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Abstract 
In this paper, the problem of dynamic event-triggered impulsive control for a 
class of nonlinear systems is studied. Based on the input-to-state stability re-
sults of nonlinear systems, a dynamic event-triggered control strategy is de-
signed to stabilize the nonlinear system, and the lower bound of triggering is 
set. By using Lyapunov method, a sufficient condition for the stabilization of 
nonlinear systems is obtained. The conservation of the original theorem is 
maintained while the number of transmissions is greatly reduced. Numerical 
simulations show the effectiveness of the theoretical results. 
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1. Introduction 

As a new control method, the idea of event-triggered control is to design the trig-
ger time and trigger conditions according to the characteristics and purpose of the 
system, and establish the event-triggered mechanism. When each trigger is trig-
gered, the controller is activated to perform the task. The difficulty lies in the bal-
ance between the design of the trigger condition and the control task. The event-
triggered mechanism makes it easier to find control time and save energy than 
time-triggered control. The event-triggered control mechanism not only opti-
mizes the resource utilization system, but also saves signal transmission resources 
and data computing resources. It is an efficient control method. At present, event-
triggered control has been widely concerned and applied to various systems, such 
as general nonlinear systems [1] [2], networked control systems [3] [4], multi-
agent systems [5]-[7] and so on. Dynamic event-triggered control can save more 
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energy. Therefore, it is of great significance to study the event-triggered control 
method. 

Impulsive system is a special hybrid system, including a given impulsive crite-
rion [8] and an ordinary differential equation. It has a wide range of applications 
in many fields, such as robot design engineering, ecological system engineering, 
network communication engineering, aerospace engineering [9]-[19]. Generally 
speaking, pulse effect includes pulse control and pulse interference. Impulsive dis-
turbance usually contains unstable pulses, which tests the robustness of the sys-
tem; Impulsive control usually includes stable impulses, and the stabilization of 
the system is considered. Pulse control is a discontinuous control, which can not 
only improve the confidentiality, save the control cost, but also enhance the ro-
bustness of the system. Impulse control is involved in many fields, such as money 
supply control in aviation financial market, celestial orbital adjustment, commu-
nication security and chaos synchronization. In recent years, scholars from many 
different fields have devoted themselves to using impulse control when studying 
the stability of the system. 

The combination of dynamic event triggering control [20] and pulse control is 
dynamic event triggering pulse control. rzén proposed the concept of event trig-
gered control [21]. Professor Tabuada proposed the event triggering strategy for 
nonlinear control systems. Professor A. Girard proposed a dynamic event trigger 
mechanism. Professor Li proposed event triggered pulse control [22]. These doc-
uments ensure the feasibility of this study. 

In this paper, the dynamic event triggered control of nonlinear systems is stud-
ied. The control mechanism of dynamic event trigger pulse and dynamic variable 
parameters are designed. Considering the problem of frequent trigger, the lower 
bound of trigger time is set. The final data simulation shows that the transmission 
times of dynamic event triggering mechanism is much lower than that of static 
event triggering mechanism. 

Notations. Let   be a positive integer set,   be the set of real numbers, 
+  be the set of nonnegative real numbers, and   be the n-demensional real 

space equipped with the Euclidean norm denoted by • . For a locally Lipschitz 
continuous function : nV +→  , D V+  denotes the upper right-hand Dini 
derivative. 0A >  denotes that A  is a symmetric and positive definite matrix. 

0A <  ( 0A ≤ ) denotes that A  is a symmetric and negative definite (semi-defi-
nite) matrix. I  is the identity matrix with appropriate dimensions. 

2. Preliminaries 

Consider the following control system with time delay: 

 ( ) ( ) ( )
( )

0

0 0

, , ,
,

x t f t x Bu t t t
x t x

 = + ≥
 =



 (1) 

where ( ) nx t ∈  is the system state; n mB ×∈  is the control gain; both  

: n nf + × →    and the control input [ )0: , mu t ∞ →   satisfy  
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( ) ( ),0 0 0f t u= =  so that the system (1) admits the trivial solution. In this study, 
we consider the hybrid impulsive control 

 ( ) ( ) ( )1 2 ,u t u t u t= +  

with the state feedback control. 

