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Abstract

We study the finite time domain dynamics of massive vector fields. We con-
sider their standard Lagrangian and Hamiltonian densities and expand them
into creation and annihilation operators. We integrate them via coherent
states path integral methods and extract the corresponding massive vector
fields’ Green functions in various dimensions. Then we consider the possible
generation of massive vector fields from currents.
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1. Introduction

Quantum field theory makes up an important area of physics with a variety of
applications [1]-[5]. It studies various particles and fields and their possible struc-
ture. Here we develop finite time analytic methods for their possible evolution
opposed for instance to the numerical simulations of the obeyed dynamic equa-
tions [6] [7] or the employment of lattice quantum field theory [5]. Under suitable
experimental preparations these methods may give corresponding predictions on
finite time results and effects as opposed for instance to the results of asymptotic
in/out (T — o) scattering theories. In fact, finite time expressions apply after the
possible generation of relevant particles or after the removal of possible trapping
fields or configurations.

In previous papers we have considered Dirac and scalar fields [8] [9]. Here we
consider the dynamics of finite time domain massive vector fields. Ze. we study
Proca fields [10]-[13]. They are applicable in the case of massive vector Bosons
such as the W and Z particles of the electroweak theory. We study them via path

integral methods. We begin from their Lagrangian and Hamiltonian densities, ex-
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pand the electric and the vector fields in term of annihilation and creation opera-
tors and integrate the corresponding Hamiltonian according to standard holo-
morphic representation techniques developed partially by the author as well, to
extract their Green functions in various dimensions. These Green functions give
the whole dynamical information of possible evolution. They constitute the func-
tional inverse of the dynamic equation that the system satisfies. In fact, here we
use them in the study of the generation of fields by currents in spacetime dimen-
sions three and four.

The present paper proceeds as follows. In section 2 we describe the present mas-
sive vector field system and the equations it satisfies. We expand in creation and
annihilation operators and integrate according to holomorphic representation
methods in a finite time interval to extract the transition amplitudes between co-
herent states and in particular between vacuum states. Then proceeding in section
3.1. we use that result to derive the Green functions for certain spacetime dimen-
sions and in section 3.2. we give certain series representations. In section 4 we use
those Green functions to obtain expressions for the potentials of those massive
vector fields generated by currents and further we consider their energy momen-
tum tensors. Moreover, in section 5 we give our conclusions. Finally in appendix
A, we evaluate the integrals that appear in section 3.2. and in appendix B we give
a notational summary.

Throughout the paper we set ¢=7%=1. In our expressions we maintain the
mass symbol m for clarity. Then the particle’s rest energy is mc”.

If dis the spacetime dimension then we assume the Greek indices to range from

0 to d-1 while the Latin ones to range from 1 to d-1.

2. System and Path Integration

Here we intend to quantize a massive vector field. We work in real time with the

metric g,, = diag| 1,-1,---,—1 | where the first component corresponds to time.
d-1

We denote the spacetime with {xo Et,x} , xeR"", and the vector field with
4,= {AO,A} . Let F,, (#,x) be the curvature tensor. Then the Lagrangian den-

sity of the massive vector field couple with a real current J, has the form
L= —%F/N (1.3) F* (1,) +%m2Ay (1.x) 4 (t.x) T, (t.x) 4" (.x) (1)
where m is the mass and
F* (t,x)=0"A"(t,x)—0"4" (t,x) (2)
According to variational considerations the field obeys the following equation
0, F" +m*4" =J" (3)

In term of the field A4 we obtain the Proca equation

od" -8 (6”A”)+m2AV =J" (4)
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where O isthe d’Alembertian. We observe that this equation is not gauge invar-
iant due to the presence of the mass term (see the discussion in the conclusions as

well). On taking the d-divergence of the above equation, we get

0,4 =0,J" [m’ (5)

So, for conserved currents
od” +m* A" = J* (6)
9,4" =0 (7)

In contrast to the electromagnetic field the present Proca field has both trans-
verse and longitudinal components. Moreover, from the d components of A4*

only d-1 are independent. In fact, if we set v =0 in Equation (3) we get

0
A=V EXT ,fz” ®)

E'(t,x)=F"(t,x) is the electric field. It corresponds to the conjugate mo-

mentum. So, we can get the following expression for the Hamiltonian density

-J-A4: (9)

