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Abstract 
In this paper, we study a modified Leslie-Gower predator-prey model with 
Smith growth subject to homogeneous Neumann boundary condition, in which 
the functional response is the Crowley-Martin functional response term. Firstly, 
for ODE model, the local stability of equilibrium point is given. And by using 
bifurcation theory and selecting suitable bifurcation parameters, we find 
many kinds of bifurcation phenomena, including Transcritical bifurcation 
and Hopf bifurcation. For the reaction-diffusion model, we find that Turing 
instability occurs. Besides, it is proved that Hopf bifurcation exists in the 
model. Finally, numerical simulations are presented to verify and illustrate 
the theoretical results. 
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1. Introduction 

The interaction between predators and prey is an important process in main-
taining ecological balance in ecosystems. To better understand the dynamic be-
havior of this interaction, researchers have proposed many mathematical models 
to describe the evolution of predator-prey systems. In recent years, the evolution 
of the population system has an important reference significance for the protec-
tion of the ecosystem and has obtained [1]-[17] many valuable results. The Les-
lie-Gower model is a classic predator-prey model that can describe how the 
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populations of predators and prey change over time [3] [4]. However, this model 
assumes that the mortality rate of the prey population is independent of density, 
which may not be consistent with reality in some cases. To address this issue, 
researchers have introduced diffusion terms to modify the Leslie-Gower model, 
allowing it to better describe the death process of the prey population [18]-[23]. 
The Crowley-Martin function is a commonly used form to describe the response 
strength of predators to changes in prey density. This function has been widely 
applied in predator-prey models. 

The growth function of the traditional logistic model is ( ) 1 uh u r
k

 = − 
 

, 

where r represents the internal growth rate of the prey without the action of the 

predator. It is noted that the logistic equation d 1
d
u uru
t k

 = − 
 

 and the average 

growth rate 
( )u t
u
′

 is a linear function of the prey. However, under the action of  

environmental poisons, this assumption is unrealistic for food limited popula-
tions. In the early 1960s, Smith [7] conducted experiments on large dapsophila 
populations in the laboratory, and the results showed that the hypothesis of li-
near growth rate was inconsistent with large dapsophila populations, and 
demonstrated that population growth needed food to sustain, but only needed 
food to maintain when the population reached saturation. Therefore, Smith 
modified the Logistic model and formed the “limited food” model, sometimes 
called the “limited resources” model [8] [9] [10] [11] [24]. The model is given 
as follows  

d ,
d
u k uru
t k au

−
=

+  

where, a represents the resource limitation parameter of the population and r
a

  

represents the mass replacement rate of the population at k. This is a further 
development of the Logistic model. Adding the thinking of the above ques-
tions, Yue et al. [8] discussed the properties of the model solution by studying 
the diffusion Holling-Tanner predator-prey model with Smith growth, and 
obtained the existence of non-constant of the steady-state system. Jiang et al. 
[11] mainly studied the diffusion delay model with Smith growth and group 
behavior, analyzed the existence and stability of Hopf bifurcation in this mod-
el, and verified the theoretical results by numerical simulation. Han et al. [24] 
discussed the dynamic behavior of a space and time discrete predator-prey 
system with Smith growth function. By the stability analysis, the parametric 
conditions are gained to ensure the stability of the homogeneous steady state 
of the system. Xiaozhou Feng et al. [25] proposed a modified Leslie-Gower 
predator-prey ODE model with Smith growth rate and B-D functional re-
sponse term, and the systematic study was conducted on the dynamic behavior 
of the model. Combining the advantages of the above models, the following 
models are proposed by us: 
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( )( )1

2

d 1= ,
d 1 1 1

d = 1 ,
d

u u k Muvr u
t au k Bu Cv

v Dvr v
t u E

− − + + +


  −  + 

 (1) 

where u and v are prey and predator densities and r1 and r2 denote their intrinsic 
growth rates, respectively; a represents the resource limitation parameter of the pop-
ulation, M is the rate at which the predator consumes the prey, B and C are normal 
numbers, D and E represent the conversion rate of prey into predators biomass and 
the carrying capacity of the population respectively, 1 2, , , , , , , r r a M B C D E  are 
positive constants, and a is a non-negative constant, if 0a = , we retain a clas-
sical Holling type II Lotka-Volterra model with logistic growth of the prey. 

For simplicity, we introduce the dimensionless variables as in [2], 

1

, , ,tu ku v v t
r

  

 
the dimensionless parameters 

2

1

, , , ,r D Eb BK c C s d e
r k k

= = = = =
 

system (1) can be simplified as follows: 

 

( )
( )( )

( ) ( )0 0

1d ,
d 1 1 1

d 1 ,
d

0 0, 0 0.

u uu muv
t au bu cv

v dvsv
t u e

u u v v

−
= − + + +

  = −  + 
 = > = >

 (2) 

In real world, the spatial distributions of the predator and prey are inhomo-
geneous within a fixed bounded domain, and each species has a nature tendency 
to diffuse to areas of smaller population concentration [26]. Hence, we should 
use reaction-diffusion equations to describe spatial dispersal of each species, so 
the system (2) is further modified into 

 

( )
( )( )

( ) ( )

1

2

0 0

1
,

1 1 1

1 ,

0,
0 0, 0 0.

u uu muvd u
t au bu cv

v dvd v sv
t u e
u v

u u v v
ν ν

−∂
= ∆ + − ∂ + + +

∂  = ∆ + −  ∂ + 
∂ = ∂ =


= > = >

 (3) 

where ν  is the outer unit normal vectors of the boundary. The homogeneous 
Neumann boundary condition shows that the predator-prey system is self-contained 
and the population flow on the boundary is zero. The positive constants d1 and 
d2 are diffusion coefficients, and the initial values are nonnegative continuous 
functions. 

