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Abstract 
This paper focus on the chaotic properties of minimal subshift of shift opera-
tors. It is proved that the minimal subshift of shift operators is uniformly dis-
tributional chaotic, distributional chaotic in a sequence, distributional chaotic 

of type k ( 11,2,2 ,3
2

k  ∈ 
 

), and ( )0,1 -distribution.  
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1. Introduction 

The shift operator is a distinct linear operator that displaces one or more bits 
forward (or backward) for each basis vector in the canonical orthogonal basis of 
Banach space or Frechet space. It has been widely used in many fields, for exam-
ple, image processing ([1], 2015), chaotic encryption ([2], 2020), symbolic dy-
namical systems ([3], 2013), and dynamic physical systems ([4], 1993).  

The shift operator is generally divided into two categories: unilateral shift op-
erator and bilateral shift operator. The weighted shift operator is a generalization 
of the shift operator. Since Grosse-Erdmann ([5], 1999) closely linked the 
hypercyclicity of operators to the topological transitivity of dynamical systems, 
the study of chaotic properties of shift operators has attracted more and more 
attention, especially in symbolic spaces. In 2010, Queffelec ([6]) proved that the 
shift operator acting on the symbol space is topologically exact, so it is topologi-
cally mixing. And “topologically weakly mixing” is equivalent to “topologically 
transitive”, “topologically transitive” is equivalent to “having a dense orbit”. In 
2013, Wu and Zhu ([7]) studied chaos generated by a class of weighted shift op-
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erators. Firstly, it is proved that the weighted shift operator is weakly mixing, 
transitive (or hypercyclic), and Devaney chaotic are equivalent to the separabili-
ty of space. Moreover, this property is preserved under iteration. Then, it is ob-
tained that the weighted shift operator is distributional chaotic and Li-Yorke 
sensitive. They also studied the dynamical properties of general weighted shift 
operators ([8]). It is proved that the weighted shift operator is uniformly distri-
butional chaotic, and this property is maintained under iteration. In addition, it 
is proved that the principal measure of the weighted shift operator is equal to 1. 
Wang ([9], 2018) proved that there exists an uncountable invariant distribution-
al irregular set of weighted shift operators on normed linear spaces ( )XΣ , 
which generalizes the main results of [8]. 

The study of shift operators acting on symbolic dynamical systems is often 
more concerned with the chaotic properties of their subshifts. Constructing 
counterexamples is a common and highly important method in mathematical 
research. The unique representation of symbolic space subshifts provides a 
straightforward tool for constructing counterexamples in the study of dynamical 
systems. Consequently, symbolic space subshifts play a crucial role in exploring 
various chaotic processes. It is necessary to delve into the various intriguing 
mathematical properties of subshifts. Exploring the chaotic properties of minim-
al subshifts reveals the complex balance between order and unpredictability in 
dynamic systems. Consider the logistic map—a classic example of chaos. 
Through simple iterations of a mathematical function, it showcases chaotic be-
havior, exemplifying the butterfly effect: tiny initial changes lead to vastly dif-
ferent outcomes. These insights transcend conventional mathematics and phys-
ics, impacting fields like weather forecasting. By dissecting the chaotic properties 
of minimal subshifts, we gain effective tools to understand and harness interdis-
ciplinary complexity. Jiang and Fa ([10], 1993) studied the subshifts of fi-
nite-type symbolic dynamical systems and proved that finite-type subshifts are 
chaotic in the sense of Li-Yorke. Inspired by [8] and [10], Liao and Fan con-
struct a minimal subshift of the shift operator in [11]. It is proved that this mi-
nimal subshift is distributional chaotic, and its topological entropy is zero, so it 
is not topological chaotic. Furthermore, it is shown that positive topological en-
tropy and distributional chaotic are not equivalent. Fu ([12], 2000) proved that 
the one-sided subshift generated by aperiodic recursive points is chaotic in the 
Robinson sense. In addition, if the subshift has a periodic point, then it has an 
infinite permutation set. Finally, some examples are given to discuss the topo-
logical entropy of these sub-displacements. Oprocha and Wilczynski ([13], 2007) 
proved the equivalence between distributional chaotic, chaotic in the sense of 
Li-Yorke, positive entropy and uncountable of subshifts. Some recent studies 
about subshifts see ([14] [15]) and others. 