 ( )1 ,u kx t=  (2) 

where : n mk →   is the feedback control law, and the impulsive control 

 ( ) ( )( ) ( )2
1

,i
i

u t g x t t sδ
∞

=

= −∑  (3) 

where : n mg →   is the impulsive control law, ( )δ ⋅  denotes Delta dirac 
function, and the sequence of imimpulsive times { }i i

s
∈

 satisfies 00 it s≤ < , 
with i js s<  for i j< , and limi is→∞ = ∞ . Hence, the closed-loop system (1) re-
placed by (2) and (3) can be rewritten as an impulsive system 

 

( ) ( ) ( )
( ) ( )( )

( )0 0

, , ,

,

.

i

i i

x t f t x Bk x t s

x s Bg x s i

x t x

−

 = + ≠
∆ = ∈


=



  (4) 

Definition 1. We refer the reader to [23] for a detailed discussion on transfor-
mation of control system (1) into impulsive system (4). 

System is said to be input-to-state stable (ISS) with respect to input u , if there 
exist functions β ∈  and γ ∞∈  such that, for each initial condition 

0
nx ∈  and input function [ )( )0 , , mu t∈ ∞  , the corresponding solution to 

(1) exists globally and satisfies 

 ( ) ( )
[ ]

( )
0

0 0
,

, sup ,
s t t

x t x t t u sβ γ
∈

 
≤ − +  

 
 

for all 0t t> .  
The relevant theorems can be found in the literature. 
Theorem 1. Assume that there exist functions 0V v∈  and 1 2, ,α α χ ∞∈ , 

and constants 0l > , such that, for all , nt x+∈ ∈   and 0
nϕ ∈ ,  

(1) ( ) ( ) ( )1 2,x V t x xα α≤ ≤ , 

(2) ( ) ( ) ( ), ,D V t x lV t x uχ+ ≤ − + . 

Then system (1) is ISS. 
To design the event-triggered implementation of 1u , we consider system with 

0g =  and state-feedback control as follows: 

 
( ) ( ) ( )
( ) ( )( ) [ )
( )

1

1 1

0 0

, ,
, ,

.
i i i

x t f t x Bu t
u t k x t t t t

x t ϕ
+

 = +


= ∈
 =



 (5) 

Let us define the state measurement error by 

 ( ) ( ) ( )it x t x t= −e  
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for [ )1,i it t t +∈  with i∈ , and then rewrite 

 ( ) ( ) ( ) ( )( )1 ,iu t kx t k t x t= = +e  (6) 

Substituting (6) into system (5) gives the following closed-loop system: 

 ( ) ( ) ( )
( )0 0

, ,
.

x t f t x Bk x
x t ϕ

 = + +
 =

 e
 (7) 

We make the following assumption on the control system (7).  
Assumption 1. There exist functions 0V v∈  and 1 2, ,α α χ ∞∈ , and con-

stants 0l >  such that all the conditions of Theorem 1 hold for system (7) with 
input u  replaced with e . 

It can be seen from Theorem 1 that Assumption 1 guarantees that closed-loop 
system (7) is ISS with respect to measurement error e , and system (7) is GAS 
provided 0=e . Next, an execution rule is designed to determine the updated 
time order { }i i

t
∈

 of the feedback controller 1u  so that the closed-loop system 
after replacing u  with e  is still GAS. To do so, we restrict e  to satisfy 

 ( ) ( )1 xχ σα≤e  

for some 0σ > . Then the dynamics of V  is bounded by 

 ( ) ( ) ( ) ( ) ( )1, , , .D V t x lV t x x l V t xσα σ+ ≤ − + ≤ − −  

This guarantees the control system (7) is GAS provided lσ < . The updating 
of the control input 1u  can be triggered by the execution rule (or event) 

 ( ) ( )1 xχ σα≥e  

The event times are the instants when the event happens, that is, 

 ( ) ( ) ( )( ){ }1 1inf | 0 ,i it t t t xη θ σα χ+ = ≥ + − ≤e  (8) 

 
( ) ( )( )
( )

0

0 0

, for ,

,

t t t t

t

η α η

η η

 = − ≥


=



 

where α ∈  and 0θ > . 
According to the control law (8), the control input is updated at each it  (the 

error e  is set to zero simultaneously) and remains constant until the next event 
time 1it + , and then the error e  is reset to zero again. Therefore, the proposed 
event times ensures the GAS of control system (5). 

Lemma 1. Let α  be a locally Lipschtiz continuous ∞  and 0η +∈ ,Then, 
0η ≥  for all [ )0,t∈ ∞ . 

Definition 2. (Zeno Behavior). If there exists 0T >  such that 1t T≤  for all 
l∈ , then system (5) is said to exhibit Zeno behavior.  