The rest of this paper is organized as follows. In Section 2, we analyze the local 
asymptotic stability, and discuss various common bifurcation problems. In Sec-
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tion 3, we firstly consider the Turing instability of the coexistence equilibrium 
for reaction-diffusion system (3). Then we discuss the global asymptotic stability 
of the coexistence equilibrium for reaction-diffusion system (3). 

2. Stability and Bifurcations of the ODE Model 
2.1. Equilibria and Their Stability 

Let 

 
( ) ( )

( )( )

( )

1
, 0,

1 1 1

, 1 0.

u u muvf u v
au bu cv

dvg u v sv
u e

 −
= − = + + +


  = − =  + 

 (4) 

All the equilibrium solutions of the system are as follows 
(1) ( )0 0,0E = , which indicates both prey and predator are extinct. 
(2) ( )1 1,0E = , which indicates the predator is extinct. 

(3) 2 0, eE
d

 =  
 

, which indicates the prey is extinct. 

(4) ( )* * *,E u v= , which indicates the coexistence of prey and predator popu-

lations. 

Where ( )* *,u v  is positive equilibrium point of (2), then ( )*
*

1v e u
d

= + , *u  

here is satisfied the following cubic equations 

 ( ) 3 2
3 2 1 0: 0,f u u u uρ ρ ρ ρ= + + + =  (5) 

where 

3

2

1

0

0,
,

,
.

bc
ma c bd bce bc
m mae d ce bce c bd
me d ce

ρ
ρ
ρ
ρ

= >
= + + + −
= + + + − − −
= − −  

Similar to the references [27] [28] we obtain: 
3 2 2

* 3 1 2
2
3

2 3
3 0 1 2 3 2

3

3, ,
3 2 3

27 9 2 ,
27

p q p

q

ρ ρ ρ
ρ

ρ ρ ρ ρ ρ ρ
ρ

−   ∆ = + =   
   

− +
=

 
Case 1: When * 0∆ > , system (2) has a positive equilibrium ( )* * *,E u v= . 
Case 2: When * 0∆ = , 
(i) 0p =  (⇒ 0q =  and bc ma c bd bce> + + + ), system (2) has a triple real 

root: 

( ) 2, , .
3 3

bc ma c bd bce bc bce ma c bdE u v
bc bcd

− − − − + − − − = =  
   

(ii) 0p < , system (2) has a non-degenerate single real root 1E  and a dege-
nerate double real root 2E . 
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Case 3: When * 0∆ < , system (2) has three unequal positive real roots *
1E , 

*
2E , *

3E . 
Next, the stability of the system is studied on this equilibrium solution. 
By calculating the eigenvalues of Jacobin matrix J on (2) as follows 

( ) ( ) ( ) ( ) ( )

( )

2

2 2 2

2

2

1 2  
1 1 1 1 1

,
2                           

u au mv mu
au bu cv bu cv

J
dsv sdvs

u ee u

 − −
− − 

+ + + + + =  
 −
 ++   

We can establish the following conclusions. 
(1) The eigenvalues of Jacobin matrix J at ( )0 0,0E =  are 1 and δ− , so equi-

librium solution ( )0 0,0E =  is a saddle point, and it is unstable. 
(2) The eigenvalues of Jacobin matrix J at ( )1 1,0E =  points the eigenmulti-

nomial matrix is 

( )1

1  0
.1

     0  
J E a

s

 − = + 
   

The characteristic polynomial corresponding to this matrix is 

2 1 0.
1 1

ss
a a

λ λ + − − = + +   

Since 0
1

s
a

− <
+

, so that 1E  is a saddle point, and the equilibrium point 

( )1 1,0E =  is unstable. 

(3) The eigenvalues of Jacobin matrix at point 2 0, eE
d

 =  
 

 points the ei-

genmultinomial matrix is 
 

( )2

1     0
.

      

e
d ceJ E
s s
d

 − +=  
 − 
   

The characteristic polynomial corresponding to this matrix is 

2 1 0.e ses s
d ce d ce

λ λ + + − + − = + +   

If 0se s
d ce

− >
+

, there e d ce> + , 1 0es
d ce

+ − >
+

, therefore, the equili-

brium point 2 0, eE
d

 =  
 

 is asymptotically stable. 

If 0se s
d ce

− <
+

, there e d ce< + , it follows that 2 0, eE
d

 =  
 

 is a saddle 

point, so the equilibrium point 2 0, eE
d

 =  
 

 is unstable. 

