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Abstract 
The 1-D geometric model studies the structure of states universally closed 
to the discrete delineation of their properties and defined as infinities. The 
closure mechanism is the logical “not” function attached to the named prop-
erty, creating a paradoxical relationship between segments. Two correlated 
fundamental reference frames are identified. In the first framework, the par-
adox mechanism prohibits the discrete enumeration of the state’s internal 
structure. In the second, segments share property for the same infinity but 
are excluded from common membership due to their paradoxical relation-
ship across the boundary that divides them. The geometric model analyzes 
the role of the “not” function in linguistics, mathematics, physics, and the 
generic structure of dimensional development across the quantum to classi-
cal platforms. Logical formalisms necessarily discount paradoxes as anoma-
lies open to more advanced understanding, worked around by restrictions 
to logic or ignored as nonsensical. The 1-D geometric model takes an op-
posing analytical perspective, considering paradox a fundamental mecha-
nism. The geometric proof examines two constructions of the right triangle 
within the unit circle. Although the two formats are paradoxical, with the 
second having no rational basis, the cosine squared calculations agree. Two 
paradoxical frameworks cohabit within a universal state defined by the co-
sine squared function. The 1-D model identifies the power function’s sys-
temic limit in modelling universal states that inherently contain the paradox 
mechanism in their segment relationship. 
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Slash Argument, Gödel’s Incompleteness Theorem, Infinity 

 

1. Introduction 

Examples of universal structures with paradoxical frameworks exist in logic, 
mathematics, and physics. The key distinction between paradox’s mathematical 
and linguistic structure lies in the difference between extension and circularity in 
their respective properties. 

Mathematical symbology possesses the property of infinite extension (e.g., the 
natural numbers). Cantor’s diagonal slash argument exemplifies the paradoxical 
incompleteness that such extension introduces, and Gödel’s incompleteness the-
orems demonstrate the equivalent limitation encountered when attempting to for-
mulate absolute truth statements. 

Linguistic structures exhibit an opposing characteristic of incompleteness, 
where the symbology lacks a basis for linear extension (e.g., dog, cat). Linguistic 
arguments with absolute self-reference result in nonresolvable infinite regres-
sions. The Russell and Liar paradoxes serve as two of many such examples. 

1.1. Paradoxical Structures in Mathematics 

Cantor’s diagonal slash argument: Cantor’s argument exposes the paradox in 
mathematical logic when defining infinity as a unitary state [1]. The argument 
first constructs a partial random listing of the real numbers between zero and one 
in a vertical column. Then the number that appears on the diagonal of that listing 
is reconstructed. by a fixed operation (e.g. add 1 to each digit after the decimal). 
Paradoxically, the new number is not included in the vertical column, even though 
it is correctly constructed as infinite. 

Gödel’s incompleteness theorems: “Among the things that Gödel indisputably 
established was that no system of sound mathematical rules of proof can ever suf-
fice, even in principle to establish all the true propositions of ordinary arithmetic 
[2] (pp. 64-65).” 

In other words, for any inclusive set of all possible true propositions, a second 
set must exist that is paradoxically conjoined and cannot be neatly confined to 
form a single basis of all true propositions. 

1.2. The Complementarity of Linguistic Paradox 

Linguistic statements constructed to universally contain all logical reference in-
ternally to an argument’s property devolve into self-circular infinite regressions, 
prohibiting conclusion. The logical “not” attached to the state’s property prevents 
its identification as a discrete entity. Whatever property is named, the segments 
sharing membership do “not” contain that property [3]. 

Russell’s paradox [4]: Russell’s paradox is the prime example of applying the 
logical “not” to a membership property, resulting in self-circular infinite regres-
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sion. The Russell set (R) is the set of all sets that are not members of each other.  
It is not possible to determine whether the “set of all the sets” (R) shares mem-

bership in its collection of segments. If (R) is placed within itself, it represents an 
error since it should “not” have a common property with its members. However, 
if it is not placed within itself, it constitutes an error because it shares the property 
designation with its members. 