With the development of chaos, three types of distributional chaotic (DC1,  

DC2, DC3) are proposed by Balibrea in [16]. Subsequently, DC 1
2

, ( ),p q -DC,  

uniformly distributional chaotic, distributional chaotic in a sequence { }kp , and 
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distributional chaotic in a sequence { }*
kp  have been proposed. Therefore, a 

natural problem arises. Do the subshifts constructed above is uniformly distri-
butional chaotic or the above type of distributional chaotic? This paper answers 
the above questions. To address disturbances or illusions in dynamic systems, 
the concept of measure centrality is proposed, dividing chaos into three different 
levels of complexity. The perspective of hierarchical chaos will contribute to a 
deeper understanding of chaotic systems. It indicates that all significant dynam-
ical states of a system are manifested in its measure centrality, where the meas-
ure centrality of a minimal system is itself, hence discussing issues on such mi-
nimal systems is meaningful. In contrast to other studies on the chaotic proper-
ties of subshifts, this paper focuses on constructed subshifts, namely the study of 
the distribution chaotic properties of minimal subshifts. This work aims to 
comprehensively explore the distribution patterns of minimal subshifts, reveal-
ing their chaotic behavior and aiding in a further understanding of the chaotic 
properties of subshifts from a distributional chaos perspective. In Section 2, 
some basic concepts and definitions are introduced. In Section 3, some necessary 
lemmas are given first. Then, it is proved that the subshift | Mσ  is uniformly  

distributional chaotic. So, | Mσ  is DC1, DC2, DC 12
2

, DC3 and ( )0,1 -DC. In  

addition, it is proved that | Mσ  is distributional chaotic in a sequence { }kp  
and a sequence { }*

kp . 

2. Preliminaries 

Let ( ),X ⋅  be a Banach space on the real number field  . And 

( ) ( ){ }0 1, , | ,iX x x x x X i∈Σ = = ∈  .  

Suppose that ~ be an equivalence relation on X. A family of sets consisting of 
all different ~ equivalence classes of X is called the quotient set of X with respect 
to ~, denoted by X/~.  

A metric ( ) ( ):d X X×Σ Σ →  is defined as 

( )
0

1,
12

n n
n

n n n

x y
d x y

x y

+∞

=

−
=

+ −∑  

for any ( ) ( )0 1 0 1, , , , ,x x x y y y= =  . 
Obviously, d is a metric on ( )XΣ  and ( )( ),X dΣ  is a compact metric 

space. The backward shift operator ( ) ( ): X Xσ Σ →Σ  is defined by 

( ) ( )0 1 1 2, , , ,x x x xσ =   

for any ( ) ( )0 1, ,x x x X= ∈Σ . In other words, the backward shift operator is to 
move the symbol sequence x on the space ( )XΣ  to the left one by one. If M is a 
closed set and ( )M Mσ ⊂ , then :M M Mσ →  is called a subshifts of σ . 

A finite arrangement 0 1 1nA x x x −=   of symbols in X is called a symbol seg-
ment on X, and n is the length of A, denoted by A n= . If 0 1 1mB y y y −=   is 
another symbol segment, write 
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0 1 1 0 1 1n mAB x x x y y y− −=   , 

then AB is also a symbol segment. A is said to appear in B (or A appears in B), 
denoted as A B , if n m≤  and there is 0 k m n≤ ≤ − , such that k i iy x+ = ,
0 1i n≤ ≤ − . 

In fact, a mapping g from a symbol segment 0 1x x x=   to ( )XΣ  can be 
established as ( ) ( )0 1, ,g x x x=  . 

A subset 

[ ] ( ){ }0 1, , | ,0 1i iA y y y y x i n= = = ≤ ≤ −  

is called a cylinder of ( )g A . 
For a given unit element e X∈ , denote 

( ) ( ) { }{ }0 1, , | 0, ,iD x x x x D e i= = ∈ =Σ ∈  . 

Let 0 1 1nA a a a −=   be the inverse of a symbol segment 0 1 1nA a a a −=   on 
D, where 

0,  if ,
0,1, , 1.