(4) We mainly discuss the stability of the positive equilibrium point ( )* *,u v . 
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By calculation and bifurcation theory, we establish the following theorem. 
In the following, we analyze the stability of the positive equilibria of model 

(2). Let ( )* * *,E u v=  be a positive equilibrium of model (2). Then the Jacobin 
matrix of model (2) at *E  is 

 ( )
0

*
  

,
s

J E s s
d

σ 
 =  − 
 

 (6) 

where 

 
( ) ( ) ( )

( )( )

2* * *

0 2 2* * *

*

2* *

1 2 ,
1 1 1

.
1 1

u au mvs
au bu cv

mu

bu cv
σ

− −
= −

+ + +

= −
+ +

 (7) 

The characteristic polynomical is 

 ( ) 2 ,P λ λ λ= −Θ + ∆  (8) 

where 0: s sΘ = −  and 

( )
( ) ( )
( ) ( )

* * * **2 *

0 2 2 2* * *

1 12: .
1 1 1

mdsv cv msu bus sau sus s
d au d bu cv

σ + + +− − ∆ = − + = − + 
  + + +

 
Thus, we have the following conclusions [29]. 
Theorem 2.1. Assume that * 0∆ > . 
Define 

( ) ( ) ( ) ( )
( ) ( ) ( )

2 2* * * * * *

2 2*2 * * *

1 1   1 1 ,

2 1 1

T mdsv cv au msu bu au

S d s sau su bu cv

= + + + + +

= − − + +
 

(i) If 0s s>  and 

(H1) T S> , 

then the positive equilibrium ( )* *,u v  is locally asymptotically stable. 
(ii) If (H1) and 

(H2) ( )( ) ( ) ( )2 2*2 * * * * *1 2 1 1 1au u bu cv mv au− − + + > + , 

are satisfied, then the positive equilibrium ( )* *,u v  is unstable when 0s s< . 
(iii) If 

(H3) T S< , 

then the positive equilibrium ( )* *,u v  is a saddle point. 
Remark 2.2. If the case (i) of Theorem 2.1 holds, 0s  is permitted to be posi-

tive or negative. If 0 0s < , that is, 

 ( )( ) ( ) ( )2 2*2 * * * * *1 2 1 1 1au u bu cv mv au− − + + < +  (9) 

then we have 
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( ) ( )2* * *1 1 ,S mdsv au cv T< + + <
 

which indicates that (H1) holds. 0s  must be positive when case (ii) in Theorem 
2.1 holds. Moreover, we can see that conditions (H1) and (H2) can hold simulta-
neously. Furthermore, from (9) (H1) and (H3), we know that 0s  is positive in 
Theorem 2.1 case (iii). 

2.2. Hopf Bifurcation 

In the following, we analyze the existence of Hopf bifurcation at the interior 
equilibrium *E  ( * 0∆ > ) by choosing c as the bifurcation parameter [30] [31]. 
In fact, s can be regarded as the intrinsic growth rate of predators and plays an 
important role in determining the stability of the interior equilibrium and the 
existence of Hopf bifurcation. Denote 

( )
( ) ( )

2*
*

*2 2* * * *

1 1 .
1 2 1 1

m au
c

vu au s au bu

+
= −
 − − − + +    

From the above discussions, if *c c= , then ( )*tr 0J E  =  , which together 

with ( )*det 0J E  >   yield that ( )*J E  has a pair of purely imaginary eigen-

values ( )*
1,2 det J Eλ  = ±  i . 

We claim that the transeversal condition is satisfied. In fact, if  

( ) ( )1,2 c cλ κ ω= + i  are the roots of ( ) 0P λ = , then ( ) ( )*1 tr
2

c J Eκ  =   , 

( ) ( ) ( ) 2* *1 4det tr
2

c J E J Eω    = −    . Hence, 

( ) ( )
( ) ( )

*2
* *

2 2* *
0, 0.

2 1 1

mvc c
bu cv

κ κ ′= = >
+ +

 

This shows that the transversality condition holds. Thus (2) undergoes a Hopf 
bifurcation about ( )* *,u v  as c passes through the *c . 

To understand the detailed behaviour of model (2) around *c c= , we need a 
further analysis of the normal form. We translate the interior equilibrium 

( )* *,u v  to the origin by the transformation *u u u= − , *v v v= − . For the sake 
of convenience, we still denote u  and v  by u and v, respectively. Thus, the 
local system (2) is transformed into 

 

( )
( )

( )( )
( )( ) ( )( )

( ) ( )
( )

2* * * *

* * *

*
*

*

d ,
d 1 1 1

d 1 .
d

u u u u m u u v vu
t a u u b u u c v v

d v vv s v v
t u u e

 + − + + + = −
 + + + + + +


  +
  = + −
 + +  

 (10) 

Expanding model (10) in power series around the origin produces the follow-
ing model 
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 ( ) ( )
( )

d
, ,d ,
, ,d

d

u
f u v cut J E
g u v cv v

t

 
    
  = +   
      
 

 (11) 

where 

 
( )
( )

2 3 2
1 2 3 4

2 2 3 2
1 2 3 4 5

, , ,

, , ,

f u v c a u a uv a u a u v

g u v c b u b uv b v b u b u v

= + + + +

= + + + + +





 (12) 

and 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

*

1 23 3 2 2* * * * *

2 2 *

3 44 4 3 2* * * * *

1 2 3 4 52 * * * 3 * 22 *

1 , ,
1 1 1 1 1

, ,
1 1 1 1 1

2 2, , , , .

mbv a ma a
bu cv au bu cv

a a mb v mba a
au bu cv bu cv

s s s s sb b b b b
d v dv v d v d v

+
= − = −

+ + + + +

+
= + =

+ + + + +

= − = = − = = −

 

Set the matrix 
1

: ,
0

N
P

M
 

=  
   

where 
0, .
2

s ssM N
ω ω

+
= − = −

 
It is easy to obtain that 

( ) ( ) ( )
( ) ( )

1 1 : .
  