The only resolution for the logical paradox created in arguments such as Rus-
sell’s paradox is to apply set theory’s Zermelo-Fraenkel rule, which includes the 
axiom of choice (ZFC) and prohibits the existence of universal sets [5]. This rule 
restores consistency to the logic of set theory but does not address the underlying 
paradoxical issue that infinity introduces; instead, it merely avoids it. 

The liar paradox [6]: “I am telling a lie.” The argument is the most concise for-
mat of a universal linguistic statement, devolving into entangled self-circularity. 
The logical “not” function is implicit because the statement and its intention are 
“not” consistent with truth. The statement is “not” true if it intends to be false, 
and it is “not” false if it intends to be true. The speaker’s self-reference creates an 
entanglement between two conclusions comparable to the entanglement structure 
in quantum states (discussed in Section 4). If the statement’s structure were (he is 
telling a lie), the argument would have a discrete classical format between the 
speaker and the subject. 

2. The 1-D Geometric Model 

 
Figure 1. Formal geometry. 

 

 
Figure 2. 1-D geometric model. 

 
In Figure 1, the diameter of the outer circumference is assigned a value of 4, while 
the relevant portion for calculating the cosine squared value is 3. The sides of the 
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30-60-90 triangle measure 3, 1.732, and 3.464 [7]. In Figure 2, each vector segment 
represents a unitary state with an entangled identity/value 1. Dimensional com-
plexity transitions from the inner circumference’s one-dimensional boundary to 
the outer circumference’s two-dimensional boundary. 

Vectors that converge eccentrically relative to the inner circumference carry the 
square root. The hypotenuse consists of two vectors that start and end concentri-
cally on the outer two-dimensional circumference, and together, the square roots 
cancel each other out. 

3. Calculating the Cosine Squared Function in the Two  
Geometries 

The 1-D geometry calculates the formal cosine squared value based on Figure 1 
and the nonformal (rationally nonsensical) value based on Figure 2. In Figure 2, 
the inner, one-dimensional circumference (labelled 1d) is preemergent to the 
outer circumference’s two-dimensional level (labelled 2d). 

Because the 1-D geometry’s dimensional structure develops outward from the 
inner to the outer circumference, the formal calculation rules of the Cartesian 
plane’s fixed dimensional framework do not apply. Each vector represents a con-
tained infinity at its boundaries. 

3.1. Formal Calculations in Figure 1 
 P1 − Cos2 (60) = (1.73205/3.4641)2 = 0.25 (1) 
 P2 − Cos2 (30) = (3/3.4641)2 = 0.75 (2) 

3.2. Nonformal Calculations in Figure 2 
 P1 − Cos2 (60) = (√1/2)2 = 0.25 (3) 
 P2 − Cos2 (30) = (√3/2)2 = 0.75 (4) 

3.3. Interpreting the Results of 3.1 and 3.2 

The 1-D geometric model is constructed on the two-dimensional flat plane of clas-
sical space. In Figure 1, the linear sides of the right triangle have consistent and 
discrete values for calculating the cosine square. In contrast, Figure 2 shows the 
model’s dimensional structure as outwardly developmental across the two cir-
cumferences. Consequently, the geometry is inconsistent with the fixed dimen-
sional basis of the Cartesian plane. 

The proof of the equivalence between Figure 1 and Figure 2, albeit in a para-
doxical relationship, is the calculation of the cosine squared value for both figures. 

A parent/sibling analogy is employed. Two paradoxical “sibling” geometries are 
conjoined in a “not” structure relationship by the “parent” cosine squared values. 

The counter-rational relationship of the geometries is comparable to that cre-
ated by the “not” function in the mathematical and linguistic examples above. 

4. The Logical “Not” Across Its Dimensional Platforms 
In the (x, y) coordinate structure of the two-dimensional classical plane (Figure 
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1), each vector contributes one dimension to the space, and the classical state ex-
tends in the “eye of the observer”. The operations of formal mathematics specifi-
cally require that the two dimensions of the structure have a fixed common basis 
rather than emerging as in Figure 2. 

The half-silvered mirror experiment provides important context for the differ-
ence between a one-dimensional space, wherein the y-axis is imaginary (with the 
symbol iy), and a two-dimensional classical space, in which the higher complexity 
of the classical plane allows the y-axis to be incorporated as a “real” dimension [2] 
(pp. 259-263). 