,  if 0,
i

i
i

a e
a i n

e a
=

= = − =
  

Obviously, A A=  and A A= . Now take a symbol segment 0 0A = , let 1A  
be an arrangement of 0A  and 0A , that is, 1 0 0A A A=  or 1 0 0A A A= . Induc-
tively, the symbol segments 1 2, ,A A   can be defined. And for any 1n ≥ , nA  
exactly a finite arrangement of all members in the symbol segment set 

{ }1 0 1 1 | , ,0 1 .n n i i iK K K K A A i n− −= ∈ ≤ ≤ −  

For any 0n ≥ , denote 

0 1 .n nA A A=   

Let 0 1a A A=  , then ( ) ( )g a D∈Σ . Denote ( )( ) ( ),M g a Dω σ= ⊂ Σ , M is 
the ω -limit set of ( )g a , obviously M is a closed set and ( )M Mσ ⊂ , i.e., 
through the aforementioned construction, M is obtained, where σ  acts as a 
shift operator on the closed set M. So :M M Mσ →  is a subshift of σ . In fact, 
Liao and Fan ([11], 1998) proved that it is also a minimal subshift of σ . 

The concepts of several types of distributonal chaos are introduced below. 
Let f be a continuous self-map on a metric space X. For any pair ( ),x y X X∈ ×  

and for each n∈ , the distribution function [ ]: 0,1n
xyF →  is defined by 

( ) ( ) ( )( ){ }1 card 1 : , ,n i i
xyF t i n d f x f y t

n
= ≤ ≤ <  

where card { }A  denotes the cardinality of the set A. 
Put 

( ) ( ) ( ) ( )* sup , inflim lim .n n
xy xy xy xynn

F t F t F t F t
→∞→∞

= =  

Then ( )*
xyF t  is called the upper distribution function, and ( )xyF t  the lower 

distribution function of x and y. 
If the pair ( ),x y  satisfies 
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(DC1) * 1xyF =  and ( ) 0xyF =  for some 0> , or  
(DC2) * 1xyF =  and ( ) 1xyF <  for any 0>  in an interval, or 

(DC2 1
2

) there exist 0c >  and 0r >  such that ( ) ( )*
xy xyF t c F t< <  for any 

0 t r< < , or 
(DC3) ( ) ( )*

xy xyF t F t<  for any 0t >  in an interval, or 
((p, q)-DC) there exist 0r >  and 0 1p q≤ ≤ ≤  such that 

( ) ( )*,xy xyF t p F t q= =  

for any 0 t r< < , then, ( ),x y  is called a distributional chaotic pair of type k 

( 11,2,2 ,3
2

k  ∈ 
 

) or type ( ),p q  for f. The mapping f is said to be distributional 

chaotic of type k ( 11,2,2 ,3
2

k  ∈ 
 

) or type ( ),p q  if there exists an uncountable 

set F X⊂  such that every pair ( ),x y  of distinct points in F is a distributional 

chaotic pair of type k ( 11,2,2 ,3
2

k  ∈ 
 

) or type ( ),p q  for f. f is said to be  

uniformly distributional chaotic if there exist an uncountable set F X⊂  and 
an 0>  such that for every pair ( ),x y  of distinct points in F, * 1xyF =  and 

( ) 0xyF = . It follows by the definition that, for a continuous map f of a compact 
metric space, DC1 implies DC2, and DC2 implies DC3. 

Next, the definition of distributional chaotic in a sequence is given. 
Definition 2.1 [17] Let X be a compact metric space, { } 1i i

m ∞

=
 be a strictly in-

creasing sequence of positive integers, and :f X X→  be a continuous map.  
Then f is said to be distributional chaotic in a sequence { } 1i i

m ∞

=
 if there is an 

uncountable subset S X⊂  such that for any two distinct points ,x y S∈ , 

( ) ( )( ){ }1sup card 1 : ,i 1l m i im m

n
i n d f x f y t

n→∞
≤ ≤ < =  

for any 0t >  and 

( ) ( )( ){ }1inf card 1 : ,i 0l m i im m

n
i n d f x f y

n→∞
≤ ≤ < =  

for some 0> . 
And, a stronger chaotic description than distributional chaotic in a sequence 

is introduced, which will use the following concepts about density. 
Definition 2.2 [17] Let { } 1n n

J j ∞

=
=  be a strictly increasing positive integer 

sequence. If lim
n

n

n
j→∞

 exists, then the limit is called the density of the sequence J, 

denoted by ( )Jµ . 

For a given positive integer sequence { } 1n n
J j ∞

=
= , and a positive integer m, 

write 

( ) { }card 1| .J nC m n j m= ≥ ≤  

Obviously, if the density of the sequence is meaningful, then 
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( ) ( )lim J

m

C m
J

m
µ

→∞
= . 

