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Abstract 
In the study of radius of curvature differential equations, a generalized closed-
form analytical solution to the curve function ( )y x  in a rectangular 2D Car-
tesian plane is determined under the assumption that the radius of curvature 
function and initial conditions are known, specified quantities. Various math-
ematical examples are provided to demonstrate the validity of the differential 
equation solution. A more comprehensive application is then shown regard-
ing a regular wedge cam mechanism design associated with three-point self-
centering motion for its potential use when optimizing cam characteristics and 
associated machinery design related to curvature.  
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1. Introduction 

The study of curvature in geometry and its relationship with differential equations 
is a central topic in both pure and applied mathematics. One of the fundamental 
measures in the analysis of curves is the radius of curvature, which quantifies how 
sharply a curve bends at a given point. Understanding and calculating the radius 
of curvature plays an important role in various fields, such as mechanics, physics, 
computer graphics, and engineering. Analytical solutions to the differential equa-
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tions governing the radius of curvature are vital in many contexts, providing a 
more precise understanding of the behavior of curves in different systems. 

Finding analytical solutions to the differential equations governing the radius 
of curvature can be challenging, especially when the curve is defined by non-trivial 
functions. In many cases, solving these equations requires advanced calculus meth-
ods, including integration and series expansions. For example, for simple curves 
such as parabolas or circles, exact solutions for the radius of curvature are relatively 
straightforward. However, numerical methods or approximation techniques are 
often employed for more complex curves, such as those governed by transcenden-
tal functions. 

Further details regarding its application uses are discussed. In mechanics, the 
radius of curvature is essential for analyzing the motion of particles and rigid bod-
ies. The force exerted on an object moving along a curved path, such as a car on a 
road, depends on the radius of curvature, as it directly influences the acceleration 
due to centripetal force. Analytical expressions for the radius of curvature allow 
engineers to calculate the forces acting on objects in curved motion [1]. 

Additionally, in structural engineering, the radius of curvature is used to ana-
lyze the behavior of beams and arches. The curvature of structural elements affects 
the distribution of stress and strain, and understanding these effects is vital for 
designing safe and efficient structures. For example, the bending of beams can be 
modeled using the relationship between curvature and applied loads, where the 
radius of curvature varies with position along the beam [2]. By solving the corre-
sponding differential equations, which may be as much as fourth-order Euler-Ber-
noulli PDEs, engineers can determine the stresses in structures under bending. 

Furthermore, in computer graphics and geometric modeling, the radius of cur-
vature is used in the design of smooth curves and surfaces, particularly in appli-
cations involving Computer-Aided Design (CAD) and animation. Curves such as 
Bézier curves and B-splines are often used to model smooth shapes, where the ra-
dius of curvature is critical for ensuring the smoothness and visual appeal of the 
modeled object [3]. In such applications, analytical solutions are often employed 
to ensure that the radius of curvature meets certain aesthetic or functional criteria. 

Moreover, in robotics, particularly in motion planning, the radius of curvature 
plays an important role in path planning and trajectory design. Robots are required 
to follow smooth and efficient paths that avoid obstacles while minimizing energy 
consumption or time. Analytical and numerical methods to compute the radius 
of curvature are essential for designing these paths, ensuring that the robot follows 
a trajectory that is both feasible and efficient [4]. 

Despite the importance of the radius of curvature in various fields, challenges 
remain in finding exact analytical solutions for complex curves. In particular, 
curves described by high-degree polynomials or transcendental functions often 
do not have simple closed-form solutions, making numerical methods indispen-
sable. As computational power continues to grow, the development of more effi-
cient numerical methods, such as Finite Element Analysis (FEA) and computa-
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tional geometry techniques, is expected to lead to further advances in the accuracy 
and applicability of curvature analysis in real-world problems [5]. 