c c
P P JP c

c c
κ ω
ω κ

− − − 
= = Φ =  

   
When *c c= , we have 

 ( )* *
*

0 0 0: , : , : .c c c cM M N N cω ω
= =

= = =  (13) 

By the transformation ( ) ( ), ,u v P x yΤ Τ= , model (11) can be rewritten as 

 
( ) ( )

( )

( ) ( )
( ) ( )

( )
( )

1 * 1

1

1

d
, ,d
, ,d

d
, ,

,
  , ,

x
fP x y cxt P J E P P
gP x y cy y

t
c c x f x y c
c c y g x y c

κ ω
ω κ

− −

 
    
  = +   
      
 

  −  
= +          

 (14) 

where 

( ) ( )1

2
2 21

1 2 3 1 2

3 2
2 3 2

4 5 4 5

2 34
4 5

1, , , ,

2

3  2

3  ,

f x y c g Nx y Mx c
M

bN Nb Nb Mb x b b xy y
M M M

N Nb N b x b Nb x y
M M

bN b b xy y
M M

= +

   = + + + + +   
  

   
+ + + +   
   
 + + + + 
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( ) ( ) ( )1

3
2 2 2

1 2 1 2 3

2
2

1 2 1 2 1 1

4
3 2 3 3

3 4 4 5

3
2 2 2

3 4 4 5

2

3 4 4

, , , , , ,

2  2

  

3  3 2 2

3  3

Ng x y c f Nx y Mx c g Nx y Mx c
M

NN a NMa b N b NMb x
M

N NNa Ma b Nb xy a b y
M M

NN a N Ma b N b x
M

NN a NMa b N b x y
M

NNa Ma b Nb
M

= + − +

 
= + + − − 
 
   + + − − + −   

  
 

+ + − − 
 
 

+ + − − 
 

+ + − − 2 3
5 3 4 ,Nxy a b y

M
   + − +   

  


 
Rewrite (14) in the following polar coordinates form 

 
( ) ( )
( ) ( )

3

2

,

,

r c r a c r

c c c r

κ

θ ω

 = + +


= + +








 (15) 

then the Taylor expansion of (15) at 0sδ =  yields 

 
( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( )

2* * * 3 * * 3 5

2* * * * 2 * * 2 4

, , ,

, , .

r c c r a c r o c c r c c r r

c c c c c c r o c c c c r r

κ δ

θ ω ω

 ′= − + + − −

 ′= + − + + − −






 (16) 

In order to determine the stability of the Hopf bifurcation periodic solution, 
we need to calculate the sign of the coefficient ( )0a s , which is given by 

 
( ) ( )

( ) ( )

* 1 1 1 1

1 1 1 1 1 1 1 1 1 1

0

1:
16

1             ,
16

uuu uvv uuv vvv

uv uu vv uv uu vv uu uu vv vv

a c f f g g

f f f g g g f g f g
ω

= + + +

 + + − + − + 

 (17) 

where all the partial derivatives are evaluated at the bifurcation point  
( ) ( )*, , 0,0,u v s c= , and 

( ) ( )

( )

( ) ( )

( )

3
1 * 2 1 *0 0

4 0 5 4 5
0 0

2
1 * 2 20

0 4 0 0 5 4 0 5
0

2
1 * 1 *0 0

3 4 1 0 2 0 3
0 0

1 * 0
1 2

0

30,0, 6 , 0,0, 2 ,

30,0, 2 3 2 2 ,

0,0, 6 , 0,0, 2 ,

20,0, ,

uuu uvv

uuv

vvv uu

uv

N Nf c b N b f c b b
M M

Ng c N a N M a b N b
M

N Ng c a b f c b N b M b
M M

Nf c b b
M

   
= + = +   

   
 

= + − − 
 
   

= − = + +   
   

= + ( ) ( )

( )

( )

1 * 1 * 0
1 1 1

0 0

2
1 * 2 2 20

0 1 0 0 2 0 3 1 0 2 0 0 3
0

2
1 * 0

0 1 0 2 1 0 2
0

20,0, , 0,0, 2 ,

0,0, 2 ,

20,0, 2 .

vv vv

uu

uv

Nf c b g c a b
M M

Ng c N a N M a M a b N b N M b
M

Ng c N a M a b N b
M

 
= = − 

 
 

= + + − − − 
 

= + − −
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Thus, we can determine the value and sign of ( )*a c  in (17). 
Recall that 

( )
( ) ( )

*
*

* *
,  and  0,

a c
c

c
µ κ

κ
′= − >

′
 

from the Poincaré-Andronov-Hopf Bifurcation theorem, we can summarize our 
results as following. 

Theorem 2.3. Assume * 0∆ >  hold. Then system (2) undergoes a Hopf bi-
furcation at the interior equilibrium ( )* *,u v  when *c c= . Furthermore, 

(i) ( )*a c  determines the stabilities of the bifurcated periodic solutions: if 

( )* 0a c <  (>0); then the bifurcating periodic solutions are stable(unstable); 
(ii) *µ  determines the directions of Hopf bifurcation: if * 0µ >  (<0) then 

the Hopf bifurcation is supercritical (subcritical). 

2.3. Transcritical Bifurcation Analysis 

Theorem 2.4. The prey-free equilibrium 2E  will experience a transcritical 

bifurcation around 1t
ec c
d

= = − . 