2 EY (J°) :
H(E,A)z:lEz Lpip oM eyl v f) +( Z o VE
2 4 Y2 2 m 2m
where the symbol : : means normal ordering. Moreover E, A must satisfy the
following equal time canonical commutation relations
[Ei(t,x),Af(t,y)]:ié'i"&(d*l)(x—y) (10)
[E'(t,x),E (,3) ] =[ 4 (6,),4/ (1,9)] =0 (11)

If we take into account the constraint Equation (8) we obtain further the com-

mutators
[ 4 (t,x),E (t,9) | =[ V- E(tx),E/ (t,y) | /m* =0 (12)
[ 4 (t.x), 4" (t.y)|=[-V-E(t.x), 4’ (t,y)]/m2 = —#6;5("’]) (x-y) (13)
Now we expand the field in terms of creation and annihilation operators. So

e (t,x) _ J.dlgg[au)* (k)gu* (k’l)e—ik-x +aq¥ (k)g# (k’l)eik-x:| (14)
=1

where
d-1
=Lk (15)
(27)" 20,

and

w, =\Nm’ + Kk (16)

Wehave d—1 vectors S(k,/i) corresponding to the d —1 polarization di-
rections. We choose d —2 of them around the direction of motion and another
spacelike one with its momentum in the direction of motion, chosen such that

k-&(k,A)=0. For a massive vector boson moving along the d —1 direction we
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have k”:(a)k,---,|k|). Then on setting 8(k,/1)=(81(k,/l),---,gdfl(k,/l)) we

m m

get " (k,2)=(0,6(k,1)) for A=1---,d=2 and &*(k,d-1)= [Mﬂj :
Further the electric field has the form
E'(t,x)=i[ dk i[wka“’* (K)&" (k,2)e ™ ~ w0 (k)& (K, 2)e" | (17)
From the definition of the electric field upon setting

&(k,A)=(&"(k,2),++,&"" (k, 1)) we obtain the relation [4]

&(k.2) =8(k,/1)—is°(k,,1):g(k,,z)_km

Oy @y

(18)

where according to the relations k-&(k,A)=we’(k,A)—k-g(k,A)=0 we
have gotten
k-g(k,A)

O(k,A)=
(ko 2) ==

(19)

In order the above equations to be consistent the following commutation rules

must be valid

[ (k).a (k)| = 6,20, (22)"" 59 (k- &) 20)
|:a(/1) (k),a(i') (k'):| _ |:a(i)+ (k)’a(/l')+ (kf):| -0 (21)
Then from the above equations we can derive the free field constraint (8) in the
form
£ =Y ZE (22)
m

So, after straightforward calculations we get the following reduced diagonal

Hamiltonian in normal order form

1(a”) (k),a"" (k).t)= [d""xH (E, 4)

=jdd‘xﬂ+'fdl:tdzl‘[a)ka(i)+ (k)a (k) (23)

where
JO (k)= e (k,2)J, (t.k) (24)
J, (k)= _[dd"liﬂ (t,x)e_”"x (25)

The space-like orthonormalized vectors & (k,A) are simultaneously orthog-

onal to the time-like vector k* and therefore if we assume them real
e(k,A)-e(k,A)=6,, (26)

and

g (k,/l)gv(k,/l)z—(g"v -ﬁ] 27)
A

m
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Now we consider the kth mode along the A polarization direction of the

diagonal Hamiltonian (23). It is
Hy = oa™" (k)a? (k) + /% (t,k)a™ (k)+ /9 (t,k)d?" (k) (28)
We intend to construct a path integral representation of the evolution operator

T
—i[drHy(z)

Up(T)=e * (29)
We work within the holomorphic representation. So, we introduce complex
variables a*" (k) and proceed via path integral techniques. We represent

a(i%(k), a(ﬂ)(k) by the operators a(l)*(k) and respectively

oo™ (k)
acting on functions of a*r (k), which obey the same commutation relations.