As such, we examine the radius of curvature in differential equation form, spe-
cifically for general curves in the rectangular 2D Cartesian plane framework. A 
general closed-form curve function solution for all possible curves in this frame-
work is determined by solving the associated nonlinear second-order nonhomo-
geneous ordinary differential equation. However, there are some cases where Simp-
son’s rule may be used to determine the singular and/or nested integrals. Never-
theless, each curve can be found successfully by using the provided exact general 
solution and Simpson’s equations, which eliminates the common requirement for 
different methods or approaches to find the curve solution analytically. In sum-
mary, we present: 1) a fully generalized closed-form analytical solution, 2) anti-
derivative approximations by Simpson’s rule, 3) mathematical validation exam-
ples with semicircles, parabolas, and transcendental functions, and 4) application 
to a self-centering regular wedge cam contour solution in rectangular form based 
on the radius of curvature. 

2. Methodology 
2.1. Generalized Closed-Form Analytical Curve Function Solution 

For a curve ( )y x  in the rectangular 2D Cartesian plane, the radius of curvature 
( )rcr x  of a circle that best approximates the curve at any point can be defined by: 

 ( )
( )( )
( )

3 221
,rc

y x
r x

y x

+
=

′′

′
 (1) 

where ( )y x′  is the first derivative (slope) and ( )y x′′  is the second derivative 
(curvature) [6]. This formula provides an explicit relationship between the geom-
etry of the curve and its curvature. 

For other types of curves, such as those described parametrically or in multiple 
dimensions, the formula for ( )rcr x  can be extended to account for the general 
form of the curve [7]. The radius of curvature for more complex curves, such as 
space curves or those in multiple dimensions, is defined through the Frenet-Serret 
formulas, which describe the behavior of the tangent vector, normal vector, and 
binormal vector along the curve [8]. These formulas yield a system of differential 
equations that can be solved to obtain the radius of curvature in higher-dimen-
sional settings [9]. 

Moreover, the radius of curvature is a fundamental concept that arises naturally 
in differential geometry, where the curvature of a curve ( )xκ  is defined as the 
reciprocal of the radius ( ( )1 rcr x ) to measure the convergence/divergence of the 
approximate circle from the actual curve. In this research, the area under the cur-
vature’s curve in variation with the spatial coordinate x  will be used and is de-
noted as ( )A xκ . 

 ( ) ( )dA x x xκ κ= ∫  (2) 
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Under the assumption that the radius of curvature is known, Equation (1) is an 
Ordinary Differential Equation (ODE), where ( )y x  is an unknown curve func-
tion. Due to the ODE’s structure, it is classified as nonlinear, second order, and 
nonhomogeneous. Therefore, a suitable set of initial conditions comprised of the 
initial path point ( )0 0y x y=  and the slope at this point ( )0 0y x m′ =  is em-
ployed for constructing a fully generalized closed-form analytical ODE solution 
( )y x  for any known/specified radius of curvature function. 
The solution to Equation (1) is presented as follows where Ϡ ( )x  is a quantity 

that determines whether the solution is real or complex, ( )U x  is the integrand 
of ( )Є x , 1c  and 2c  are constants of integration, ( )y x  is the ODE solution, 
and ( )y x′  and ( )y x′′  are successive derivatives of the ODE solution. Further-
more, the initial slope condition value 0m  is used in conjunction with Equation 
(9) to obtain the equation for 1c , and the initial path condition value is combined 
with Equation (8) to obtain the equation for 2c . To note, since there are multiple 
curve solutions that may satisfy both the initial conditions and the specified radius 
of curvature equation, parameters 1s  and 2s  are utilized to denote plus/minus 
fluctuations that account for the four possible curve solution constructs. 