The half-silvered mirror experiment: In the classical framework of the experi-
ment, when any measurement occurs, the photon is always found to occupy one 
of the paths within the structure. Upon exiting the apparatus, it is similarly obeys 
classical probability that it will occupy either the x-axis or the y-axis. 

However, if no measurement occurs within the apparatus, the paths interfere at 
a quantum level. The crucial distinction for the classical description is that the 
photon exits the apparatus only in the original direction of projection upon entry, 
and never in the orthogonal direction. The quantum evolution of the state across 
the apparatus is easily calculated and is categorically paradoxical from a classical 
perspective [2] (p. 262). 

In the quantum basis, the orthogonal structure of the classical state from the 
first mirror down-converts to (x, iy), where (i) represents the imaginary square 
root of minus one. The two-path structure in the apparatus is simultaneously 
quantum entangled, causing the axes to lose their discrete basis of time-sequenced 
separation.  

Of the two orthogonal vectors, x and iy (as siblings), only the x-axis can be con-
sidered real in contributing “dimension” to the space, and the x- and iy-axes share 
a sibling “not” relationship. They are “not” discrete members of each other on the 
plane they share. 

In reversing the quantum state to its classical format (by collapsing the wave-
function), the path entanglement mechanism of the “not” function (at the one-
dimensional level) transforms to accommodate the addition of the classical plane’s 
second level of dimension. In its new format, the photon displays occupation on 
one of the exit paths and “not” the other. 

The classical plane “fractures” the entanglement property of the quantum state, 
allowing sufficient dimensional complexity so that both coordinate vectors, the x 
and y axes, are separately “real” and “discrete.” In other words, the dimensional 
level at which the photon displays occupation determines how the “not” function 
exhibits its dualistic property—quantum or classical. 

5. Interpreting the Cosine Squared Function across the  
Dimensional Structures of Figure 1 and Figure 2 

Although the geometric and mathematical basis of Figure 2 is formally nonsensi-
cal, the cosine squared calculations yield the same results in Sections 3.1 and 3.2. 
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This can be understood by examining the relative dimensional framework for each 
figure. 

In the formal basis of Figure 1, the linear ratio of the sides forming the cosine 
is squared, and the value takes on the property of an “area”. 

Figure 2, on the other hand, presents an inconsistent basis for linear structure 
since “linearity” and “object” identity are entangled as a unitary state. The rota-
tionally enclosed circle is the simplest format of a state containing a region abso-
lutely (infinitely) closed for its membership property. 

In a nonclassical format, the vectors share a common property with the unit 
circle as “area-like” states. The boundaries of each vector form absolute limits to 
extension (as infinities). Accordingly, the square root function is applied to down-
convert each vector’s “area-like” basis to “linear-like”. The ratio of the terms is 
then squared. 

6. The Dimensional Platform of the Classical Observer 

A significant ongoing question in the foundations of quantum structure is the role 
of the “observer” at the classical level in the collapse of the wavefunction. The term 
has been applied in various ways, leading to confusion regarding its intended con-
text. In the 1-D geometric model, the generalized term “observer” refers to the 
collapse of the quantum state through detection by an apparatus and represents a 
two-part procedure. 

First, a down-conversion apparatus opens the lower-dimensional platform of a 
quantum structure. Then, through a measurement disturbance at the classical 
level, the state is instantaneously reinterpreted in its higher-dimensional classical 
format.  

The difference in dimensional complexity between correlated quantum and 
classical frameworks (lower and higher, respectively) determines the basis for the 
“not” function operation. At both levels, the paradox mechanism plays a role, not 
as an anomaly but as the foundation of the segment relationship. 

7. Bell’s Inequality 

The experimental confirmation of Bell’s inequality demonstrates that classical 
particles separated in space and time obey quantum, not classical probability rules 
[8] (pp. 211-227). The unavoidable conclusion is that the experiment contradicts 
the absolute limit of communication at the speed of light, as posited by relativity 
theory. However, it does not directly invalidate the classical basis. 