To proceed, let us define a sequence of event-time candidate 

 ( ) ( ) ( )( ){ }1 1 1inf | 0 .i i i it t t t x t t hη θ χ σα+ += ≥ + − ≤ ∧ ≥ +e  (9) 

We let ( ) ( )1 1i ix t Bg x−
+ +∆ =  when 1i it t h+ = + , and update the feedback con-

trol at each 1it + . According to the principle of event triggering (9), the system can 
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be rewritten as: 

 

( ) ( ) ( )
( ) ( )( ) [ )
( ) ( )

( )

1

1 1

1 1 1

0 0

, ,
, ,

, if ,

.

i i i

i i i i

x t f t x Bu t
u t k x t t t t

x t Bg x t t h

x t ϕ

+

−
+ + +

 = +
 = ∈

∆ = = +
 =



 (10) 

Theorem 2 will be given below to guarantee the system (10) GAS. To prove 
Theorem 2 and Lemma 2 is given. 

Lemma 2. ( ) kα η η≥  and 0η +∈ . Then, 0η ≥  and  
( ) ( ) ( ) 0t V t tη= + ≥  for all [ )0,t∈ ∞ . 

Next, we prove Theorem 2. 

3. Main Results 

Theorem 2. Suppose that Assumption 1 holds on. For some 0h > , the event 
times { }i i

t
∈

 are created by event-triggered mechanism with positive constant 
lσ < . If 1i it t h+ = + , we assume there exist constants c  satisfying the following 

conditions  
(i) for [ )1,i it t t +∈ , ( ) ( ), ,D V t x cV t x+ ≤ , 

(ii) ( ) ( )( )( ) ( )( )1 1 1 1 1, ,i i i i iV t x t Bg x t V t x tρ− − − −
+ + + + ++ ≤ , 

(iii) ( ) kα η η≥  and ( ) ( )1 1i it tη ρη −
+ +≤ , 

(iv) 
1 expch

ρ
>  and 1k

θ
> . 

Then the system (10) is GAS. 
Proof. Condition (iv) indicates there exists a constant  

10 min ,l kλ σ
θ

 < < − − 
 

 such that 

 ( )exp 1 exp .c h
λτ

λ

ρ ρ
+≥ ≥  

Next, we prove that the inequality 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 0
2 0 0

1 exp expt t t tt V t t x tλ λη α η
ρ

− − − −= + ≤ +  (11) 

holds at [ )0 1,t t . But we must discuss it in two cases. 
Case 1: When 0 1t t h> + , the inequality (11) obviously holds at [ )0 1,t t . Easily 

obtained 

 ( ) 1
D D V

l V k

η

σ η
θ

λ

+ += +

 ≤ − − − − 
 

≤ −





 

for all [ )0 1,t t t∈ . 
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Thus, 

 
( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )

0

0 0

0 0

2 0 0

exp

1 exp exp

t t

t t t t

t V t t

x t

λ

λ λ

η

α η
ρ

− −

− − − −

≤ +

≤ +


 

We prove that the inequality (11) holds at [ )0 1,t t  in Case 1. 
Case 2: When 0 1t t h= + , the inequality (11) also holds at [ )0 1,t t . Easily ob-

tained 

 
D D V

cV k
c

η
η

+ += +
≤ −
≤




 

for all [ )0 1,t t t∈ . 
Thus, 

 
( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )

0

0 0

0 0

2 0 0

exp

1 exp exp .

c t t

t t t t

t V t t

x tλ λ

η

α η
ρ

−

− − − −

≤ +

≤ +


 

We prove that the inequality (11) holds at [ )0 1,t t  in Case 2. 
Through the proof of two cases, we can get that the inequality (11) holds at 

[ )0 1,t t . Now suppose that the inequality (11) holds at any )1,p pt t t−∈   where 
1p ≥ . That is, the inequality (11) holds at )0 , pt t t∈   where 1p ≥ . 

Then, we prove that the inequality (11) also holds at )1,p pt t t +∈   where 
1p ≥ . But we must discuss it in four cases. 