 Ϡ(𝑥𝑥) = 1 − 𝑐𝑐12 − 2 𝑐𝑐1𝐴𝐴𝜅𝜅(𝑥𝑥) − 𝐴𝐴𝜅𝜅2(𝑥𝑥) (3) 

 𝑈𝑈(𝑥𝑥) = 𝑐𝑐1+𝐴𝐴𝜅𝜅(𝑥𝑥)
�ϡ(𝑥𝑥)

 (4) 

 ( ) ( )dЄ x U x x= ∫  (5) 

 ( )
2 4
0 0

1 2 02
01

m m
c s A x

m κ

+
= −

+
 (6) 

 ( )2 0 1 0Єc y s x= −  (7) 

 ( ) ( )2 1Єy x c s x= +  (8) 

 ( ) ( )1y x s U x′ =  (9) 

 𝑦𝑦′′(𝑥𝑥) = 𝑠𝑠1
𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥)

�(𝑐𝑐1+𝐴𝐴𝜅𝜅(𝑥𝑥))2

ϡ(𝑥𝑥)3/2 + 1
�ϡ(𝑥𝑥)

� (10) 

2.2. Antiderivative Approximations by Simpson’s Rule 

For some cases of radius of curvature, antiderivative solutions to the integrals in-
volved with the ODE solution and its successive derivatives are difficult (even for 
computer programs) to determine analytically. Therefore, antiderivative approx-
imations as per Simpson’s rule (relying on left and right Riemann sums, the mid-
point rule, and the trapezoid rule) are applied to the integrals seen in Equations 
(2) and (5) [10]. However and prior to presenting the previously mentioned ap-
proximations, the indefinite integrals are converted into definite integral forms, 
specifically from 0x  to x , for approximation requirements and to simplify the 
constants of integration. 

 ( ) ( )
0

d
x

x
A x x xκ κ= ∫  (11) 
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 ( ) ( )
0

Є d
x

x
x U x x= ∫  (12) 

 
2 4
0 0

1 2 2
01

m m
c s

m
+

=
+

 (13) 

 2 0c y=  (14) 

Since Equation (11) has only one integral, it can be approximated by Equations 
(16) to (20) (varying in accuracy levels) where 1h  is the step size equation, and 
parameter n  is the number of subdivisions used to obtain the desired accuracy 
level. To note, Equation (20) is the final, most accurate Simpson’s rule approxi-
mation which relies on all previous approximations. 

 ( ) 0
1

x xh x
n
−

=  (15) 

 ( ) ( ) ( )( ) ( )
1

1

1 0 1 1
0

n

L
i

A x LEFT x x ih x h xκ κ
−

=

= = +∑  (16) 

 ( ) ( ) ( )( ) ( )
1 1 0 1 1

1

n

R
i

A x RIGHT x x ih x h xκ κ
=

= = +∑  (17) 

 ( ) ( ) ( ) ( ) ( )
1

1
1

1 0 1 1
0 2

n

M
i

h x
A x MID x x ih x h xκ κ

−

=

 
= = + + 

 
∑  (18) 

 ( ) ( ) ( ) ( )
1 1

1 1 2
L R

T

A x A x
A x TRAP x κ κ
κ

+
= =  (19) 

 ( ) ( ) ( ) ( )
1 1

1 1

2
3

M T
S

A x A x
A x SIMP x κ κ
κ

+
= =  (20) 

The approximation of Equation (12) is more complicated since it contains in-
tegrals of curvature nested within the outermost integral. To accomplish this, the 
approximations provided by Equations (22) to (26) are rewritten from above 
based on a new step size equation 2h  and index parameter j , where m  is the 
number of subdivisions used only for the integral of curvature (which is nested 
inside the outermost integral). 

 ( ) ( )1 0
2

ih x x
h x

m
−

=  (21) 

 ( ) ( ) ( )( ) ( )
2

1

2 0 2 2
0

m

L
j

A x LEFT x x jh x h xκ κ
−

=

= = +∑  (22) 

 ( ) ( ) ( )( ) ( )
2 2 0 2 2

1

m

R
j

A x RIGHT x x jh x h xκ κ
=

= = +∑  (23) 

 ( ) ( ) ( ) ( ) ( )
2

1
2

2 0 2 2
0 2

m

M
j

h x
A x MID x x jh x h xκ κ

−

=

 
= = + + 

 
∑  (24) 

 ( ) ( ) ( ) ( )
2 2

2 2 2
L R

T

A x A x
A x TRAP x κ κ
κ

+
= =  (25) 

 ( ) ( ) ( ) ( )
2 2

2 2

2
3

M T
S

A x A x
A x SIMP x κ κ
κ

+
= =  (26) 
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Combined with Equations (22) to (26), the complete approximation of ( )Є x  
is defined as follows, where the index parameter for the outermost integral is i , 
its number of subdivisions is n , and, therefore, its step size is 1h . Note that while 
the equations for ( )U x  with subscripts L, R, and M were not defined directly, 
they can be obtained by using Equation (4) in conjunction with Equations (3) and 
(22) to (26). 