Proof. If tc c=  is chosen as the bifurcation parameter, then system (2) has a 
zero eigenvalue and a negative eigenvalue 2E , the Jacobian matrix becomes 

( )2

0   0
,J E s s

d

 
 =
 −
   

In this case, the eigenvectors of matrices ( )2J E  and ( )2J EΤ  are respectively: 

1 1

2 2

1 1
,     .1 0

v w
V W

v w
d

       = = = =              
Let ( ) ( ) ( )( ), , , ,F u v f u v g u v

Τ
= , then through calculation we get 

( )

( )2

2

;

0
; ,

0

t

c t

E c

f
cF E c
g
c

∂ 
   ∂= =   ∂    
∂   

( )
( )2

2

1 2
2

2 ;

  
; ,

     0t

c c

c t
c c E c

f f
ed dvu vDF E c V evg g

u v

∂ ∂   −  ∂ ∂  = =    ∂ ∂       ∂ ∂   

( )( )

( )

( )

2

2 2 2

1 1 1 2 2 22 2
2

2 2 2 2

1 1 1 2 2 22 2
;

2 2 3

4

2

2
; ,

2

21
= ,

2 2          

t

t

E c

f f fv v v v v v
u vu vD F E c V V

g g gv v v v v v
u vu v

dbe b de de da
e

sd e se
de

 ∂ ∂ ∂
+ + ∂ ∂∂ ∂ =

∂ ∂ ∂ + + ∂ ∂∂ ∂ 

 − + −
− + + 
 

− + − 
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and further there is ( )2 ; 0c tW F E cΤ = , it means that system (2) doesn’t have a 
saddle-node bifurcation near 2E . Also 

( )
2

2 2; 0,c t
ed dW DF E c V

e
Τ −

= ≠    

( ) ( ) ( )
2 2 3

2
2 4

2; , 1 0.t
dbe b de de dW D F E c V V a

e
Τ − + −  = − + + ≠   

Hence, system (2) will produce a transcritical bifurcation at tc c=  through 
the Sotomayor’s Theorem. 

2.4. Numerical Simulations 

In this subsection, we provide numerical simulations to support the analytical 
results obtained above. The ODE model (2) have seven parameters: a, b, c, d, e, s, 
m. We illustrate these results by fixing parameters a, b, d, e, s and m and taking 
the magnitude of interference among predators c as the control parameter. 

Example 2.5. We choose parameters as follows 

 0.2, 3, 1.2, 0.2, 5, 0.0555.a b d e m s= = = = = =  (18) 

Figure 1 shows the phase portraits of model (2) with parameters in (18). In 
this case, the model (2) has four equilibria: Two saddle points ( )1 1,0E = , 

( )2 0,0.2E = , a nodal source point ( )0 0,0E = , a unique coexistence point  

( )* * *,E u v= . By simple computation, we can obtain that * 1.169c ≈ . In Figure 
1(a), *1c c= < , ( )* 0.18929,0.32441E =  is an unstable spiral source and the 
model exhibits a limit cycle. In Figure 1(b), *1.5c c= > , ( )* 0.2829,0.40242E =  
is a local asymptotically stable spiral sink. Moreover, when c passes through *c  
from the left-hand side of *c , *E  will lose its stability and Hopf bifurcation 
occurs, that is, a family of periodic solutions bifurcate from the positive equili-
brium. Since ( )* 0.28698 0a c ≈ > , it follows from Theorem 2.3 that the Hopf  

 

 
Figure 1. Phase portraits of model (2) with parameters in (18). (a) 0.2c = ; (b) 1c = . 
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bifurcation is supercritical and the bifurcation periodic solutions are orbitally 
asymptotically stable. 

3. Turing Instability and Bifurcation of the  
Reaction-Diffusion Model (19) 

In this section, we investigate the reaction-diffusion model (3) to derive the Turing 
unstable parameter region of the positive equilibria, and the existences, direction 
and stability of the Hopf bifurcation periodic solutions which describes the spa-
tiotemporal pattern formation. 

3.1. Turing Instability of the Positive Equilibria 

It is well-known that the equilibrium ( )* *,u v  is Turing unstable if it is stable 
equilibrium of the ODE model (1) but is unstable for the PDE model (3) [32] 
[33] [34] [35]. 

For simplicity, we take the spatial domain Ω as the one-dimensional interval 
( )0,Ω = π , and study the following model 

 

( )
( )( )

( ) ( ) ( ) ( ) ( )

1

2

0 0

1
, , 0,

1 1 1

1 , , 0,

0, 0, , 0,
,0 0, ,0 0, 0, .

v v

u uu muvd u x t
t au bu cv

v dvd v sv x t
t u e
u v x t

u x u x v x v x x

−∂
= ∆ + − ∈Ω > ∂ + + +

∂  = ∆ + − ∈Ω

π
π

>  ∂ + 
∂ = ∂ = = >


= > = > ∈

 (19) 

Notice that the operator ϕ ϕ′′−  with no-flux boundary conditions has the 
following eigenvalues and corresponding eigenfunctions 

( ) ( )2
0 0

1 20, , , cos , for 1, 2, 3, .k kk x kx kµ ϕ µ ϕ
π π

= = = = = 

 
The linearized system of (19) at ( )* * *,E n p=  is 

 ( )*

d
d : ,
d
d

u
n u ut M N J E

v p v v
t

 
  ∆     
  = = +     ∆        
 

 (20) 

where ( )*J E  is the Jacobian matrix defined in (6) and ( )1 2diag ,N d d= . M is 
a linear operator with domain 

