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Abstract 
In this paper, we consider the existence and orbital stability of standing waves 
for the inhomogeneous Schrödinger equations with mixed fractional Laplacians 

( ) ( ) ( ) [ )1 2 2Δ Δ 0, , 0, ,s s N
ti x t x Tγ σψ ψ ψ ψ ψ−∂ − − − − + = ∈ ×  where  

2N ≥ , 2 10 1s s< < < , and 10 2sγ< < . In the 2L -subcritical case, i.e.,  

120 s
N
γσ −

< < , we establish the existence and orbital stability of standing 

waves. Our approach is based on the concentration-compactness principle in 
the fractional Sobolev spaces 1sH  for ( )1 0,1s ∈ . 
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1. Introduction 

This article focuses on studying the existence and orbital stability of standing 
waves for the inhomogeneous Schrödinger equations with mixed fractional 
Laplacians  

( ) ( ) ( ) [ )
( ) ( )

1 2 2

0

Δ Δ 0, , 0, ,
0, ,

s s N
ti x t x T

x x

γ σψ ψ ψ ψ ψ
ψ ψ

− ∂ − − − − + = ∈ ×


=

     (1.1) 

where [ ): 0, NTψ × →   is the complex valued function with 0 T< ≤ ∞ ,  

2N ≥ , 2 10 1s s< < < , 1

1

20
2

s
N s

γσ −
< <

−
, and 10 2sγ< < . The fractional Laplacian  

( )s−∆  is characterized as ( )( )( ) ( )( )2ssψ ξ ξ ψ ξ−∆ =   for Nξ ∈ , where 
  is the Fourier transform. 
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In recent years, the fractional Schrödinger equation has attracted widespread 
attention. Motivated by a variety of applications, remarkable progress has been 
achieved, as can be seen in [1]-[14]. Laskin initially introduced the fractional 
Schrödinger equation in [15] [16]. During the early research on this equation, the 
focus was mainly on the Hartree-type nonlinearity ( )2x γ ψ ψ− ∗ , as shown in 
[17]-[20]. However, regarding the local nonlinearity 2σψ ψ , the authors in [21] 
[22] investigated the well-posedness and ill-posedness in Sobolev space sH . 
Recently, Boulenger et al. established the sufficient conditions for the blow-up in 
finite time of radial solutions in N  in [23]. Nevertheless, for the mixed 
fractional inhomogeneous Schrödinger equation, as mentioned in [24] [25], there 
are currently very limited known results. 

Equation (1.1) significantly broadens the application scope compared to 
equations with a single fractional Laplacian operator. It can describe a wider 
spectrum of physical scenarios. For example, the combination of fractional Laplacian 
operators of different orders can be used to depict the motion and interactions of 
particles in non-uniform media within special quantum-mechanical systems. 
Moreover, from a practical application perspective, Equation (1.1) has potential 
value in various fields. In population dynamics, for instance, the nonlinearity 

2x γ σψ ψ−  in Equation (1.1), analogous to the interaction patterns among 
population individuals, is vital for studying population distribution and evolution, 
as reported in references [26] [27]. For Equation (1.1) with 0γ = , the authors 
derived the existence and dynamics of solutions in mass-critical and supercritical 
cases by using the mountain pass lemma in [24]. In addition, the authors 
employed the constrained variational approaches to give a complete description 
of the existence of the normalized solution in [25], and this study addressed the 
mass-subcritical, critical and supercritical cases. However, there had been very 
little research on the situation when 0γ ≠  before. In this paper, we consider the 
case of 0γ >  for Equation (1.1). Moreover, in terms of research methods, this 
paper makes improvements on the deficiencies of predecessors in dealing with the 
non-locality of the fractional Laplacian operator and the nonlinearity  

2x γ σψ ψ− . In the proof of the existence of solutions, the application mode of 
the concentration-compactness principle is optimized to make it more suitable 
for this equation. In addition, based on the applicability of the current theory and 
in order to obtain clearer research results, this paper only studies the properties 
in the mass-subcritical case. Equation (1.1) admits a class of special solutions, 
which are called standing waves, namely solutions of the form ( )ei tu xω , where 
ω∈  is a frequency and ( )1s Nu H∈   is a nontrivial solution to the elliptic 
equation  

( ) ( )1 2 2Δ Δ .s su u u x u uγ σω −− + − + =               (1.2) 