 ( ) ( ) ( )( ) ( )
1

3 0 1 1
0

Є
n

L L
i

x LEFT x U x ih x h x
−

=

= = +∑  (27) 

 ( ) ( ) ( )( ) ( )3 0 1 1
1

Є
n

R R
i

x RIGHT x U x ih x h x
=

= = +∑  (28) 

 ( ) ( ) ( ) ( ) ( )
1

1
3 0 1 1

0
Є

2

n

M M
i

h x
x MID x U x ih x h x

−

=

 
= = + + 

 
∑  (29) 

 ( ) ( ) ( ) ( )
3

Є Є
Є

2
L R

T
x x

x TRAP x
+

= =  (30) 

 ( ) ( ) ( ) ( )
3

2Є Є
Є

3
M T

S
x x

x SIMP x
+

= =  (31) 

3. Results with Results Discussion 
3.1. The Semicircles Validation Example 

Validation of the nonlinear radius of curvature differential equation theory is 
shown with a constant radius of curvature ( ( ) 2rcr x = ). It is known that a circular 
path (which is comprised of two semicircle functions) is associated with a constant 
radius of curvature. The initial conditions presented below (at 0 0x = ) are ex-
pected to produce a positive semicircle ( ( ) 24y x x= − ). 

 ( )0 2y x =  and ( )0 0y x′ =  (32) 

The exact equations of nonlinear ODE theory, with all values for 1s  and 2s , 
shows that the combined curve solution and successive derivatives are: 

 ( ) ( )22 2 4 ,y x x= ± − −  (33) 

 ( )
2

,
4

xy x
x

±′ =
−

 (34) 

 ( )
( )

2

3 22
.

4

ry x
x

= ±
−

′′  (35) 

The radius of curvature that results from these equations result in 2rcr = ± , 
(which is plus/minus the specified radius of curvature equation). This is not an 
issue due to the concept of radius of curvature, and, therefore, validates the dif-
ferential equation theory. The combined graph(s) associated with the curve solu-
tion and successive derivatives are given in Figure 1 below to demonstrate the na-
ture of the example solution. 
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Figure 1. Example 1 graph of circle ODE solution and its successive derivatives. 

3.2. The Parabolas Validation Example 

Further validation of the nonlinear radius of curvature differential equation the-
ory is shown with a radius of curvature that corresponds to a simple parabolic 
curve ( ( ) 2y x x= ). The initial conditions presented below (at 0 0x = ) are ex-
pected to produce a parabolic curve with its vertex coincident with the origin of 
the Cartesian plane. 

 ( ) ( )3 221 1 4
2rcr x x= +  (36) 

 ( )0 0y x =  and ( )0 0y x′ =  (37) 

The exact equations of nonlinear ODE theory, with all values for 1s  and 2s , 
shows that the combined curve solution and successive derivatives are: 

 ( ) 2 ,y x x= ±  (38) 

 ( ) 2 ,y x x′ = ±  (39) 

 ( ) 2.y x′′ = ±  (40) 

The radius of curvature that arises from these equations is: 

 ( ) ( )3 221 1 4 ,
2rcr x x= ± +  (41) 

(Which is plus/minus the specified radius of curvature equation). This is not an 
issue due to the concept of radius of curvature, and therefore, validates the differ-
ential equation theory. The combined graph(s) associated with the curve solution 
and successive derivatives is given in Figure 2 below to demonstrate the nature of 
the example solution. 
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Figure 2. Example 2 graph of parabolic ODE solution and its successive derivatives. 