The Hamiltonian #,, has then the representation

0 0

—w.a™ _
h=oe (k)aaw*(k) oa'" (k)

+ 9 (t,k) + /9 (6,k)a" (k) (30)

At first, we assume a small time ¢ and obtain
(@ (k)|U, (1)|a) (k)

zll_i{wkaw*(k)a%+ S (k) —2
[04

" j(ﬂ.) (t,k)a(i)* (k) " 0(t2 )\Jj| ea(ﬁ)*(k)a'(i)(k) (31)

=1t @@ (k) (k) + /O (k)@ () + 1) (k) (k)

_ ea(’{)*(k)a'(;”)(k)(l—itw,‘ )-it(a“)*(k) ey 1y ) o (t2 )
Then according to the group property
(@ Wfou]a w)
da"( da/l
- (2)
- 2m <a K)[U, [ (k) (32)

x ef'zn(l)*(")a”m(") <a" “ (k)‘U1 ‘a'(l) (k)>

After multiple application of the Equations (31), (32) we get the evolution op-
erator at finite time in the following path integral form

(e (k)| U (7)] ) (K))

N da ( )da(’l)( ) . ! (33)
= A]gr:oJ'H exp[zSO (aff') (k),aff) (k))]
where
DOI: 10.4236/jamp.2025.137125 2203 Journal of Applied Mathematics and Physics
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S, (o ()t ()
N-1

=%l (k) (k)= (k) i (k) (k) ()

N N

—oe el (R)all} (k) - o (k)1 (0)+ T (K) e (8)
p= p=
T
£=— (35)
and

o (k) =a " (). ol" (k) =af”" (k) 36)

If we let N — o0 we obtain the standard path integral representation for the

matrix elements of U (T) in the form

(@l (1) [U, (7)) ()

a(/l)*(T,k):a(-;")*(k) " 37
) ) (r,k)Da“)(T’k)exp[iso(a(”*(T’k)’““)(“k))]( )

(0.6 (k) 2

with the action
So(@™ (v.k),a?) (7.k))
T
=—iai(f)*(k)a('i)(T,k)+J.dr{a(’l)*(r,k)[io‘t(i)(T,k)—a),‘a(l)(r,k)} (38)
0
~a" (z.k) /) (z.) = /7 (7. k) @) (2. k)|

The path integral (37) with the action (38) is Gaussian and therefore it can be
evaluated exactly. By varying a?r (7,k) the saddle point equation yields
i (z,k) - 0,0 (z,k) - j") (2,k) =0 (39)

with solution
a? (t.k)= e’i“""a,.(’l) (k)- ijdz’e“""" (=) ;(4) (z.k) (40)
0
For completeness we give relations for a'”"(z,k) as well. So, on varying
aw(r,k) we get
i (k) - w,a" (z,k)~ " (z,k)=0 (41)
with solution

T
oM (t,k) = el (k) =if dre 0 A (7 k) (42)

In the above equations we have taken into account the boundary conditions
given in Equation (36).

Now we can use the differential relation (39) to write Equation (38) in the form

T
S, (¢ (7.k),0?) (2. k)) = =ia" (k)P (T k) - [de j (. k) (.k) (43)
0
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Finally, since the integrals are Gaussian, we get
(@ (0)|U (7] (k) = F (T)exp| S, (@ (z.K).a” (2.K)) | (49)

So, on using Equations (40), (43), (44) we get

(@ ()| Uy ()] e (#)

T
=expla (k)e ™ o\ (k) =i det( ™" (k)e ™ i) (1, k (45)
S i S

0
+ /7 (L) o (k))- ﬁ] (t,k)e =) A (¢, k)dt'dl}}
00

where the semigroup property of the path integral implies F (T ) =1.