Equation (1.2) is variational, whose action functional is defined by  

( ) ( ) 2
2 ,

2 LS u E u uω
ω

= +                   (1.3) 

where the corresponding energy ( )E u  is defined by  
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( ) ( ) ( )
1 2

2 2
2 2

2 2

2 2

1 1 1: Δ Δ d .
2 2 2 2 N

s s
E u u u x u xγ σ

σ
− += − + − −

+ ∫    (1.4) 

It is interesting to study solutions of (1.2) having prescribed 2L -norm. That is, 
for any given constant 0c > , consider solutions of (1.2) with the 2L -norm 
constraint  

( ) ( ){ }1 2

2: ; .s NS c u H u c= ∈ =             (1.5) 

Physically, such solution is called normalized solution to (1.2). In this case, the 
frequency ω∈  is determined as Lagrange multiplier associated with ( )S c  
and is unknown. 

For Equation (1.1), one of important problems is to consider the stability of 
standing waves, which is defined as follows. 

Definition 1.1. The set   is orbitally stable if for any given 0ε > , there 
exists 0δ >  such that for any data 1

0
sHψ ∈  satisfying  

10inf ,sHu
uψ δ

∈
− <


 

the corresponding solution ( )tψ  of (1.2) satisfies  

( ) 1inf ,sHu
t uψ ε

∈
− <


 

for any 0t > .  

In the 2L -subcritical case, i.e., 120 s
N
γσ −

< < , by using the Gagliardo-

Nirenberg inequality (2.3), we find that ( )E u  restricted to ( )S c  is bounded  

from below for any 0c > . Therefore, we consider the following constrained 
minimization problem  

( )
( )

( ): inf .
u S c

m c E u
∈

=                       (1.6) 

In this case, we prove the existence of the solution to variational problem (1.6) 
by using the concentration compactness principle. However, compared with the 
work in [24] [25], one of the main difficulties is that due to the inhomogeneous 
nonlinearity 2x u uγ σ− , Equation (1.1) does not possess translational invariance. 
In order to overcome the difficulties, we prove the boundedness of any translation 
sequence by using a similar argument in [19]. Denote the set of all minimizers of 
(1.6) by  

( ){ }1 ; is a minimizer of the variational problem 1.6 .s
c u H u= ∈    (1.7) 

It is standard that for any c cu ∈ , there exists a cω ∈  such that ( ),c cu ω  
solves Equation (1.2), and ( )e ci t

cu xω  is a standing wave solution of (1.1) with the 
initial data 0 cuψ = .  

Theorem 1.2. Let 2N ≥ , 2 10 1s s< < < , 10 2sγ< < , 120 s
N
γσ −

< < , and  

0c > . Then the minimizing problem (1.6) has a positive normalized solution 
1su H∈ , and it satisfies (1.2) for some 0ω > .  
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In view of Definition 1.1, in order to study the stability, we require that the 
solution of (1.1) exists globally, at least for initial data 0ψ  sufficiently close to 

c . In fact, in the 2L -subcritical case, all solutions for the nonlinear Schrödinger 
Equation (1.1) exist globally. Therefore, we can obtain that if the initial value is 
close to an orbit in the set c , then the solution of (1.1) remains close to the 
orbit in the set c . Our main results are as follows: 

Theorem 1.3. Let 2N ≥ , 2 1 1
2 1

N s s
N

< < <
−

, 10 2sγ< < , and  

120 s
N
γσ −

< < . Then, the c  is orbitally stable.  

Notation. For any ( )0,1s∈ , the definition of the fractional order Sobolev 
space ( )s NH   is as follows  

( ) ( ) ( ) ( ){ }222 ; ˆ1 d ,N
ss N NH u L uξ ξ ξ= ∈ + < ∞∫   

endowed with the norm  

( ) ( ) ( )2 ,s N N s NH L Hu u u= +
  

 

where,  

( ) ( ) ( ) ( )
2

1
2 2

2
2 d ds N

N N

s

N sH
L

u x u y
u u x y

x y +
×

 −
 = −∆ =
 − 
∫∫ 

 

 

is the so-called Gagliardo semi-norm of u . We use ( )s N
radH   to denote the 

subspace of ( )s NH  , consisting of radially symmetric functions in ( )s NH  . 
In this paper, we often use the abbreviation ( )2 2 NL L=  , ( )s s NH H=  . 

2. Preliminaries 

In this section, we recall some preliminary results that will be used later. Firstly, 
we recall the local well-posedness for the Cauchy problem (1.1), which can be 
proved by using the methods in [24], and the process is standard.  