3.3. The Transcendental Functions Validation Example 

Further validation of the nonlinear radius of curvature differential equation the-
ory is shown with a radius of curvature that obeys the transcendental function de-
fined by Equation (42). The initial conditions presented below (at 0 0x = ) are ar-
bitrarily prescribed to provide insight into what kind of curve function solutions 
are obtained. 

 ( ) ( )3 2sin 2 1 sin 2
sin 4rc

xr x x
x

= +  (42) 

 ( )0 1y x =  and ( )0 0y x′ =  (43) 

Exact equations of nonlinear ODE theory regarding ( )rcr x , with all values for 

1s  and 2s , show that the combined curve solution and successive derivatives are: 

 ( ) ( )11 1 cos 2 ,
2

y x x= ± −  (44) 

 ( ) sin 2 ,y x x′ = ±  (45) 

 ( ) 2cos 2 .y x x′′ = ±  (46) 

The radius of curvature that arises from these equations result in: 

 ( ) ( ) ( )
3 2

3 21 sin 2 sin 2 1 sin 2
cos 2 sin 4rc

x xr x x
x x

+
= ± ≡ ± +  (47) 

(which is plus/minus the specified radius of curvature equation). This is not an 
issue due to the concept of radius of curvature, and therefore, validates the differ-
ential equation theory. The combined graph(s) associated with the curve solution 
and successive derivatives is given in Figure 3 below to demonstrate the nature of 
the example solution. 
 

 

Figure 3. Example 3 graph of transcendental ODE solution and its successive derivatives. 
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3.4. The Three-Point Self-Centering Regular Wedge Cam Design  
Application with Numerical Validation 

The application process involving the nonlinear radius of curvature differential 
equation theory shown through this example occurs when the radius of curvature 
and initial conditions are determined in context of a three-point self-centering 
regular wedge cam mechanism design type. To note, the radius of curvature is de-
termined parametrically in conjunction with an exact backward kinematic cam ro-
tation solution ( )crxθ  determined from a developed trigonometric substitution 
& transformation (TS&T) method [11]. 

To accomplish this, various equations are used to define the parametric regular 
wedge cam contour transformation equations, ( )crx θ  and ( )cry θ  (in accord-
ance with Figure 4), as well as the path’s end point—as per the maximum cam 
angle maxθ . Note that the specified/driving analysis variables necessary for all re-
lated equations regarding the regular cam design are wmaxR , wminR , r , lrxC , 

oϕ , 1x , 1y , 2x , and 2y  [11]. 
 

 

Figure 4. The kinematic self-centering regular wedge cam motion layout. 
 

The associated driven/fixed analysis variables are defined as: 

 ,
cos

wmax lrx
twmax

o

R C rR r
ϕ

+ +
= −  (48) 

 ( )( ) ( )( )2 2
1 1 1cos sin ,twmax o twmax oL x R r y R rϕ ϕ= − + + + +  (49) 

 2 2
3 1 1 ,L x y= +  (50) 

 
( )
( )

11

1

cos
tan ,

2 sin
twmax o

twmax o

x R r
y R r

ϕ
η

ϕ
− − +π

= −
+ +

 (51) 

 1 1

1

tan .y
x

β −=  (52) 

Several variable coordinate point equations involved with the regular wedge cam 
equations are described as follows. 

 
( ) ( )( )

( )( )
3 1 1

1

cos cos

sin sin
twmax o

twmax o

x x x R r

y R r

θ ϕ θ

ϕ θ

= − − +

− + +
 (53) 
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( ) ( )( )

( )( )
3 1 1

1

cos sin

sin cos
twmax o

twmax o

y y x R r

y R r

θ ϕ θ

ϕ θ

= − − − +

+ + +
 (54) 

 ( ) ( ) ( )2 2
3 3twR x y rθ θ θ= + −  (55) 

 5 2x x=  (56) 

 ( ) ( )( )5 2 twmax twy y R Rθ θ= − −  (57) 