The Hamiltonian (23) is a superposition of Hamiltonians of the form (28) and
so we can obtain the coherent states propagator corresponding to the Hamiltonian
(23) in the form

Uy (e (k),a (K),T3)

i

(46)
_l..[dl‘(a‘(fl)* (k)e—iwk(T—t)j(l) (l,k) () (l k) —iwyt l(ﬂ) (k))

00

Tt
_J‘J‘j(l)* (t’k)e—iruk(l—l')j(/l) (t’,k)dt’dt:|}

In order to evaluate the amplitude in the case of the coherent states evolution
operator we have to integrate diagonally [14] [15]. Then for initial and final co-

herent states we get

(¢ (k)0 (), 757 )

SV VRO .
xUO(aw*(k)’aw(k)yT;J)gRaw(k) ﬂu)(k)ﬂ
So since |
(6% (1) 2 (#))
0 Y I
and
() (k)| (k)
= eXp{—% o (k) —% 22 (1) +a? (k) (k } (49)
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after the integrations we get

U (¢ (k)0 (), 737 )

0 2
= exp|:—i1dtjdd1x—(;mz }

it
iyt

. . T ! e ) ] " e’”"k’
+ifdk l d{g“’ (k)m/“)(t,k)—f“ (t,k)l_—hwn(‘)(k)]

77('1) (k)

+ 1— e—iwkT

2 é’(i)* (k)?](l) (k) —11’1(1 _e—ika )J (50)

We have set

cos[a) (t t') wk‘Tj
; N2 ¢ W\ -0 )———
E(k,t,t',T) =) 4 cos(@ (1) 2 -

=1

1— ei(ukT . a)kT
sm|{ ——
2

So finally

We can obtain the finite time interval Green function of massive vector fields

from the present considerations. We do that in the next section.

3. Green Function

We procced to the extraction of the Green function and the presentation of a series

of possible representations.

3.1. Derivation

According to the discussion of the previous section the correlation functions’ gen-

erating functional has the form
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Z(J)zU(0,0,T;J) (53)
Then the d dimensional Green function satisfies the expressions

2
G(d)/zv (x _ x',t —t';T) _ _; o

Z(0)57,67. - ) 59

J=0

So, on performing the functional derivations according to Equations (52), (53),
(54) we get
Gl (x—x",t—=13T)
40 _v0

=& 5 5(1-1)5"" (x-x) (55)

2
m

o, T

A cos(a)k|t_tr|_ 2) e
(x-x) g -

—if e :
T
(2n) 20, sin(wg] "

where 0<1,t'<T.To derive Equation (55) we have applied Equation (27).

Hiv
Further we would like to remove

— by replacing the various k*,k" with

appropriate derivatives. However, if #4=0 or v =0 then we have time deriva-
tives which act on the time step functions. They appear due to the absolute value
of the time in Equation (55). As we can check their contribution cancels the non-

covariant delta function term appearing in Equation (55). So, we have the form

G(d)()i (x—x',t _tr;T) — G(d)iO (x—x’,t—l’;T)

cos| w |t—t'|—a)"T
1 .[ d 'k ik~(xfx’)ki k 2 (56a)

=j—|—F
2
2m

(§]
(2m)"" Sin(wkT j
2

and
Gl (x—x"t-1T)

cos| w |t—t’|—a)LT
. v ailai dd?lk ik(x-x") * 2 (56b)
=gt ) a1 © o T

(2n) 2w, sin(gj

m

for the rest of the matrix elements.

Equations (56a), (56b) give the Green function that describes the dynamics of
massive vector fields. We can use it in the study of their generation and propaga-
tion in a spacetime of a finite time interval.

Proceeding to the study of that Green function we write the sine function in

terms of exponentials. Then

G(d)()[ (x_xr’t _tr’T) — G(d)i() (x_xr’t_tl;T)

o, T
cos| wm, |t —t'|——* (57a)
1 dd*lk ik.(x_x’) ) ( k | | 2 j ﬂ_(u;T
=7 a1 © ZiogT €
m (27'[) l-e
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and

G\ (x—x",t—13T)

|-t 57b
(g 20014 i COS(% je=t==3 )e,w,éf (57b)
2 (Zn)d—l a)k (1 _e—[a),‘T)

m
for the rest of the matrix elements.