Lemma 2.1. Let 2N ≥ , 2 1 1
2 1

N s s
N

< < <
−

, 10 2sγ< < , and  

1

1

20
2

s
N s

γσ −
< <

−
. Then, for any 1

0
s
radHψ ∈ , there exists a constant ( )10: sHT T ψ=   

and a unique maximal solution ( ) [ )( )10, , s
radt C T Hψ ∈  to the problem (1.1) 

which satisfies the alternative: either T = ∞  or T < ∞  and ( ) 1sH
tψ →∞  as 

t T −→ . In addition, the solution ( )tψ  satisfies the following conservations of 
mass and energy  

( ) 22 0 ,LL
tψ ψ=                       (2.1) 

and  

( )( ) ( )0 ,E t Eψ ψ=                      (2.2) 

for all 0 t T≤ < , where ( )( )E tψ  is defined by (1.4).  
Next, we display the Gagliardo-Nirenberg inequality in ( )1sH  .  
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Lemma 2.2. ([28]) Let 2N ≥ , 0 1s< < , 20
2

s
N s

γσ −
< <

−
, and 0 2sγ< < , then  

( ) ( )
2 2 12 2 2 22, , ,d d d ,N N N

N
Nss

s
N sx u x C u x u x

σ γ
σ γσγ σ

σ γ

+
+

+ −− +  
≤ −∆  

 
∫ ∫ ∫  

  (2.3) 

where , , , 0N sC σ γ >  denotes the optimal constant, and  

( ) ( )
( ) ( )

2 2
, , . 2

2 1 2 1
1 ,

2 1

N
s

N s
s s

C
N s N

σ γ

σ
σ γ

σ σ
σ γ σ σ γ

+

−+ + 
= − Φ + + − + 

 

moreover, Φ  is the solution of the following equation:  

( ) 2 .s x γ σ−−∆ Φ +Φ = Φ Φ  

Furthermore, we present an estimate of the nonlinear term.  
Lemma 2.3. Let 10 2sγ< < , ( )1 0,1s ∈ . if ( )1su H∈  , then  

( )2 2 2 21

2 2 2 2 2 2 ,mL LL
x u C u uσ σ

γ σ σ σ
+ +

− + + +≤ +                (2.4) 

and  

11

2 2 2 2 ,sHL
x u C uγ σ σ− + +≤                     (2.5) 

where 2 1
2 2 2

N Nm
N Nγ σ

< <
− − +

 and 1

1

20
2

s
N s

γσ −
< <

−
.  

Proof. We deduce from Hölder’s inequality that  

( ) ( )( ) 2 2

2 2 2 2 2 2

1 1

1 1
2 2 2 2

1 1

d d d

d d .

N x x

q mq m
Lx x

x u x x u x x u x

x x u x u σ

γ σ γ σ γ σ

γ σ σ
+

− + − + − +

≤ ≥

− + +

≤ ≤

= +

≤ +

∫ ∫ ∫

∫ ∫



 

where 1 1 1
q m
+ = . When q Nγ < , we choose 2 1,

2 2 2
N Nm

N Nγ σ
 

∈ − − + 
, then 

(2.4) holds. In addition, by the Sobolev inequality, we have ( )1s NH  ↪ 

( )2 2 NL σ +  , where *

1

2 22 2 2 2
2

N
N s

γσ −
< + < <

−
, thus (2.5) holds.  

□ 
We cite the concentration-compactness principle of [29], but we need to 

operate some modifications due to the difference of the parameters.  
Lemma 2.4. ([29]) Let 2N ≥ . Suppose { } 1

0
s

n n
u H

>
⊂  and satisfy  

( ) 2
d 0,N nu x x µ= >∫                     (2.6) 

1
0

sup .sn H
n

u
>

< ∞                        (2.7) 

Then there exists a subsequence { }
0kn k

u
>

, for which one of the following 
properties holds. 

i) Compactness: There exists a sequence { }
0kn k

y
>

 in   such that, for any 
0ε > , there exist 0 r< < ∞  with  

https://doi.org/10.4236/jamp.2025.134067


W. L. Du 
 

 