 ( ) ( ) ( )6 1 2 1 2 1cos sinx x x x y yθ θ θ= + − + −  (58) 

 ( ) ( ) ( )6 1 2 1 2 1sin cosy y x x y yθ θ θ= − − + −  (59) 

The resulting parametric transformation regular wedge cam path equations and 
the maximum cam angle that terminates the end point of the cam path are ex-
pressed as: 

 ( ) ( )6 2 ,
rcx x xθ θ= −  (60) 

 ( ) ( ) ( )6 5 ,
rcy y yθ θ θ= −  (61) 

 
( )22 2

1 31

1 3

cos .
2

wmin
max

L L r R
L L

θ η β − + − +
= − −  (62) 

The associated backward kinematic cam rotation equations based on TS&T are: 

 ( ) ( )
( )( )

( )

2 2 2
1 2 1 2 1 21 2

1 2 1 2

2
Θ ,

2 2
r r

r
r r

c c
c

c c

x x x y y x y yy yx
x x x x x x

− − − + +−
= ±

− − − −
 (63) 

 ( ) ( )12 tan Θ .
rcr cx xθ −=  (64) 

Furthermore, the successive spatial derivatives of the parametric cam equations 
are defined below (by Equations (74) to (77)), where a  and b  are amplitudes 
of the wave equations ( )wc θ . These wave equations are used in conjunction with 
the vertical coordinate point ( )4y θ  of the roller’s center point A  as previously 
shown in Figure 4. 

 ( )( )1 1 12 cos
r twmax oa y x R r ϕ= − +  (65) 

 ( )( )1 1 12 cos
r twmax ob x x R r ϕ= − +  (66) 

 ( )( )2 1 12 sin
r twmax oa x y R r ϕ= − + +  (67) 

 ( )2 1 12 sin )
r twmax ob y y R r ϕ= + +  (68) 

 ( )
1 1 1cos sin

r rrwc a bθ θ θ= +  (69) 

 ( )
2 2 2cos sin

r rrwc a bθ θ θ= +  (70) 

 ( )
3 1 1cos sin

r rrwc b aθ θ θ= −  (71) 

 ( )
4 2 2cos sin

r rrwc b aθ θ θ= −  (72) 

 ( ) ( )4 twy R rθ θ= +  (73) 

 ( ) ( ) ( ) ( )2 1 2 1

d
cos sin

d
r

r

c
c

x
x y y x x

θ
θ θ θ

θ
′ = = − − −  (74) 
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 ( ) ( ) ( ) ( )
2

2 1 2 12

d
cos sin

d
r

r

c
c

x
x x x y y

θ
θ θ θ

θ
′′ = = − − − −  (75) 

 
( ) ( ) ( ) ( )

( ) ( )
( )

1 2

2 1 2 1

4

d
cos sin

d

2

r
r

rr

c
c

w w

y
y x x y y

c c

y

θ
θ θ θ

θ
θ θ

θ

′ = = − − − −

+
−

 (76) 

 

( ) ( ) ( ) ( )

( ) ( )( )
( )

( ) ( )
( )

1 2 3 4

2

2 1 2 12

2

3
44

d
sin cos

d

24

r
r

r r r r

c
c

w w w w

y
y x x y y

c c c c

yy

θ
θ θ θ

θ

θ θ θ θ

θθ

′′ = = − − −

+ +
+ −

 (77) 

The first and second derivatives of the cam contour itself are: 

 ( ) ( )( )
( )( )

,r r

r r

r r

c c
c c

c c

y x
y x

x x

θ

θ
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The radius of curvature equation for this specific regular wedge cam application 
can now be written as: 

 ( )
( )( )
( )