Case 1: When 1p pt t h−= +  and 1p pt t h+ > + , we prove that the inequality (11) 
holds at )1,p pt t t +∈  . We can easily get 

 
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

0 0

0 0

2 0 0

2 0 0

1 exp exp

exp exp

n n

n n

t t t t
n

t t t t

t x t

x t

λ λ

λ λ

α η ρ
ρ

α η

− − − −

− − − −

≤ +

= +


 

and 

 .D λ+ ≤ −   

Thus, 

 
( ) ( )

( ) ( ) ( ) ( )( )0 0
2 0 0

exp
1 exp exp .

nt t
n

t t t t

t

x t

λ

λ λα η
ρ

− −

− − − −

≤

≤ +

 
 

We prove that the inequality (11) holds at )1,p pt t +  in Case 1. 
Case 2: When 1p pt t h−= +  and 1p pt t h+ = + , we prove that the inequality (11) 

holds at )1,p pt t t +∈  . We can easily get 

 ( ) ( ) ( ) ( ) ( )( )0 0
2 0 0exp expn nt t t t

nt x tλ λα η− − − −≤ +  

and 

 .D c+ ≤   
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Thus, 

 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )( )0 0
2 0 0

exp
1 exp

1 exp exp .

n

n

c t t
n

t t
n

t t t t

t

t

x t

λ

λ λ

ρ

α η
ρ

−

− −

− − − −

≤

≤

≤ +

 

  

We prove that the inequality (11) holds at )1,p pt t +  in Case 2. 
Case 3: When 1p pt t h−> +  and 1p pt t h+ > + , we prove that the inequality (11) 

holds at )1,p pt t t +∈  . Easily obtained 

 ( ) ( ) ( ) ( ) ( )( )0 0
2 0 0

1 exp expn nt t t t
nt x tλ λα η

ρ
− − − −≤ +  

and 

 .D λ+ ≤ −   

Thus, 

 
( ) ( )

( ) ( ) ( ) ( )( )0 0
2 0 0

exp
1 exp exp .

nt t
n

t t t t

t

x t

λ

λ λα η
ρ

− −

− − − −

≤

≤ +

 
 

We prove that the inequality (11) holds at )0 1, pt t + . 
Case 4: When 1p pt t h−> +  and 1p pt t h+ = + , we prove that the inequality (11) 

holds at )1,p pt t t +∈  . Easily obtained 

 ( ) ( ) ( ) ( ) ( )( )0 0
2 0 0

1 exp expn nt t t t
nt x tλ λα η

ρ
− − − −≤ +  

and 

 .D c+ ≤   

Thus, 

 

( ) ( )

( ) ( )

( ) ( ) ( ) ( )( )0 0
2 0 0

exp
1 exp

1 exp exp .

n

n

c t t
n

t t
n

t t t t

t

t

x t

λ

λ λ

ρ

α η
ρ

−

− −

− − − −

≤

≤

≤ +

 

  

We prove that the inequality (11) holds at )1,p pt t +  in Case 4. 
Remark 1. Condition (i) describes the divergence rate of the V  function. 

Conditions (ii) and (iii) describe the pulse intensity. Condition (iv) gives the 
corresponding parameter relationship. In the example, c  is known, and the 
pulse intensity can be designed after setting h . The dynamic parameter η  The  
pulse intensity of can be less than ρ , and finally only need to give the numerical 

1k
θ

−  less than l σ−  and 0 0xη < , the three less than the inequality should 

not be greater than the case, otherwise it may lead to slow convergence rate. 
Dynamic event triggering mechanism includes static event triggering mecha-
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nism. When 0 0η = , the dynamic event trigger mechanism is the same as the 
static event trigger mechanism. The dynamic time trigger mechanism is unlikely 
to produce Zeno phenomenon, because the dynamic variable   eta  is not equal 
to zero, so it cannot be less than zero in a short time after the event is triggered, 
but can only be strictly greater than zero. The dynamic event trigger control mech-
anism in this paper also includes the static event trigger control mechanism and 
the dynamic time trigger control mechanism without pulses. 

Corollary 1. If 1 1
qc xα ≥ , then the system (10) is exponential stability. 

The proof of this theorem is simple and omitted. 