Definition 2.3 [17] Let { } 1n n
J j ∞

=
=  be a strictly increasing sequence of posi-

tive integers and { } 1i i
m ∞

=
 is a subsequence of J. The upper limit  

{ }car
lim

d 1|
sup i n

n

i m j
n→∞

≥ ≤
 

is the upper density of the sequence { } 1i i
m ∞

=
 relative to the sequence J, denoted 

by { }( )*
1

/i i
m Jµ ∞

=
. 

Definition 2.4 [17] A sequence { } 1n n
J j ∞

=
=  is said converge weakly to j if 

there exists a subsequence { } 1i i
m ∞

=
 of natural number sequence with upper 

density 1 such that lim
imi

j j
→∞

= , denoted by *lim ii
j j

→∞
= . 

Definition 2.5 [17] Let X be a compact metric space, { } 1i i
m ∞

=
 be a strictly in-

creasing sequence of positive integers, and :f X X→  be a continuous map. f 
is said to be distributional chaotic in a sequence { }*

1i i
m

∞

=
 if there exists an un-

countable set S X⊂  such that for any positive integer l, there exist l distinct 
points 1 2, , , lb b b X∈  such that for any finite subset { }1 2, , , lA a a a=   of l 
points in S, and for any mapping { }1 2: , , , lF A b b b→  , the 

( ) ( )*lim im

i
f a F a

→∞
=  

for any a A∈ . 
From the definition of several distributional chaos mentioned above, un-

iformly distributional chaotic is stronger than DC1, because the number   that 
appears in its definition does not depend on the pair ( ),x y . And DC1 implies  

DC2, DC2 implies DC 12
2

, DC 12
2

 implies DC3, i.e.,  

1DDC1 DC2 C2 CD
2

3⊂ ⊂ ⊂ ,  

which in turn does not hold. Distributional chaos is obviously distributed in ac-
cordance with the natural number sequence, otherwise it does not necessarily 
hold. 

3. Main Result 

Lemma 3.1 [11] For any 0n > , ( ) 12 1n
n n−= +  . 

Proof. According to the definition, it can be directly verified. 
Lemma 3.2 [11] For any 0n > , 0 1a A A=   is an infinite arrangement of 

symbol segments in n . 
Proof. This lemma can be found in [11]. For the completeness of the paper, 

we provide its proof. The following primarily consists of proving Lemma 3.2 
through mathematical induction. 

For any given 0n > , by definition, 1nA +  and 1nA +  are finite arrangement of 
symbol segments in n . Suppose for some 0k ≥ , it has been proved that 1nA + , 

1nA + , 2nA + , 2nA + ,  , n kA +  and n kA +  are all the finite symbol segments in 

n  has been proved. Since 1n kA + +  and 1n kA + +  are both the finite symbol seg-
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ments of the form 0 1 n n kK K K K +   in n , where 

{ }0 1 , , ,, 1n n n i n i n iK K K K A A i k+ + +∈ ∈ ≤ ≤   

they are also the finite symbol segments in n . In this way, it is proved that for 
each m n> , mA  and mA  are finite symbol segments in n . By the definition 
of a, one can get that Lemma 3.2 holds. 

Lemma 3.3 There is an uncountable subset ( )S D⊂ Σ  such that for any two 
distinct points ( ) ( )0 1 0 1, , , , ,x x x y y y S= = ∈  , k kx y=  for infinitely many k 
and l lx y≠  for infinitely many l. 

Proof. The key to proving Lemma 3.3 lies in defining an equivalence relation 
on the set ( )DΣ , thereby obtaining uncountably many equivalence classes. Se-
lecting one element from each equivalence class results in the construction of an 
uncountable set S satisfying the given conditions.  

For any ( ) ( ) ( )0 1 0 1, , , , ,x x x y y y D= = Σ∈  , define a relation on the set 
( )DΣ , denoted by ~x y , if only for a finite number of k, k kx y= , or only for a 

finite number of l, l lx y≠ . It can be verified that ~ is an equivalence relation on 
the set ( )DΣ . Let ( )x D∈Σ , according to the above equivalence relation, it is 
not difficult to get a countable set ( ){ }| ~y D y x∈Σ , so the quotient set 
( ) / ~DΣ  is uncountable. 
Therefore, one can take a representative element in each equivalence class of 

an uncountable set ( ) / ~DΣ  to form a subset of ( )DΣ , denoted by S. Then, S 
is an uncountable set satisfying the condition. 