In numerical calculations we can circumvent the poles of the above equations
if we introduce a parameter o with 0<o<1 and replace the above expres-

sions with the formulas
G\ (x —-x' - t’;T) =G (x —-x't— t';T)

T
cos(wk |t_t'|_a’§ j ot (58a)

d-1
_ 1 d k eik»(xfx')ki

o (21':)‘]71 1—o0e ™" ¢

and

G\ (x—x",t—13T)

o, T
v g cos| @, |t —1'|-—* J o (58b)
:(g”wafaxj LR (" 2 )%
m

e .
2 (27'[)d_1 : (1 _Oe—t(ukT)
for the rest of the matrix elements.

3.2. Limiting Cases

Alternatively, we can expand the denominators of Equations (57a), (57b) in geo-

metric series to get

Gl (x,5;T) = Gl (x,7:T)

1 ddilk ik- i iy |t = —i(n —iwy|T - —in (593)
—_ ZJ' o elkxkl e "HZG (+1)(ukT+e kHZe inwy T
2m (27'[) n=0 n=0
and
Gl (x,7:7)
8”6" dd_lk ik- 1 iy || S —i(n+l)o, —iy|T| S —inw, (59b)
= g/“’+ xzx I — elhx e k“ze (n+1) (I q ‘Ze inwyT
m (2TE) 20)k n=0 n=0
for the rest of the matrix elements.
Now we give expressions for the various values of the indices. So
G (x,7:7)= G (x,7:7)
L { S T ionf] S o r} -
—_ : ¢ X el(ukr e i(n+1)ay +e iy |t e nwy i (60)
o (2n)"" 2 2
=49 (xz,z';T)xi
where
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A(d)(xz,T;T)

_ 1 1 I ddﬁlk (k ' x)e"”‘ |:eiwkr i e—i(n+1)wkT 4 e—iwk\r\ ie—inw,‘Tj|
n=0

2m’ X (2m)" P
If 4u=v=0 we obtain

G (x,z';T)

00 d-1 © 0
_ (1 + aan JJ' d“ "k | |:ei(ukrzei(n+l)wkT +eiwkrze—inwkT:|

— || ——=F¢€
m2 (2Tf)d_l 2a)k n=0 n=0

(61)

(62)

Moreover

G\ (x,7;7)

d-1 . © ) X 0 ) - i j
_ _J' (;i )fl eik-x 21 |:ezwkr Ze—z(n+1)wkT i e—zwk\r\ ze—mwkT:|(5,/ i k ]€2 J (63)
T a)k n=0 n=0 m

=[B(d)(xz,r;T)+C(d)(x2,r;T)}5’j +D(d)(x2,r;T)xixj

where

11 1 I d 'k
m2 d_z x2 (27’[)(171

0 0
x ek 1 |:eia)k1 z e—i(n+1)ka 4 e—imk\r\ z e—inwkT:|
Za)k n=0 n=0

B(d)(xz,z';T) =-—

[—(k 'x)z + kzsz

(64)

11 | d"'k
= m2 d—2(x2)2 (zﬂ:)dfl
1

< e"k~x |:eimkr i e—i(n+1)ka T e—i(z)k“r‘ i e—inwkT i|
2(0k n=0 n=0

[(d-1)(k-x)" ~kx* ]

(65)

and

A% a1 S il
C(d) xz,T;T __ erk-x |:elwk‘r e i(n+1)ay T e ioy 7| e mka:| (66)
(x.eiT) =] 2n) 20, - 2
In the present subsection’s forms, we observe that if welet 7 — oo the expres-
sions in the parentheses which include 7" on exponentials collapse to the factor
¢ Then we get the standard Proca propagator [4].
In the Appendix A we give expressions for the above integrals for various di-

mensions.

4. Application

Now we apply the above expressions to the study of the generation of massive
vector fields from currents. Let the current be J, (x,t) where the vector x has

dimension 4 —1. Then
T
A" (t,x) = —ifdt’jdd_lx’G(d)”v (x—x",t=1T)J, (x,1") (67)
0

We consider a charged particle on a trajectory y(¢). Then the current d-vector
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has the standard form

J, (x,0)=0v, (£)8" (x - y(1)) (68)
where v, (1) v=0,1--,d -1 isitsvelocityand Q itscharge. Moreover, we set
v=(Lv, v, )=(Lv) (69)
So
A (1 —zQI{ M (= p(r),1-157)
(70)
A ((x =y () =57 ) (x = p(0) v, ()
and