4. Application 

Consider the control problem of the nonlinear system 

 
( ) ( ) ( )( ) ( )
( ) ( )

0 0

,

,
i

i i

t

x t Ax t f x t u t t p

x p Cx p i
x x

 = + + ≠
∆ = ∈
 =



  (12) 

where ( ) ( ) ( ) ( ) T 3
1 2 3, ,x t x t x t x t  = ∈ , feedback control ( ) ( )u t Kx t=  with 

control gain K Iγ=  and 14.35γ = − , and initial condition  

[ ]T0 0.13, 0.28 0.15x = − −， . Matrix A  and function f  are given as follows: 

 
( )

( )
( ) ( )( )1 0 111 0

1 1 1 , 0 ,
0 0 0

m m sat x tm
A f x

αα α

β

 − −− + 
  = − =   
  −    

 

where 10α = , 16β = , 0 8 7m = − , 1 5 7m = − , and ( )sat z  is the saturation 
function defined as ( ) ( )1 1 2sat z z z= + − −  for z∈ . First, we consider the 
event-triggered implementation of the feedback control according to (8). Note 
that the control system can be written in the form of (7). We next choose the Lya-
punov function ( ) TV x x x= , where condition of Theorem 1 is clearly satisfied 
with. We have 

 ( ) ( ) ( )( )T T T T2 2 2V x x A A I x x f x t x eγ γ≤ + + + +  

 ( )( )T T 2 T2 2 1 ,x A A L I x e eγ γ+ + + + +  

which implies that condition holds with 

 ( )T 2 2 1 2.3444Ml A A Lλ γ= + + + + ≈ −  

 ( ) 2 Te eχ γ=e  

where ( )T
M A Aλ +  represents the largest eigenvalue of TA A+ . Choosing 

1.5σ = , the event-time candidates are determined as 

 ( ) ( ){ }T 2 T
1 1| 0 ,i i i it inf t t t x x e e t t hη θ σ γ+ += ≥ + − ≤ ∧ ≥ +  (13) 

https://doi.org/10.4236/jamp.2025.133044


Y. Y. Yu, S. S. Zheng 
 

 

DOI: 10.4236/jamp.2025.133044 852 Journal of Applied Mathematics and Physics 
 

where 0θ > , 

 
( ) ( )
( )
( ) ( )

0 0

1 1 1

, 0
, 0

,i i i i

t k t t
t t

t t t t h

η η
η η

η ρη −
+ + +

 = ≥ = ≤
 = = +



 (14) 

and 0 0η >  to be determined in the case of pulse. 
Next, we consider the conditions that the impulsive system satisfies when 

1i it t h+ = + , 

 

( ) ( ) ( )( ) ( ) [ )
( ) ( )

0

1

1 1 1

0

, for ,

, if

,

i i

i i i i

t

x t Ax t f x t u t t t t

x t Cx t t t h

x x

−

−
+ + +

 = + + ∈
∆ = = +


=



 

where 0C >  and 0h > . Consider the function ( ) ( )Tx x x tη= + , 

 
( ) ( )( )

( )( )

T T T T

T T T T

2 2 2

2 2 2 ,

D x A A I x x f x t x e

mx A A L m I x e x me e k

γ γ η

γ σ γ η
θ

+ ≤ + + + + +

 ≤ + + + + + − + − 
 


 

which implies condition (i) of Theorem 2 is satisfied with 

 ( )T 2 2 0A A L m c I I
I m

γ σ σ
σ

 + + + + −
≤ 

− 
 

 44.9555,c ≈  
 2.m =  

When 1i it t h+ = + , we have 

 ( )( ) ( )( ) ( ) ( )TT
1 1 1 ,i i iV x t x t I C I C x t− −
+ + += + +  

where 0.913I C I+ = ∗ . 
After determining the parameters such as , ,l c σ , we set 0.0032h =  to deter-

mine the pulse intensity. Using 1k
θ

−  less than l σ−  and 0 0xη < , we can de-

termine 100θ = , 0 0.44η = , 0.858k = . 

Figure 1 shows the static event trigger control mechanism, and Figure 2 shows 
the dynamic event trigger control mechanism. Figure 3 is the image of nonlinear 
system. Take 0.0032h = , 100θ = , 0 0.44η = , 0.858k = . It can be seen that 
the number of pulses triggered by dynamic events The mechanism was signifi-
cantly reduced. The most outstanding point is the dynamic event trigger control 
strategy The convergence speed is faster than the static event trigger control 
strategy. 

5. Conclusion 

In this paper, the dynamic event triggering control mechanism of nonlinear im-
pulsive systems is studied, the lower bound of triggering time is set, and the 
parameter setting of dynamic variables is given. The practice has proved that the 
dynamic event trigger mechanism can save more energy. However, this paper  
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Figure 1. Static event-triggered impulsive control strategy. 

 

 
Figure 2. Dynamic event-triggered impulsive control strategy. 
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Figure 3. Nonlinear System. 

 
does not study the influence of various parameters and the influence of noise, in-
terference and other factors. These effects will be studied in the future. 
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