3 221
,

c c

rc c
c c

y x
r x

y x

′+
=

′′
 (80) 

and the initial conditions (at 0 0
rcx =  and 0 0θ = ) are:  
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r r r r r
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θ
θ
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The nonlinear ODE application and associated validation procedures for the 
design configuration shown in Figure 4 are constructed from several specified/driv-
ing analysis variables: wmaxR  = 4 in. (0.1016 m), wminR  = 0.5 in. (0.0127 m), r  
= 2 in. (0.0508 m), lrxC  = 0.5 in. (0.0127 m), oϕ  = 30˚, 1x  = 12.21 in. (0.3101 
m) and 1y  = 11.14 in. (0.2829 m), and 2x  = 13.21 in. (0.3355 m) and 2y  = 
18.29 in. (0.4646 m). Due to the complexity of this specific regular wedge cam 
theory, Simpson’s rule (where 100n =  and 100m = ) is utilized for approximat-
ing all integrals involved within this applied nonlinear ODE theory. 

With experimentation, the plus/minus values for 1s  and 2s  were determined 
in alignment with Figure 5 below—as they affect the solution output due to the 
possibility of having more than one curve satisfying both the given radius of cur-
vature function and the initial conditions (as seen within the three previous math-
ematical validation examples). The specific application to regular wedge cam de-
sign coupled with the chosen analysis variable parameters requires 1 1s = +  and 

2 1s = + . This was determined by testing all solution numbers and comparing the 
ODE solution and its derivatives with the exact path equation and its derivatives. 
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Due to the use of Simpson’s rule, the maximum error 1E  (between exact para-
metric and approximate ODE paths) is a 0.186% overestimate. The errors 2E  
and 3E  (between exact parametric form and approximate ODE successive cam 
path derivatives) are all 0.000% underestimates. 
 

 

Figure 5. Regular wedge cam path. 
 

Consequently, the nonlinear differential equation theory and Simpson’s equa-
tions for both singular and nested integrals are validated. For other validation as-
pects regarding the parametric cam path equations, consult with research on the 
detailed derivation of generalized robust systems-based three-point self-centering 
motion theory in the design of regular and inverse wedge cams [11]. (Table 1) 
 

Table 1. Validation of nonlinear ODE theory applied to regular wedge cam design. 

Exact Values Approximate Values Percent Error Values 

θ  ( )cr cry x  ( )cr cry x′  ( )cr cry x′′  crx  ( )cr cry x  ( )cr cry x′  ( )cr cry x′′  1E  2E  3E  

(deg) (m) (-) (1/m) (m) (m) (-) (1/m) (%) (%) (%) 

0 0.000 2.063 −2.633 0.000 0.000 2.063 −2.633 0.000 0.000 0.000 

3 0.019 2.040 −2.283 0.009 0.019 2.040 −2.283 −0.170 0.000 0.000 

6 0.038 2.020 −1.978 0.019 0.039 2.020 −1.978 −0.174 0.000 0.000 

9 0.057 2.003 −1.761 0.028 0.057 2.003 −1.761 −0.176 0.000 0.000 

12 0.075 1.987 −1.754 0.037 0.075 1.987 −1.754 −0.179 0.000 0.000 

15 0.093 1.970 −2.335 0.046 0.093 1.970 −2.335 −0.182 0.000 0.000 

18.06 0.110 1.940 −5.019 0.055 0.111 1.940 −5.019 −0.186 0.000 0.000 
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In closing, the rectangular form of the regular wedge cam contour utilized the 
derived nonlinear radius of curvature ODE solution which was performed as an 
exploratory effort as well as for its use in the optimization of related curvature and 
cam dynamic characteristics [12]. 

4. Conclusions with Limitations 

The differential equation form of the radius of curvature is a fundamental concept 
in geometry that has widespread applications in engineering, physics, computer 
graphics, and robotics. Finding analytical solutions to these equations, particu-
larly for complex curves, remains an area of active research. The theoretical in-
sights into curvature, combined with computational methods, have enabled the 
practical application of curvature analysis in designing efficient structures, smooth 
animations, and precise robotic paths. As computational techniques continue to 
evolve, the ability to solve increasingly complex curvature-related problems will 
expand the range of applications and their precision. 