A (t X —lQJ:{A ( x—y(t’))z,t—t’;T)(x—y(t'))[
[B(d ( x—y(t ,t t’,T)+C )(( -y(t )) —l';T):'Vi(l") (71)
((x »(t ,t t',T) x—y(t x »(t )) .(t')}dt'

Now we apply the above theory to an explicit trajectory. We consider a uni-
formly moving charge with velocity v, along the x-direction. Then Equation
(69) becomes

=(1,v,,0,---,0) (72)
and therefore
y(t)=(v,t,0,---,0) (73)

If v,=0 then the particle is stationary, 4°(¢,x) is spherically symmetric
and under rotations A'(¢,x) takes values on spheres. Otherwise, A°(z,x)
takes values on cylinders with axis of symmetry along the xdirectionand 4'(7,x)
has a mixed tensorial structure with cylindrical symmetry.

Further, the massive vector field symmetric energy-momentum tensor T*"

has the form
T = F*“F " +% g F7PF +m’ (A“A” —%g””A“Aaj (74)

At first, we set d= 3. Le we consider a 2 + 1 spacetime. Then the energy density

is

1 1 2 2
00 _ 1 (g2 2y, L 2 P
T _2(15 +B )+2m ;:O(A ) (75)
while the Poynting vector is
T°=8"=¢"E'B+m*A' A (76)

g" is the two-dimensional antisymmetric tensor. We notice that
F* (t,x)=0"4"(t,x)-0"4"(t,x). Then F* =0,
E'(t,x)=F"(t,x)==F"(t,x) and B(t,x)=F"(t,x). The latter is a pseudo-
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scalar. We can observe that the Poynting vector equals also the momentum den-
sity T O . Further the space-space components 7? form instead a two-dimen-
sional symmetric tensor representing the momentum flux. They have the form
T :E(E2 +B +A“4,)5" —~E'E' B> +m* A4’ 4’ (77)
Further we consider the case d = 4. Le. we study the dynamics in a 3 + 1
spacetime. Then the energy density is

T =%(E2 +BZ)+%mzzi:(A")2 (78)

p=0
and the Poynting vector has the form
T° =S =(ExB) +m*4' A’ (79)

Similarly to the previous case after setting F*"(7,x)=0"A4"(t,x)—0" 4" (1,x)
we get the standard expressions F™ =0, E'(t,x)=F" (t,x)=—F"(1,x) and
further F”(t,x)=—&""B"(t,x). Also, the Poynting vector equals the momen-
tum density T % while the space-space components 77 form a three-dimen-
sional symmetric tensor representing the momentum flux. They are given as

T’ :%(E2 +B+4°4, )5"/’ —E'E'-B'B +m*A' A’ (80)

5. Conclusions

In the present paper we considered the case of a massive vector field, within a
finite time interval, described by the Proca equation. We integrated it and ex-
tracted its Green function via path integral methods. Further we gave integral as
well as series expressions of that Green function and we applied it to the study of
the generation of such massive vector fields from currents of various types in the
case of spacetime dimension equal to three and four. Those results can be used in
the extraction of finite time predictions.

We notice that the present techniques constitute a possible alternative com-
pared for instance to the numerical integration of the dynamic equations or the
employment of lattice field theoretic methods.

As far as gauge invariance is concerned, we can observe that the Proca Lagran-
gian and the Proca equation are not invariant under local gauge transformations
due to the present of the mass term. This is related with the high singularity of the
present propagator as the mass tends to zero and the non-renormalizability of the
theory. The whole point can be circumvented via the idea of spontaneous breaking
of gauge symmetry. This is the natural generalization of the spontaneous global
symmetry breaking.

In subsequent publications we intend to consider, within finite time intervals,

the case of other interacting or free quantum fields and study their dynamics.
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Appendix A: Green Function Numerical Forms

We intend to give expressions for the integrals (61), (62), (64), (65), (66) for
spacetime dimension d equal to three and four. In order to perform the angular
integrations in all of the expressions below in the case of d = 3 we direct the x
vector along the x-axis and expand e** in term of exponentials and Bessel func-
tions [16] while if =4 we directthe x vector along the z-axis and expand e
in term of Legendre polynomials and spherical Bessel functions [16]. Then we
obtain the relations below concerning Gl (x,73T), A9 (xz,r;T ) ,

B (xz,r;T) , C\ (xz,r;T) and D\ (xz,r;T) .