Lemma 3.4 [18] Let X be a compact metric space and :f X X→  be a con-
tinuous map. If there are two nonempty descending closed set sequences { }iU , 
{ }iV  in X and a positive integer sequence { } 1i i

m ∞

=
 such that 

1) { } { }
1 1

,i i
i i

U a V b
∞ ∞

= =

= =
 

 and a b≠ ; 

2) ( ) ( ) 1 1
i im m

i i i if U f V U V+ +∩ ⊃ ∪  for any 1,2,i =  , 
then f is distributional chaotic in the sequence { } 1k k

p ∞

=
, where 

( )
1

k

k i
i

p m k
=

= ∈∑  . 

Proof. This conclusion can be found in [18]. For the completeness of the pa-
per, we provide its proof. The proof is given by constructing a sequence of posi-
tive integers { } 1i i

r ∞

=
 and defining a mapping ϕ  from a set E to  . 

Let { } { }{ }| , , 1,2,i i i iW W U V i= ∈ =  , then for any { }iW ∈ , there exists 

1x W∈ , such that for any 1k ≥ , ( ) 1
kp

kf x W +∈  holds, where 
1

k

k i
i

p m
=

= ∑ ( )k∈ .  

The positive integer sequence { } 1i i
r ∞

=
 is selected, where 1 1r = , 1nr + =

( )2 1n
nr+ , 1n ≥ . Let ( )S D⊂ Σ  be uncountable, such that for any different 

points two distinct points ( ) ( )0 1 0 1, , , , ,x x x y y y S= = ∈  , there are infinitely 
many m such that m mx y≠ , and there are infinitely many n such that n nx y≠ , 
by Lemma 3.3, such a set E exists. Define : Eϕ →  by ( ) { }jx Wϕ =  for each  

( )0 1, ,x x x S= ∈ , where 
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1 0
1

1 0

,  if 0,
,  if  ,

U x
W

V x e
=

=  =
  

and for any 1n > , if 1n nr j r− < ≤ , the  
,  if 0,
,  if  .
j j

j
j j

U x
W

V x e
==  =

 

For each { } ( )jW W Eϕ= ∈ , it can be seen that there must be 1wx W X∈ ⊂  
such that when 1k ≥ , ( ) 1

kp
w kf x W +∈  holds. Let ( ){ }|wF x W Eϕ= ∈ . Since 

ϕ  is injective, E is uncountable, so ( )Eϕ  is uncountable, and then F is un-
countable. Therefore, it is only necessary to verify that the points in F satisfy the 
two conditions of Definition 2.1. Let ,x y F∈ , x y≠ , there exists { } { },j jW Z , 
such that when 1k ≥ , there are ( ) 1

kp
kf x W +∈  and ( ) 1

kp
kf y Z +∈ . 

On the one hand, there exists in →+∞ , such that for each i, when 1i in nr j r− < ≤ , 

jW  and jZ  are always different. Take ( )1 ,
2

d a bε = , when i sufficiently large,  

and 1i in nr j r− < ≤ , ( ),j jd U V ε>  holds. In particular, ( ) ( )( ),j jp pd f x f y ε>  
holds. Then, for sufficiently large i, there is 

[ ) ( ) ( )( )( ) ( ) ( )1 1
0, 1

1 1

1 , 0 .
2 1

ni
i ik k

i
i i i

r
n np p

n
kn n n

r r
x d f x f y i

r r rε
− −

−
= −

≤ = → →∞
+

∑  

This indicates that ( ) 0xyF ε = . 
On the other hand, x y≠  also implies that there exists jn →+∞  such that 

for each j, when 1i in nr j r− < ≤ , there is always j jW Z= , that is, jW  and jZ  
are either jU  or jV  at the same time. For any 0t > , there exists a sufficiently 
large j such that when 1i in nr j r− < ≤ , ( ),j jd U V t<  holds. In particular,  

( ) ( )( ),j jp pd f x f y t<  holds. Then, for sufficiently large ( )j j →∞ , one can 
get 

[ ) ( )( ) ( )
1 1 1

0, 1
1 1

1 ( ), ( ) 1 1 1.
2 1

n j
j j j jk k

j
j j j j

r
n n n np p

t n
kn n n n

r r r r
x d f x f y

r r r r
− − −

−
= −

−
≥ = − = − →

+
∑  

Thus ( )* 1xyF t = . In summary, the points in the uncountable set F satisfy the 
two conditions in Definition 2.1. Therefore, f is distributional chaotic in the  

sequence { } 1k k
p ∞

=
, where ( )

1

k

k i
i

p m k
=

= ∈∑  . 

