation will require strong 
interdisciplinary collaboration at the intersection of mathematics, physics, and 
computer science. 

10. Conclusions 

The mathematical foundations of mBm [3] [5] [6] [11] and its connections to 
modern volatility modeling [12] [13] establish it as a rigorous framework for finan-
cial applications. Future research should build upon recent advances in estimation 
techniques [8] [9] and applications to high-frequency data [10] [17]. 

Multifractional Brownian motion (mBm) constitutes a significant breakthrough 
in contemporary financial modeling. Its ability to capture time-varying long memory, 
the multifractal structure of markets, and reproduce empirically observed com-
plex dynamics makes it a powerful tool. The results obtained, both visual and nu-
merical, demonstrate its superiority for price modeling, risk evaluation, and de-
tection of market regime shifts. 

The potential applications of mBm in quantitative finance are vast, covering 
portfolio optimization, institutional risk measurement, the design of algorithmic 
trading strategies, and the development of a more robust regulatory framework. 
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