Proceeding if d=3 G (x,z';T) takes the form

GH" (x,7;7)
6060 dzk ik- 1 iy |7| S —i(n+1)ay T —iay 7| & iney T
— 1 x7x ik-x % k k inw
[+ 5 jf(zn)ze | B e e |
:L 14 626?, IdkkJ k|x|) |: iwk“r‘zw:e—i(nﬂ)wkT +eia},‘rzw:einwkT:|
4TE n=0 n=0
070 o
:_iL[1+a‘*GZ"J Z ! exp {—im (VIT+|T|)2 —|x|2} (A1)
I (e -
1 1

= i 5/2
S (ol - |

wim| 2T+ [el) | [T+ [el)” = | = (7 o]

+m* (nT+|z'|)2 |x|2 +m’ |i(nT+|z’|)2 —|x|2 T}exp {—im (nT+|‘r|)2 —|x|2 }

To handle the first sum in the third equality we have made the replacement

[2(nT+|r|)2 o

n+1—n and then we have set n— —n. We procced in the same way with the
rest of the integrals and perform the same actions in the relevant expressions.
Therefore, if d= 4 we get for the corresponding G (x,7;T) the expression
G (x,7;7)

000, ¢ I’k 4 1 { & i anT o] }
— 1 ez X iwy (7| zn+ n)k +e iwy |t e incwy T
[ el B e

1 6202 ). ool iy T i —ine, T
= |1 jdkk Jo k|x|) Se +e Z_(})e

n=0

, 00 ) & 1 .
=—i 4’:2 [l—i- 5 ]nz = - K, (zm (nT+|z'|)2 —|x|2)

" (nT el |
1 & 1

BN ) fim o 1o

(o o]l <o ]
«(3(n #lel) + ) 5, (im (nT+[2]) _|x|2]
{mz (07 + ) ~|x T +2(3(n7+ [ +]F)
o (o (o7 =), (1) =)}

(A2)
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If welet d=3 A(3)(x2,z';T) is
A (xz,z';T)

_ 1 L dzk . ik-x m),“r‘ —1 n+1 wkT m)k‘r‘ —inawy T
——(k-x)e z Z e

2m? x? (275)2 o

- 1 J‘dkkz k |x|)|: iooy 7| i efi(n+l)wkT 4 efiwk‘r‘ i e—inwkT :|
n=0 n=0

dnm’ |x|
:\/Zlel; i ((l’l+1)T—|T|)K§ (im\/((n+1)T—|r|)2 —|x|2) (A3)
m 4n 0 (((n+l)T—|r|)2 —|x|2 )7/4

(e nr ) (im0 - }of )

+ -
T (o) o)
while 4% <x2 ,T;T) obeys the following relations if d= 4

14(4)(x2 T'T)

_ 1 J. d3 (k - x) ik |:eia)kz' i e—i(n+l)ka 4 e—iwk\r\ i o inouT :|
n=0 n=0

T oomt X (2)
1

. 1 K . iy |t i(n+l)o) —iwy|7| —inw,
:—lmmldkk3j](k|x|)|: "HZe T e "“%e kr} (A4)

: 7%1 w((n+1T |r| [zm\/ n+1T |r|) |x|j
N = B T o S
(e +n7)K, (im (Ie|+n7 2_|x|2j
T ((eenry )

Moreover B®) (xz,z-;T ) where d = 3 becomes

8(3)(x2,r;T)
1 1 dzk 2 2 2 ik- 1 i, ‘r‘ S 7i(n+1)a} T —iw, ‘T‘ < —inawy T
= — | — | —(k- k :| ix-x ke k k inay,
e ‘[(27:)2[ (k-x) +Kk°x* |e 20, e ge +e nz:(;e

|:J0 (k|x|) + J2 (k|x|):| 2610k |: la?k‘f\zefz (n+1)ey T n e—twk\f\ ZemwkT:| (A5)

n=0

L s ! (I—H'm (Ie|+n7) _|x|2)exp(_im (|f|+nr)2_|x|2j

-1
(et o)

where we have used the identity

2
Jo(k|x|)+J2 (k|x|) :m‘f1 (k|x|) (A6)
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Proceeding further if d= 4, B (xz,z';T) is