{ }1 2 1 2: | , ,MD U U iU u iu u u U= = ⊕ = + ∈  
where 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 2: , 0, 0, | 0, , 0, , 0x x x xX u v H H u t u t v t v tΤ π π π π      = ∈ × = = = =
 

is a real-valued Sobolev space. 
According to the standard linear operator theory, if all eigenvalues of the op-

erator have negative real parts, then ( )* *,u v  is asymptotically stable. If some 
eigenvalues have positive real parts, then ( )* *,u v  is unstable. Define 
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( )
2

0 1
* 2

2
2

      
: .

    k

s k d
J J E k N s s k d

d

σ −
 = − =  − − 
   

It is clear that the eigenvalues of the operator M are given by the eigenvalues 
of the matrix kJ . The characteristic equation of kJ  is 

 2 0,    0,1, 2, ,k kT D kλ λ− + = =   (21) 

where 

( ) ( ) ( )

( ) ( ) ( )

* 2
1 1 2

4 2 *
1 2 0 2 1 1

: tr tr ,

: det det ,

k k

k k

T J J E k d d

D J d d k s d sd k J E

 = = − + 
 = = − − +    

By analyzing the root distribution of the characteristic Equation (21), we can 
draw the following theorem. 

Theorem 3.1. Suppose that * 0∆ <  holds, the equilibrium point *
1E  of the 

system (2) is asymptotically stable when 0s s> , and the equilibrium point *
1E  

is locally asymptotically stable in the system (24) if and only if the following as-
sumptions are satisfied 

(H1) 0 2
1

s d
d

s
≥ , 

(H2) 0 2
10

s d
d

s
< <  and  

( ) ( ) ( )* * *
0 1 1 1 0

1
2

2

2det 2 det det
0

ss J E J E J E ssd
d s

      + + +      < < , 

whereas *
1E  is unstable with respect to the PDE model (19), that is, Turing in-

stability occurs if 

(H3) 
( ) ( ) ( )* * *

0 1 1 1 0
1

2
2

2det 2 det detss J E J E J E ssd
d s

      + + +      >  

Proof. First, it is clear that, 1k kT T+ <  for 0k ≥  from the definition of kT , 
and 0 0T < . So 0kT <  for all 0k ≥ . Therefore, the signs of real parts of roots 
of (21) are determined by the signs of kD , respectively. For the sake of conven-
ience, define 

( ) ( ) ( )2 4 2 *
1 2 0 2 1 1: det ,kD k D d d k s d sd k J E = = − − +    

which is a quadratic polynomial with respect to 2k . The symmetric axis of 

graph ( )( )2 2,k D k  is 2 0 2 1
min

1 22
s d sdk

d d
−

= . When 2
min 0k ≤ , ( )2 0D k >  for all  

0k ≥  since 0 0D > . When 2
min 0k > , ( )2D k  will take the minimum value at 

2 2
mink k= , and 

( ) ( ) ( ) ( )2
0 2 12 2 *

min 1
1 2

min det .
4k

s d sd
D k D k J E

d d
− = = − 

 
The hypothesis (H1) implies that 2

min 0k ≤ , (H2) implies that 2
min 0k >  and 
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( )2min 0
k

D k > . In both cases, ( )2 0D k >  for all 0k ≥ . So all the roots of (21) 

will have negative real parts, *
1E  is asymptotically stable. 

When (H3) holds, 2
min 0k >  and ( )2min 0

k
D k < , (21) has at least one root 

with positive real part, therefore *
1E  is unstable. This indicates that the Turing 

instability occurs. 
Theorem 3.2. Assume that * 0∆ >  and (9) hold. Then the unique positive 

*E  in (19) is locally asymptotically stable. 
Proof. Let ( )1 2diag ,N d d= , ( ),E u v= , ( )*

EM N J E= ∆ + . Then the linea-

rized system of (19) at *E  is 

 ,tE ME=  (22) 

and the eigenvalues of the operator M are the eigenvalues of the matrix  

( )*
k EN J Eµ− + , 1k∀ ≥ . 

The characteristic equation of ( )*
k EN J Eµ− +  is 

( ) ( )* 2 0,k k E k kI N J E A Bλ λ µ λ λΦ − + = + + =

 
where 

( ) 2
1 2 1 2 0 2 1 , ,k k k k k kA d d B d d s d sdµ µ µ µ= + −Θ = − + + ∆  

and , Θ ∆  are defined as in Section 2. 
If (9) holds, then 0 0, 0ks A< >  and 0kB > . The roots ,1kλ , ,2kλ  of 
( ) 0k λΦ =  all have negative real parts. 

We claim that there exists a positive constant δ


 such that 

 { } { },1 ,2, , 1.k k kλ λ δ≤ − ∀ ≥


Re Re  (23) 

Let kλ µ ς= , then 

( ) ( )2 2 .k k k k k kA Bλ µ ς µ ς ςΦ = + + Φ  
and 

( ) ( )2
1 2 1 22lim .

k
k

d d d d
ς

ς ς
µ→∞

Φ
= + + +

 

So, the two roots 1 2,ς ς  of 
( )

2lim 0
k

k

ς
µ→∞

Φ
=  always have negative real parts. Let 

{ }1 2min ,d d d=  then 1 2 1, dς ς ≤ − . By continuity, there exists 0k  such that the 

two roots 1 2,k kς ς  of ( ) 0k λΦ =  satisfy { } { },1 ,2,
2k k
dλ λ ≤ −Re Re , 0k k∀ ≥ . 