“As in the case of the EPR paradox, it’s important to realize what Bell did not 
do. He did not discover an experimental situation in which non-local interactions 
are directly observed. Instead, he invented a simple argument based on experi-
mental results that indirectly demonstrated the necessary existence of non-local 
connections [8] (p. 220).” 

The 1-D geometric model’s basis applies to Bell’s inequality, wherein classical 
and quantum states coexist simultaneously in a “not” function relationship. Their 
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structures are not members of each other across the boundary between the two 
inconsistent dimensional platforms. 

8. Conclusions 

Formal logic and its applications in physics rely on the principle that rationalism 
constitutes the intrinsic foundation of Nature’s structure. It includes the implicit 
assumption that paradoxes are anomalies. The geometric model presents the op-
posing perspective that paradoxes are mechanisms rooted in a more fundamental 
foundation than can be defined within a consistent system of propositions.  

The geometric model demonstrates that the two paradoxically conjoined geom-
etries, with categorically inconsistent formats, are linked within a common foun-
dation by the cosine squared calculations. This is the same framework identified 
in Sections 1.1 and 1.2 for the paradox mechanism. 

Cantor’s diagonal slash argument demonstrates that the infinity of the real 
numbers between zero and one cannot be contained as a unitary state. Gödel’s 
incompleteness theorems illustrate the same principle for the rules that would ap-
ply to such a collection. 

Cantor’s and Gödel’s arguments point to the existence of a boundary that pro-
hibits the internal absolute completeness for the membership property of unitary 
states. The 1-D model completes the argument by first illustrating the mechanism 
that links members as inconsistent for their common property, and second, iden-
tifying the unitary state in which the segment structures cohabit. The mechanism 
of incompleteness is the paradox mechanism of the “not” function. 

8.1. Paradox’s Expression in Static and Emerging Frameworks 

The geometric model defines paradox’s role in two frameworks, static and emerg-
ing: 

Static: The inconsistent relationship between vector segments in Figure 2 (each 
representing a self-contained infinite state) is the paradox mechanism’s static for-
mat. 

Emerging: The structural complexity of the inner and outer circumference is 
dimensionally emergent. Vectors pointing eccentrically to the inner circumfer-
ence necessitate taking the square root, which indicates that the region of the inner 
circumference is one-dimensional. In contrast, the hypotenuse connected across 
the outer circumference does not require the square root function, signifying that 
the outer circumference has a two-dimensional, classical basis. 

Although the 1-D geometry has a limit based on the two-dimensional flat plane, 
the further development of dimensional complexity in a higher-dimensional 
model is theoretically not restricted, all within a boundary defined as infinity. 

8.2. Detecting Quantum States from the Classical Platform 

Formal mathematics’ inherent and unavoidable bias is that it is restricted to inter-
preting dimensional structure on a consistent basis, applying the power function. 
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However, raising a quantum state to the classical platform by a squaring operation 
conceals its native format, having only one dimension.  

The quantum state examined in Section 4 for the half-silvered mirror experi-
ment is represented on the two-dimensional classical plane, despite the vertical 
orthogonal axis (iy) being imaginary. In other words, on a classical basis, the ver-
tical axis does not exist, and the representation in two dimensions, although nec-
essary from a geometric perspective, is misleading for the native structure of the 
quantum state. 

A deductive mathematical proof for the role of paradox is not possible because 
paradox is viewed as an anomaly in formal logic from the outset. Instead, an in-
ductive argument is needed to reveal the relationship structure obscured from di-
rect formal interpretation. 

The only exception to the prohibition on measuring a quantum state in its na-
tive dimensional framework is the “weak measurement” technique [9]. When a 
quantum state is only “weakly” disturbed, data collected from a large sampling 
can replicate the native quantum basis of phenomena without causing a complete 
collapse of the state.  

Nevertheless, the quantum-level statistical results from these experiments do 
not conform to classical probability rules. The negative probability values pro-
duced in the experiments hold no meaning in classical terms. 

Note: This paper further discusses the 1-D geometric model introduced in pre-
vious papers in the series [10]-[13]. 
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