B (xz,r;T)

_ 1 1 d3k 2 2 2| ikx 1 ioy 7] < —i(n+1)ay, T —iay]r| - —inay T

= T (21'5)3 [—(k~x) +k*x Je E{e e ge (I n;e g

_ dkk4 k k I{Uk‘l" —i(n+1) (ukT —iwk‘r‘ < —inaw, T (A7)
T () 4 () 5

=%i+m[m CEEr )

4 et —ef

where we have applied the expression

e =)= () e

c® (x2 0T ) corresponding to d = 3 has the form

C(s)(xz,z';T)
d’k x| |: io|r] & ~i(n+1)ay, T —io]r| & ine T:|
=— e —|e e +e ek
J oS 2l & 2

_ _Lw 1 i) ‘r‘ —z n+1 w T —iw, ‘T‘ —inawyT
27T{dkk.}o(k|x|)2%{ g ze TS g

=0 n=0

1 & 1
=i— Y exp[—im |r|+nT —|x| }
5= el T - o ( J

while for ¢ (xz,‘r;T) corresponding to d = 4 we get

C(4)(x2,r;T)

3
_ d’k e,-kx zwk‘r‘z —i(n+1)w T efizuk“r‘ ie—inwkT
- 3

(27’[) n=0

_ _Lz]? dkk?j, (k|x|)2_|:eiwkr Z o it il i o nexT :| (A10)
C()k n=0

} (A9)

n=0

=-£§ 1 &, [ imy(|e| +nT) |
T (lenry ) | )

For d=3 DV (xz,r;T) obeys

D(3)(x2,r;T)

1 1 d2k 2 2 2| ikx 1 |: ioyr] - —i(n+)ayT —iey 7| o —ine T:l
= 20k - -k - k 3 %k ke

— (xz)zj(zn)z[ (k-x) x Je 20, e ge +e ge

1 1 < 1 iwy 7| *l n+. ﬂJ —iwy|7| —in,
=—2nmz_zjdkk3J2 (k[x) 2wk[ k‘ ‘Z houl g \ge ﬂ} (ALD)

2m 1 . 2
_ FE ‘s K(m (It +n7) _|x|2j

(<l 7Y - )
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D(4)(x ,r;T)
¢ tk-x il N i) —iayr
“mZz(xi)zj(Ml} |30y =k e %[e Y e el

=]—

4’

and finally, pY (xz,z-;T ) corresponding to d = 4 takes the form

(el nr ) -Isf

n=0

3 K3(im (|T|+nT)2 —|x|2j

1 T . 1 iy |7] - —i(n+1)eo, —iwy|7| = —inew,
:—znszWJ‘dkk“]z(HxDE{e Y e T e "ng kT}

0

1

e—mwk

n=0

(A12)

We notice that in the above equations we can apply the identity

Kv(iz)z‘T“'e B0 (2)

(A13)

In the equations (Al) to (A13) J, are Bessel functions of the first kind, j,

are spherical Bessel functions, K, are modified Bessel functions of the third kind

and H"” are Hankel functions of the second kind.

Appendix B: Notation

d = Spacetime dimension;
X,,X = Spacetime coordinates;
m = Particle’s mass;

AO,;I = Vector field;

F,, = Curvature tensor;

J = Current;

“
8w = Metric;

O = D’Alambertian;

E'(t,x) = Electric field;

B (t, x) = Magnetic field;

L = Lagrangian density;

H = Hamiltonian density;

k = Wavevector;

, = Particle’s energy;

ar (k), a? (k) = Creation and annihilation operators;
a?r (k) s a? (k) = Coherent states variables;

T = Time;

S, = Action;

G = Green function;

v = Velocity;

T*" = Energy momentum tensor.
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