Lemma 3.5 [17] Let X be a compact metric space and :f X X→  be a con-
tinuous map. If there are l closed set sequences { } ( )

1
1,2, ,j

i i
B j l

∞

=
=   in X and a 

positive integer sequence { } 1i i
m ∞

=
, such that 

1) { }
1

, 1,2, ,j j
i

i
B b j l

∞

=

= = 



 and 1 2j jb b≠  for 1 2j j≠ , 

2) ( ) 1
1 1

i
l k

m j j
i i

j j
f B B +

= =

⊃
 

, for any 1,2,i =  . 

Let ( )
1

k

k i
i

p m k
=

= ∈∑  , then f is distributional chaotic in the sequence 

{ }*

1k k
p

∞

=
. 
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Proof. This result can be found in [17]. For the completeness of the paper, we 
provide its proof. Constructing an appropriate sequence of positive integers and 
defining a key mapping are the difficulties and key points of the whole proof. 

Let { } { }{ }1 2| , , , , 1,2,l
i i i i iC C B B B i= ∈ =  , then for any { }iC ∈ , there 

exists 1x C∈ , such that for any 1k ≥ , ( ) 1
kp

kf x C +∈  holds, where 
1

k

k i
i

p m
=

= ∑  

( )k∈ . The positive integer sequence { } { }!ir n=  is selected, for any positive 
integer s, there must be an uncountable subset sE  (by [17]) of the symbol 
space E with s symbols 1,2, , s  such that for any s distinct points 

1 2, , , sw w w  in sE  and any mapping  

{ } { }1 2: , , , 1,2, ,sw w w sφ →  .  

Obviously, there are ss  such mappings, denoted by ( )1,2, ,l sl sφ =  . Then 
there exists a sequence { }liN  such that 

( ) ( ) ( )1 2 .j l j l l jw N w N wφ= = =  

Define : sEϕ →   by ( ) { }jw Cϕ =  for each 1 2 sw w w E= ∈ , where 1C =
1

1
wB  and for any 1n > , if 1n nr s r− < ≤ , the nw

s sC B= . For each { }jC C= ∈

( )sEϕ , it can be seen that there must be 1cx C X∈ ⊂  such that when 1s ≥ , 
( ) 1

sp
c sf x C +∈  holds. Let ( ){ }|c sD x C Eϕ= ∈ . Since ϕ  is injective, sE  is 

uncountable, so ( )sEϕ  is uncountable, and then D is uncountable.  
Now we assert that D is distributional scrambled set in the sequence { }*

1k k
p

∞

=
. 

Indeed, for any subset { }1 1 2, , , sD x x x=   with s different points in D, there 
exists { }jsC  such that for any 1s ≥ , ( ) ( )1 1,2, ,sp j

j sf x C j s+∈ =   holds. For  

any { }1 2
1: , , , kF D b b b→  , take 0lφ , such that ( ) ( )0l jw

jb F x
φ

=  ( )1,2, ,j s=  . 

Then, when 0 0
1

l l
iiN N

r s r
−
< ≤ , there are ( ) ( )0l j

s
wp

j sf x B
φ

∈ . 

Thus, ( ) ( )*lim sP
j js

f x x
→∞

=  for any 1,2, ,j s=  . By Definition 2.5, f is dis-
tributional chaotic in the sequence { }*

1k k
p

∞

=
. 

The following are the main conclusions of this study. 
Theorem 3.1 The subshift operator 

Mσ  is uniformly distributional chaotic. 
Proof. The key uncountable set S can be obtained by lemma 3.3, and a map-

ping f satisfying certain conditions is defined on S, and then the set F is con-
structed according to the following construction method. It can be proved that F  

is a distributional  -scrambled set of Mσ  with 1
2

= . 