DOI: 10.4236/jamp.2025.134067 1263 Journal of Applied Mathematics and Physics 
 

( )
2

d .
knk

nx y r
u x x µ ε

− ≤
≥ −∫                    (2.8) 

ii) Vanishing: For all r < ∞ , it follows that  

( )
2

lim sup d 0.
kN

nx y rk y
u x x

− ≤→∞ ∈

=∫


                  (2.9) 

iii) Dichotomy: There exists a constant ( )0,β µ∈  and two bounded sequences 
{ } { } 1

0 0
, s

k kk k
v w H

> >
⊂  such that  

,k ksuppv suppw∩ =∅                     (2.10) 

,
kk k nv w u+ ≤                       (2.11) 

( )2 2
2 2, as ,k kL Lv w kβ µ β→ → − →∞            (2.12) 

2 2
1

1

20 for 0 ,
2kn k k L

su v w
N sσ σ+− − → ≤ <
−

          (2.13) 

( ) ( ) ( ){ }1 1 1liminf Δ , Δ , Δ , 0.
k k

s s s
n n k k k kk

u u v v w w
→∞

− − − − − ≥    (2.14) 

Finally, we present another version of the vanishing proved in [30].  
Lemma 2.5. ([30]) Let 2N ≥ . Assume that { }ku  is bounded in ( )1s NH  , 

and that it satisfies  

( ) 2
lim sup d 0,

N
kx y rk y

u x x
− ≤→∞ ∈

=∫


 

where 0r > . Then 0ku →  in ( )2 2 NL σ +   for 1

1

20
2

s
N s

σ< <
−

.  

3. Orbital Stability of Standing Waves 

In this section, we study the existence and stability of standing waves to (1.1) in 
the mass-subcritical case. 

Proof of Theorem 1.2. We proceed in four steps. 
Step 1. Prove that the variational problem (1.6) is well-defined, and there exists 

a positive constant 0 0c >  such that ( ) 0 0m c c≤ − < . We deduce from the 
Lemma 2.2 and Young’s inequality that there exists a constant 0C >  such that  

for any 10
2

ε< < , the following inequalities hold:  

( ) ( ) ( ) ( )

( ) ( )

1 2 1 1
1

1 2

2 2 2 2
2 2 2

2
2 2 2

2 2

2 2

2 2

1 1Δ Δ Δ
2 2

1 Δ Δ ,
2

N Ns s s s s

s s

E u u u C u u

u u K

σ γ σ γσ

ε

+ −
+ −

≥ − + − − −

  ≥ − − + − −     

   (3.1) 

where 0 K< < ∞ . This result implies that ( )m c− < ∞ , which indicates that the 
variational problem (1.6) is well-defined. 

On the other hand, it is evident that ( )S c ≠ ∅ . Let ( )u S c∈  and 0λ > .  

Define ( ) ( )2:
N

u x u xλ λ λ=  for Nx∈ . Through straightforward calculations,  

we obtain 
22

u uλ =  and  
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( ) ( ) ( )
1 2

1 2

2 2
2 22 22 2

2 2

1 1 1: Δ Δ d .
2 2 2 2 N

s s
s s NE u u u x u xγ σγ σ

λ λ λ λ
σ

− ++= − + − −
+ ∫   (3.2) 

Since 12N sγ σ+ < , when λ  is small enough, we can deduce that ( ) 0E uλ < . 
Thus, there exists a positive constant 0 0c >  such that ( ) 0 0m c c≤ − < . 

Step 2. Estimates of the minimizing sequence { } 0n n
u

>
 for (1.6). Since  

{ } ( )0n n
u S c

>
∈ , the sequence { } 0n n

u
>

 is bounded in 2L . As can be observed from  

(3.1), ( )
1

2

2

2

Δ
s

nu− < ∞ . Therefore, { } 0n n
u

>
 is bounded in 1sH . Moreover, given 

that ( ) 0 0m c c≤ − < , we obtain ( ) 0

2n
cE u ≤ −  for n  large enough. From this, we  

can further deduce that  

( )2 2
0d 1 .N nx u x cσγ σ+− ≥ +∫                 (3.3) 

Step 3. We show that the vanishing and dichotomy cases do not occur. Let 
{ } 0n n
u

>
 be a minimizing sequence of (1.6). Note that through scaling operations, 

we can assume 1µ = . Obviously, { } 0n n
u

>
 is also a minimizing sequence of 

(1.6). Thus, without loss of generality, we may suppose that { } 0n n
u

>
 is 

nonnegative. We now apply Lemma 2.4 to the minimizing sequence { } 0n n
u

>
. 