As a result, { } { },1 ,2,
2 2
k

k k
d dµλ λ ≤ − ≤ −Re Re , for 0k k≥ . Let 

{ } { }{ }
0

,1 ,21
max , .k kk k

η λ λ
≤ ≤

− = Re Re
 

and min ,
2
dδ η

 
=  

 



. Thus, we obtain the inequation (23), which completes the 

proof. 
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3.2. Hopf Bifurcation Analysis 

In this subsection, we seek for the possible Hopf bifurcation points and explore 
the direction and stability of the bifurcation periodic solutions of model (19) 
with spatial domain ( )0,π . We only discuss the Hopf bifurcation around *

1E . 
The Hopf bifurcation around *

2E  and *
3E  can be similarly considered [36]. 

We take the transformation *
1n̂ n n= − , *

1p̂ p p= − , and still denote ( )ˆ ˆ,n p  
by ( ),n p . Then model (19) can be rewritten as 

 

( )
( )

( )( )
( )( ) ( )( )

( ) ( )
( )

2* * * *

1 * * *

*
*

2 *

d ,
d 1 1 1

d 1 ,
d

u u u u m u u v vu d u
t a u u b u u c v v

d v vv d v s v v
t u u e

 + − + + + − ∆ = −
 + + + + + +


  +
  − ∆ = + −
 + +  

 (24) 

Let *M  be the conjugate operator of L defined by (20). Then 

 ( ) ( )* *: ,
u u u

M s N J s
v v v

∆     
= +     ∆     

 (25) 

where ( ) ( )*J s J sΤ=  with the domain * CM
D U= . Let 

*
0 0 0* 0

*0 0
0 00

      1 i1: = ,   : ,
     i2i

m sm
q qsn n

ω
ω σω

σ σ

  +     = = =     − +      π
   

It is easy to verify that * , ,M m n m Mn=  for any *M
m D∈ , Mn D∈ , and 

( )0 0iM s q qω= , ( )* * *
0 0iM s q qω= − , *, 0q q = , *, 1q q = , where  

0
, dm n m n x

π Τ= ∫  denotes the inner product in ( ) ( )2 20, 0,L L×π π       . Similar 
to [29], let us decompose 

C SU U U= ⊕  

with { }:CU eq eq e= + ∈  and { }*: , 0SU U qω ω= ∈ = . 

For any ( ),u v U∈ , there exist e∈  and ( )1 2, SUω ω ω= ∈  such that 

( ) ( ) ( )*
1 2, , , , , .u v eq eq e q u vω ωΤ Τ Τ= + + =

 

Thus, 

1

0 0 0 0
2

,

i i .

u e e
s sv e e

ω
ω ω ω

σ σ σ σ

= + +

    = − + + − + +         

The model (19) in ( ),e ω  coordinates becomes 

 

*
0

* *

d i , ,
d
d , , ,
d

e e q h
t

M h q h q q h q
t

ω

ω ω

 = +

 = + − −


 (26) 

with ( ),h f g Τ= , where f and g are defined as (11). Some direct calculations 
give 
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( )

( )

( )

( )

( )

*
0 0*

*
0 0

0

0 0
* 2 2

0 0
0 0 0

0 0
* 2 2

0 0
0 0 0

* *

1, i ,
2

1, i ,
2

     i
1, ,

2 i

     i
1, ,

2 i

0
, , : , ,

0

q h f s f g

q h f s f g

f s f g
q h q sg f f s g

f s f g
q h q sg f f s g

H e e h q h q q h q

ω σ
ω

ω σ
ω

ω σ

ωω ω
σ σ

ω σ

ωω ω
σ σ

ω

= − +  

= + +  

− + 
 

=   + + +    
+ + 

 
=   − + +    

= − − = . 
 
   

By Appendix A of [35], model (26) possesses a center manifold, one can write 
ω  in the form 

( )32 220 02
11 .

2 2
e ee e o eω ωω ω= + + +

 
Thus, 

( )
( )

0 20

11

02 20

2i 0,

0,
.

I M

M

ω ω

ω
ω ω

− =

− =

 =  
This implies that 20 02 11 0ω ω ω= = = , so that ( ),e e , the equation becomes, 

( )42 2
0 20 11 02

d 1 1i ,
d 2 2
e e g e g ee g e e o e
t

ω= + + + +
 

where 

[ ]20 20 11 11 20 11 11

02 20 11 21 30 21 21

1 12 ,   ,
2 2
1 12 ,   2 ,
2 2

g E E M g E E M E M

g E E M g E E M E M

= + = + +  

= + = + +      
 

where 

( ) ( ) ( ) ( )
2 2 3 3

* * * * * * * *
20 1 1 11 1 1 30 1 1 21 1 12 3 2, ,  , ,  , ,  , ,f f f fE u v E u v E u v E u v

u u v u u v
∂ ∂ ∂ ∂

= = = =
∂ ∂ ∂ ∂ ∂ ∂  

and 

( ) ( ) ( )
( )

2
20 1 1 2 11 1 1

02 1 1 2 21 4 3 3

,   ,
2

,   3 .

ag a b a M g a b M M

g a b a M g a a M a M

= − − = − − +

= − − = − + +  
with 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

*

1 23 3 2 2* * * * *

2 2 *

3 44 4 3 2* * * * *

1 , ,
1 1 1 1 1

, ,
1 1 1 1 1

mbv a ma a
bu cv au bu cv

a a mb v mba a
au bu cv bu cv

+
= − = −

+ + + + +

+
= + =

+ + + + +
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( ) ( ) ( ) ( )
( ) ( )

( )( )
1 22 * *

2 2 2* * * * * * *
0

2 ** * *

2, .