Let S be an uncountable subset of ( )DΣ  such that for any two distinct points 
( ) ( )0 1 0 1, , , , ,x x x y y y S= = ∈  , k kx y=  for infinitely many k and l lx y≠  

for infinitely many l. 
Denote a mapping f, such that ( ) 0 1f x K K=   for any ( )0 1, ,x x x S= ∈ , 

where 

,  if ,
0,1,

,  if 0,
i i

i
i i

A x e
K i

A x

== =
=
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Let ( ),h g f F h S= =  and 0 1n nK K K=  . For a fixed i∈  and arbi-
trarily selected ( )0jK j i≤ ≤ , there always have 0 1 1i i ib K K K A a+=    . 
Therefore, there exists 0k ≥ , such that the first i  symbols of ( )k aσ  are ib . 
That is to say, for a fixed i∈ , there exists a 0k ≥  such that the front i  
components of ( )( )k g aσ  are ( )ig b . This shows that for any x E∈ ,  
( ) ( )( ),h x g a Mω σ∈ = . Therefore, F M⊂ , and because h is injective, S is an 

uncountable set, so S is also an uncountable set. 

Assume that F is a distributional  -scrambled set of 
Mσ  with 1

2
= . For  

any pair ,x y F∈  with x y≠ , let ( )1x g x−=  and ( )1y g y−= . Without loss 
of generality, we assume 0 1x B B=   and 0 1y C C=  , where { }, ,i i i iB C A A∈ , 

0,1,i =  . According to the construction of S, there exist a subsequence  

{ } { }0 1 21
, , ,

ik i
B B B B

∞

=
⊂   such that ( )

i ik kB C i= ∈  and a subsequence  

{ } { }0 1 21
, , ,

il i
B B B B

∞

=
⊂   such that ( )

i il lB C i= ∈ . 
First, it is easy to see that the first 

ik m−  components of ( )m xσ  and 

( )m yσ  coincide correspondingly for 1 2
i

i

k
k m− ≤ ≤


 . So 

( ) ( )( )

1
2

2

1 1,
1 12 2
1 1 1 .
2 2

2

ki

ki
kk ii

n n n nm m
n n

n m n mn n n n

n n
n m

n

x y x y
d x y

x y x y
σ σ

+∞ +∞

= = −

+∞ +∞

+= −
=

− −
= =

+ − + −

≤ ≤ =

∑ ∑

∑ ∑





 

Thus, for a given 0t > , there exists a positive integer N such that  

( ) ( )( ),m md x y tσ σ <  for any m N>  and any 1 2
i

i

k
k m− ≤ ≤


 . Then, 

( ) ( ) ( )( ){ }
( ) ( )( )

*

1

1sup card 1 : ,

1sup card 1 : ,
2

lim

lim

lim lim

2

22sup sup 1 1.
2 1

2

i

i

i
i

i
i

m m
xy

n

k m m

i k

k
k

k
i ik

F t m n d x y t
n

m d x y t

σ σ

σ σ

→∞

→∞

−

→∞ →∞

= ≤ ≤ <

  ≥ ≤ ≤ < 
  

−  ≥ = − = + 









 

Second, it can be obtained that { }0,m mx y D e≠ ∈ =  for 1i il lm− ≤ ≤  . Then 

( ) ( )( ) 1, .
1 2

m mm m

m m

x y
d x y

x y
σ σ

−
≥ =

+ −
  

So, 

( ) ( )( )

( ) ( )( )
1

1 1 1inf card 1 : ,
2 2

1 1inf ca

lim

lim rd 1 : ,
2

1inf inlim l .im f 0
2 1

i
i

i

i
i

m m
xy n

m m
li

l

l
li i

l

F m n d x y
n

m d x y

σ σ

σ σ

→∞

→∞

−

→∞ →∞

   = ≤ ≤ <  
   

 ≤ ≤ ≤ < 
 

≤ = =
+
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Hence, 
Mσ  is uniformly distributional chaotic. 

This proof has been completed. 

Theorem 3.2 
Mσ  is distributional chaotic of type k ( 11,2,2 ,3

2
k  ∈ 

 
) and is 

( ),p q -distribution (where 0, 1p q= = ). 

Proof. This theorem can be obtained by Theorem 3.1. Since 
Mσ  is un-

iformly distributional chaotic, then 
Mσ  is DC1. So, 

Mσ  is also DC2 and 
DC3. 