Firstly, we claim that vanishing cannot occur. Indeed, if not, applying Lemma 
2.5, we have 0

knu →  in 2 2L σ + , and combined with Lemma 2.3, we can get that  
2 2

d 0 as ,N knx u x k
σγ +− → →∞∫  

which is a contradiction with (3.3). 
Next, we show dichotomy cannot occur. If not, there exist a constant ( )0,1β ∈  

and two sequences { } 0k k
v

>
 and { } 0k k

w
>

 which are introduced in Lemma 2.4. It 
follows from (2.13) and (2.14) that  

( ) ( ) ( )( )liminf 0.
kn k kk

E u E v E w
→∞

− − ≥  

Hence,  

( ) ( )( ) ( ) ( )liminf liminf .
kk k nk k

E v E w E u m c
→∞ →∞

+ ≤ =           (3.4) 

On the other hand, given 1su H∈  and 0a > , we have  

( ) ( )
2

2 2
2

1 1 d .
2 2 N

aE u E au x u x
a

σ
γ σ

σ
− +−

= +
+ ∫  

Applying the above inequality with kv  and 
2

1
k

k L

a
v

= ,  and since 

( )k ka v S c∈ ,  

we obtain that  

( ) ( ) 2
2 2

2
1 d .

2 2 N
k

k k
k

m c aE v x v x
a

σ
σγ

σ
+−−

≥ +
+ ∫             (3.5) 

Similarly,  
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( ) ( ) 2
2 2

2
1 d ,

2 2 N
k

k k
k

m c bE w x w x
b

σ
σγ

σ
+−−

≥ +
+ ∫            (3.6) 

with 
2

1
k

k L

b
w

= , and so  

( ) ( ) ( )( )
2

2 22 2

2
2 2

1 d
2 2

1 d .
2 2

N

N

k
k k k k k

k
k

aE v E w m c a b x v x

b x w x

σ
σγ

σ
σγ

σ

σ

+−− −

+−

−
+ ≥ + +

+
−

+
+

∫

∫





 

Note that 2
ka β− →  and 2 1kb β− → −  by (2.12). It follows from 0 1β< <  that  

( ){ }: min , 1 1.σσθ β β −−= − >  

Therefore, using (2.11) and (3.3) we deduce that  

( ) ( )( ) ( )

( ) ( )

2 2

0

1liminf liminf d
2 2

1 ,
2

N kk k nk k
E v E w m c x u x

m c c m c

σγθ
σ
θ

+−

→∞ →∞

−
+ ≥ +

+
−

≥ + >

∫


 

which contradicts (3.4). 
Finally, since we have ruled out both vanishing and dichotomy, we conclude that 

indeed compactness occurs. Applying Lemma 2.4, we deduce that there exists a 
subsequence { }

0kn k
u

>
 and a sequence { }

0k

N
n k

y
>
⊂   such that, for any 0ε > , 

there exist 0 r< < ∞  with  

( )
2

d .
knk

nx y r
u x x c ε

− ≤
≥ −∫  

Let ( ) ( )k k kn n nu u y⋅ = ⋅+ . Since { } 0n n
u

>
 is a radially bounded sequence in  

( )1s N
radH  , the embedding ( )1s N

radH  ↪ 2 2L σ +  is compact for any  

1

1

20,
2

s
N s

σ
 

∈  − 
 and 2N ≥ . Hence, there exists ( )1s N

radu H∈   such that  

knu u
  in ( )1s N

radH  , thus, 
knu u

  in 2 2L σ + . Therefore, we obtain  

( )
2

d ,
knx r

u x x c ε
≤

≥ −∫   

this implies ( ) 2
dN u x x c=∫ 


, i.e., 

knu u→   in 2L . By Sobolev Embedding 

Theorem,  

2 2 1

1

2in for all 0, .
2kn

su u L
N s

σ σ+  
→ ∈  − 

             (3.7) 

Step 4. Conclusion. We first prove that the sequence { }
0kn k

y
>

 is bounded. 
Indeed, for the sake of contradiction, that it is unbounded. Then, passing to a 
subsequence if necessary, we can assume that 

kny →∞  as k →∞ . Consequently, 
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from (3.7), we deduce that  

( ) ( )
2 2 2 2

d d 0 as .N Nk k kn n nx u x x x y u x x k
σ γ σγ + − +− = + → →∞∫ ∫ 

 
 

This leads to the following inequality  

( ) ( ) ( ) ( )

( )
( )