1 1 1 1 1 1
i,

1 1

s sb b
d v dv

bu cv v au cv bu cv
M

mumu au bu

ω

= − =

+ + − + + + +
= −

+ +

 

It can conclude from the above calculation 

( ) 2 2
1 0 20 11 11 02 21

0

i 1 12 ,
2 3 2

s g g g g gη
ω

 = − − + 
   

then 

 
( )( )

( ) ( ) ( ) ( ) ( )

22
1 0 20 11 11 02 21

0

20 11 20 11 21
0

1 1Re : Re 2
2 3 2

1 1Re Im Im Re Re
2 2

is g g g g g

g g g g g

η
ω

ω

  = − − +  
  

 = − + + 

 (27) 

which together with 
( )( )

( )
1 0

2
0

Re s
s

η
µ

κ
=

′
 determine the stability and direction of 

the bifurcated periodic solutions. 
Theorem 3.3. Assume * 0∆ <  hold. Then model (19) undergoes a Hopf bi-

furcation at 0s s= . 
(i) If ( )( )*Re 0a c < , then the Hopf bifurcation is supercritical and the bifur-

cating periodic solutions are asymptotically stable on the centre manifold. Fur-
thermore, they are orbitally asymptotically stable for model (19) if (H1) or (H2) 
holds, and unstable if (H3) holds. 

(ii) If ( )( )*Re 0a c > , then the Hopf bifurcation is subcritical and the bifur-
cating periodic solutions are unstable. 

3.3. Numerical Simulations 

In this subsection, we give some numerical simulations to illustrate our theoret-
ical analysis, we consider model (19) in one-dimensional space. 

Example 3.4. We choose parameters as follows 

 10.2, 3, 1.5, 1.2, 0.2, 5, 0.0555, 0.01.a b c d e m s d= = = = = = = =  (28) 

Then * 1.169c c< ≈ , and the unique positive equilibrium  
( )* 0.2829,0.40242E =  in model (2) is locally asymptotically stable. If we 

choose 2 0.1d = , then (H2) holds, by Theorem 3.1, the equilibrium *E  in 
model (19) is still locally asymptotically stable (see Figure 2). If we choose 

2 0.5d = , then (H3) holds, by Theorem 3.1, the equilibrium *E  in model (19) 
becomes unstable, this means that the Turing instability of the equilibrium solu-
tion happens (see Figure 3). 

Example 3.5. We choose parameters as follows 

 10.2, 3, 1, 1.2, 0.2, 5, 0.0555, 0.01.a b c d e m s d= = = = = = = =  (29) 

In this case, we have * 1.169c ≈ , ( )( )*Re 0.28298 0a c ≈ > . By Theorem 3.3, 
the supercritical Hopf bifurcation occurs at *c c= . Notice that *1c c= < . The 
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unique positive equilibrium ( )* 0.18929,0.32441E =  in model (19) is unstable 
and bifurcating periodic orbits exist. If we choose 2 0.5d = , then (H2) holds, the 
bifurcating periodic orbits are orbitally asymptotically stable (see Figure 4). If 
we choose 2 0.06d = , then (H3) holds, so the bifurcating periodic orbits are  

 

 
Figure 2. Numerical simulations of the stable equilibrium of model (19) with parameters in (28) and 2 0.1d = . 
 

 
Figure 3. Numerical simulations of the Turing instability of the equilibrium of model (19) with parameters in (28) and 2 0.5d = . 
 

 
Figure 4. Numerical simulations of the stable bifurcating periodic solution of model (19) with parameters in (29) and 2 0.1d = . 
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Figure 5. Numerical simulations of the Turing instability of bifurcating periodic solution of model (19) with parameters in (29) 
and 2 0.5d = . 
 

Turing unstable (see Figure 5). 

4. Conclusion and Discussion 

The pattern formation of ecosystem has always been an important and funda-
mental topic in ecology. In this paper, we consider a diffused modified Les-
lie-Gower predator-prey system with a C-M functional response under homo-
geneous Neumann boundary conditions. Firstly, the local asymptotic stability 
and bifurcation in corresponding ODE systems are studied. (i) At the equili-
brium point *E , Hopf bifurcation occurs when *c c= . (ii) At the equilibrium  

point 2E , transcritical bifurcation occurs when 1 ec
d

= − . Secondly, we consider  

the Turing (diffusion-driven) instability of reaction-diffusion systems in co- 
equilibrium when the spatial domain is a bounded interval, which produces a 
spatially inhomogeneous pattern. Besides, we investigate the existence and direc-
tion of Hopf bifurcations and the stability of periodic solutions of bifurcations in 
a reaction-diffusion system, which exhibits a time-periodic pattern. Finally, we 
discuss the interaction of Turing instability and Hopf bifurcation in a reaction- 
diffusion system that exhibits a spatio-temporal pattern. Our theoretical results 
further suggest that predator-prey interference and predator feeding strategies 
are determinants of spatial and spatio-temporal patterns generated through pre-
dator-prey interactions in a uniform environment. 

Since the C-M functional response function is more general than the B-D 
functional response function and contains the Holling II functional response 
function, we would like to point out that our results are still valid for the diffuse 
Leslie-Gower predator-prey system and the diffuse Holling-tanner predator-prey 
system with the B-D functional response. 
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