As such, an exact fully generalized closed-form analytical curve function solu-
tion has been derived within a rectangular 2D Cartesian plane framework. Simp-
son’s rule is then implemented into the mathematical nonlinear ODE theory to 
address complexities that may arise when analytically solving the required inte-
grals for certain types of curvature functions. Additionally, the selection of the 
correct solution branch depends on the problem being considered. If the problem 
is of the pure mathematical type, then all solution branches are selected. If the 
problem is a real-world application, then one must choose a single solution that 
requires experimental evaluation. 

In connection, this nonlinear ODE theory has been thoroughly validated within 
the application of three mathematical examples as well as within a more compre-
hensive application involving the motion of a self-centering regular wedge cam. 
To highlight, the regular wedge cam contour example was formulated using the 
rectangular form ODE solution, which relies on the radius of curvature and is 
useful for the optimization of related curvature, machine design, and cam dy-
namic characteristics. This allows an engineer to prescribe a radius of curvature, 
potentially as part of an objective function (if desired), for more effectively man-
aging/balancing cam contact stresses and other related properties in context of 
deriving the required cam profile for producing the resulting self-centering mo-
tion.  

Nevertheless, while empirical testing using cam profiles confirmed that the method 
exhibits the expected convergence behavior, it is important to note clamping ac-
curacy regarding the self-centering wedge cam profile as error arises from the use 
of Simpson’s rule in both single and nested integration steps. These effects are 
compounded by the square root terms in the solution formula, which can lead to 
numerical instability unless carefully validated. 

Additional limitations arise from the structure of the nested Simpson’s rule it-
self, which is not error-neutral and requires both suitable resolution and smooth 
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behavior to be effective. Furthermore, large values of n  and m  may introduce 
floating-point round-off risks, especially when compounded by square root and 
trigonometric operations. Mitigation strategies may include convergence testing, 
adaptive integration near critical regions, and verification of solution branches us-
ing known analytical benchmarks. 

5. Future Research 

Future research will involve the application of this work to inverse wedge cams as 
well as optimization of these cams when high curvature sensitivity minimization 
is required for providing deeper insight into design characteristics involving con-
tact forces/stresses and associated machinery design as well as dynamics and re-
lated wear & fatigue. In conjunction, the specified analysis variables may be ad-
justed to examine the variation in error between multiple designs. The step size 
values used for Simpson’s rule may also be adjusted to determine the speed of 
convergence and to examine the trade-off between error and computational effi-
ciency. 

Additional related research may involve applying the Gibbs-Appell method in 
conjunction with this specific nonlinear ODE theory for a better understanding 
of how forces and related vibrations affect real-world performance of these cam 
systems. Such exploration may pave way into physical prototypes of baseline vs. 
optimized concepts along with experimental testing coupled with studies into the 
nonlinear dynamic response of these cam types subjected to rapid load changes—
particularly relevant in robotics applications—for analyzing how dynamic loads 
affect wear and longevity in relation to clamping accuracy. 

Worth noting, in the case of curves described in a parametric 2D Cartesian 
plane framework, the differential equation for the radius of curvature takes a spe-
cific form (different from that presented within this research). Analytical methods 
for solving this form often rely on simplifying the parametric equations or apply-
ing numerical solutions when exact solutions are infeasible [13]. In connection, 
there are many practical applications where the need for computational methods 
has led to the development of algorithms that approximate the radius of curvature, 
especially in engineering and Computer-Aided Design (CAD) systems. Therefore, 
the generalized closed-form analytical solution to the aforementioned differential 
equation form of the radius of curvature may be shown as part of future research 
efforts. 

Moreover, for multi-dimensional considerations, the analysis of curvature in-
volves the concept of curvature tensors and the study of surfaces rather than sim-
ple curves. As the complexity of the systems being modeled increases, the need for 
advanced computational methods to handle these higher-dimensional curvatures 
becomes ever more critical [13]. Therefore, future research may be extended to 
curves described in polar, cylindrical, and spherical coordinate systems as well as 
multi-dimensional space in context of mathematical physics and related unified 
field theory research [14] [15]. 
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