1 2 1 2
2 2 2 2

2 2 2 2

2 2 2 2

1 1 1 1lim
2 2 2 2

lim

.

k k

k

s s s s

n nk

nk

u u u u

E u

m c

→∞

→∞

 
  
 

−∆ + −∆ ≤ −∆ + −∆

=

=

   

 

By the definition of ( )E u , we obtain  

( ) ( )2 21 d ,
2 2 NE u x u x m cγ σ

σ
− ++ ≤

+ ∫ 


 

which implies ( ) ( )E u m c≤ . However, since 2
2

Lu c= , we know that  
( ) ( )E u m c≥ . This is a contradiction. Thus, the sequence { }

0kn k
y

>
 is bounded. 

Then, there exists some 0
Ny ∈  such that 0kny y→  as k →∞ . We  

consequently deduce from (3.7) that for all 1

1

20,
2

s
N s

σ
 

∈  − 
 

( ) ( ) ( ) ( )2 2 2 2 2 20 0 0
k k k kn n n nL L L

u u x y u u x y u x y u x yσ σ σ+ + +
− − ≤ − − + − − − →     

as k →∞ . Let ( ) ( )0u x u x y= − , then ( )u S c∈ . Combining this with the week 
lower semicontinuity of the 1sH -norm, this implies  

( ) ( ) ( )lim .
knk

E u E u m c
→∞

≤ =  

According to the definition of ( )m c , we conclude that ( ) ( )E u m c= . In 
particular, since ( ) ( )

knE u E u→ , it follows that  

( ) ( )
1 1
2 2

2 2

Δ Δ as .
k

s s

nu u k− → − →∞  

This implies that 
knu u→  in ( )1s NH   as k →∞ , and thus the proof is 

complete. 
□ 

Remark 3.1. When 120 s
N
γσ −

< < , we can obtain the global existence of (1.1)  

by using (2.1), (2.2) and (2.3). Indeed, we have that  

( ) ( )( ) ( ) ( )

( ) ( )

( ) ( )

1 2

1 1 11 1

1 1 11 1

2 2
2 2

2 20
2 2

2 2 2, , ,
2 2
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2 2

2 2 2 2, , ,
2 2 0 2

2 2

1 1 1Δ Δ d
2 2 2 2

1 Δ Δ
2 2 2

1Δ Δ .
2 2 2

N

s s

N Ns s sN s s

N Ns s sN s s

E E t x x

C

C

γ σ

σ γ σ γσσ γ

σ γ σ γσσ γ

ψ ψ ψ ψ ψ
σ

ψ ψ ψ
σ

ψ ψ ψ
σ

− +

+ +
+ −

+ +− + −

= = − + − −
+

≥ − − −
+

 
 = − − − + 
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It follows that [ ) ( )
1

2

2
0,

2

sup Δ
s

t T ψ∈ − < ∞  if 12s
N
γσ −

< , which implies that 

1sHψ ∈ . 

Proof of Theorem 1.3. 
We prove this theorem by contradiction. According to Remark 3.1, if 1

0
sHψ ∈ ,  

2 1 1
2 1

N s s
N

< < <
−

, and 120 s
N
γσ −

< < , then the solution ( ),t xψ  of (1.1) exists  

globally and ( ) 1, sH
t xψ  is bounded. Assume that exist 0 0ε >  and a sequence 

{ }0, 1n n
ψ

∞

=
 such that  

10,
1inf ,sn Hu

u
n

ψ
∈

− <


                       (3.8) 

and there exists a sequence { } 1n n
t ∞

=
 such that the relevant solution sequence 

( ){ } 1n n n
tψ

∞

=
 of (1.2) satisfies  

( ) 1 0inf .sn n Hu
t uψ ε

∈
− ≥


                     (3.9) 

It follows from (3.8) and the conservation laws that as n →∞  

( ) ( ) ( ) 22 2

22 2
0,, ,n n n LL L

t x x x cψ ψ ψ= → =  

and  

( )( ) ( ) ( ) ( )0, .n n nE t E E m cψ ψ ψ= → =  

Therefore, ( ){ } 1n n n
tψ

∞

=
 is a minimizing sequence of the variational problem 

(1.6). According to Theorem 1.2, we deduce that there exists a minimizer cω∈  
such that as n →∞  

( ) 1
0,sn n H

tψ ω− →                     (3.10) 

which contradicts with (3.9). This completes the proof. 
□ 
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