According to the Theorem 3.1, there exist an uncountable set F M⊂  and a 
1 0
2

= >  such that, for every pair ( ),x y  of distinct points in F, * 1xyF =  and 

1 0
2xyF   = 

 
. Take 1

2
r = , for any 0 t r< < , 

( ) ( ) ( )( ){ }
( ) ( )( )

( ) ( )( )

1

lim

lim

li

1inf card 1 : ,

1 1inf card 1 : ,
2

1 1inf card 1 : ,
2

1inf inf 0.

m

lim li
2 1

m

i
i

i

i
i

m m
xy n

m m

n

m m
li

l

l
li i

l

F t m n d x y t
n

m n d x y
n

m d x y

σ σ

σ σ

σ σ

→∞

→∞

→∞

−

→∞ →∞

= ≤ ≤ <

 ≤ ≤ ≤ < 
 
 ≤ ≤ ≤ < 
 

≤ = =
+








 

Then, for every pair ( ),x y  of distinct points in F, there exist 0c >  and 
1 0
2

r = >  such that ( ) ( )*0 1xy xyF t c F t= < < =  for any 0 t r< < . Thus, 
Mσ  is 

DC 12
2

. Take 0p =  and 1q = , for every pair ( ),x y  of distinct points in F,  

( ) 0xyF t p= =  and ( )* 1xyF t q= =  for any 0 t r< < . Thus, 
Mσ  is ( )0,1 -DC. 

This proof has been completed. 
Theorem 3.3 The subshift operator 

Mσ  is distributional chaotic in a se-
quence { } 1k k

p ∞

=
. 

Proof. It is proved that only the sequence satisfying the condition can be con-
structed. For a given ( ) ( )0 1, ,x x x D= ∈Σ , let 0 1k K K=  , 0 1k K K=  , and 

0 1n nK K K=  , where 
,  if ,

0,1,
,  if 0,

i i
i

i i

A x e
K i

A x

== =
=

  

Obviously, k k≠ . Denote  

[ ]0 1 1n nU K K K M−= ∩  and 0 1 1n nV K K K M−=    ∩ , 

where 1,2,n =  , then it is easy to see that 

0 1 0 1
1 1

, ,n n
n n

U K K k V K K k
∞ ∞

= =

= = = = 

 

 

and 

( ) ( )1 1
1 1 1,2, .,n n

n n n nU V M U V nσ σ− −
+ +∩ = ⊃ ∪ = 

   

https://doi.org/10.4236/jamp.2024.125102


Y. L. Chen et al. 
 

 

DOI: 10.4236/jamp.2024.125102 1658 Journal of Applied Mathematics and Physics 
 

Let ( )1
1

k

k n
n

p k−
=

= ∈∑  , according to Lemma 3.4, 
Mσ  is distributional 

chaotic in the sequence { } 1k k
p ∞

=
. 

This proof has been completed. 
Theorem 3.4 The subshift operator Mσ  is distributional chaotic in a se-

quence { }( )* 1,2,kp k =  . 
Proof. Similar to the proof of Theorem 3.3, it is sufficient to construct a se-

quence that satisfies the condition. 
For a given ( ) ( )0 1, ,x x x D= ∈Σ , let 0 1 2b K K K=   and 

1 0 1 2 2 0 1 2 0 1 2 1, , , l l l lb K K K b K K K b K K K K K− −= = =     ,  

0 1j jK K K=  ,  

where 

,  if ,
0,1,

,  if 0,
i i

i
i i

A x e
K i

A x

== =
=

  

Obviously, 1 2 lb b b≠ ≠ ≠ . Denote 

1 0 1 2 1 2 0 1 2 1

0 1 2 1 1

, , ,

,

j j
j j

j
l l l l j

B K K K K M B K K K K M

B K K K K K K M

− −

− − −

   = ∩ = ∩  
  



= ∩

  

 

 

where 1,2,j =  , then it is easy to see that 

{ }( )
1

1,2, ,j j
i

i
B b i l

∞

=

= = 



, 1 2j jb b≠  for 1 2j j≠  

and 

( )1 1
1

1 1

j
l k

j j
i i

j j
B M Bσ − −

+
= =

= ⊃
 

  

for any 1,2,i =  . 

Let ( )1
1

k

k j
j

p k−
=

= ∈∑  , according to Lemma 3.5, 
Mσ  is distributional 

chaotic in a sequence { }( )* 1,2,kp k =  . 

This proof has been completed. 

4. Conclusion 
This study investigated distributional chaoticity of minimal subshift of shift op-

erators. The conclusions involved include DC1, DC2, DC3, DC 12
2

, (p,  

q)-distributional chaos, uniformly distributional chaos, and distributional chao-
tic in a sequence. Compared with other literatures, the contents in this paper are 
more comprehensive. 
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