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Abstract 
We provide a kernel-regularized method to give theory solutions for Neumann 
boundary value problem on the unit ball. We define the reproducing kernel 
Hilbert space with the spherical harmonics associated with an inner product de-
fined on both the unit ball and the unit sphere, construct the kernel-regularized 
learning algorithm from the view of semi-supervised learning and bound the 
upper bounds for the learning rates. The theory analysis shows that the learn-
ing algorithm has better uniform convergence according to the number of 
samples. The research can be regarded as an application of kernel-regularized 
semi-supervised learning. 
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1. Introduction 

It is known that approximation theory and skills have been used to give the analytic 
solution for PDE with boundary value problems and form the method of funda-
mental solutions (see e.g. [1]-[6]; Appendices 1-3). Recently, the kernel-based col-
location method for solving several PDEs with boundary problems has been de-
veloped (see e.g. [7] [8] [9] [10] [11]) from the view of minimal norm interpola-
tion of reproducing kernel Hilbert spaces (RKHSs), the existent theorem and the 
representation theorem for the numerical solutions are shown qualitatively. It is 
suggested by [12] that kernel-regularized gradient learning may be used to give 
numerical solution for PDE. Indeed, some kernel-regularized learning algorithms 
have been used to study the PDE with Dirichlet boundary value problem quantita-
tively (see e.g. [13] [14] [15] [16]). For a given domain dD R⊂ , the pairwise dis-
tinct collocation points chosen in the kernel-based collocation method are: 
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{ }1, , ,D NX x x D= ⊂  
{ }1, , ,D N N MX x x D∂ + += ⊂ ∂  

and the sample values from the PDE (where P and B are given differential oper-
ators): 

 
* , in ,
, on

dPu f D R
Bu g D

 = ⊂


= ∂
 (1) 

at the given collocation, points are (see [7] [11]): 

( )* , 1,2, , ,
jj j xy f x j Nη= + = 

 
( ) , 1,2, , ,k N ky g x k M+= =   

where the random variable ( ) ( )1
: , , ~ 0,

Nx x Dη η η
Τ

∂= Ψ
 



  . 

There are two typical PDE problems (see Chapter 1 of [17]). When  
2

2
1

d

j j

P
x=

∂
= ∇ =

∂∑  is the Laplace operator and B I=  is the unit operator, we have 

the Dirichlet problem: 

 
* , in ,

, on

du f D R
u g D
∆ = ⊂


= ∂
 (2) 

When P I=  is the unit operator and B
n
∂

=
∂


 is the directional derivative 

along the outward normal vector n , i.e. uBu u n
n
∂

= = ∇ ⋅
∂





, problem (1) become 

the Neumann boundary problem: 

 

* , in ,

, on .

du f D R
u g D
n

 = ⊂

∂

= ∂∂


 (3) 

The observations ( ){ }
1

,
N

j j j
x y

=
 can be regarded as the supervised labeled ob-

servations in the setting of semi-supervised learning and ( )1,2, ,ky k M=   may 

be regarded as the unlabeled ones. This similarity encourages us to construct ker-
nel-regularized learning algorithms to give numerical solution for problem (3) 
referring to the kernel semi-supervised learning frameworks (see e.g. [18] [19] [20] 
[21]). Along this line, we constructed in [15] a kind of kernel-regularized learn-
ing algorithm for solving problem (2) and showed the convergence rate. In the 
present paper, we shall construct a kind of kernel-regularized regression algorithm 
to solve problem (2) in case that D is the unit ball and D∂  is the unit sphere. To 
this aim, we restate problem (3) in the setting of Sobolev spaces. 

Let dRΩ ⊂  be a given bounded closed domain with a smoothness surface 
(i.e. the outward normal derivative is continuous) and ρΩ  be a Borel measure 

on Ω. Let ( ) ( )sC Ω  denote the set of functions such that ( ) ( )x f x Cα∂ ∈ Ω  and 

sα ≤ , where for ( )1, , d
d Zα α α += ∈  we define 

1

d

i
i

α α
=

= ∑  and 
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( ) ( ) ( ) ( )
( ) ( )

1
11 1

: .d
dx d d

f x
f x f x f x

x x

α
ααα α

α α

∂
∂ = ∂ = ∂ ∂ =

∂




 
For a ( ) ( )sK C∈ Ω×Ω , we define: 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
1 1

1 1

1 1

,
, , , , , , , .

d d

d d
x y d d

K x y
K x y x x x y y y

x x y y

α β
α β

α α β β

+∂
∂ ∂ = = =

∂ ∂
 

 

 
Denoted by ( )1W ρΩ , the set of all functions whose 1-order partial derivatives 

are all in ( )2L ρΩ , i.e. 

( ) ( )1

21
2

1

1 2

,
: ,WW f f D fα

ρ ρ
α

ρ
Ω Ω

Ω
≤

   = = < +∞   
   
∑

 

and ( ) ( ) ( )( )
1

2 22
2,: dL f x f f x
ρ

ρ ρ
ΩΩ ΩΩ

  = = < +∞ 
  

∫ . Defined by 
n
∂
∂


, the 

outward normal derivative operator, i.e. ( ) ( ) ( ): xf x f x
f x n

n n
∂ ∂

= = ∇ ⋅
∂ ∂



 

, where 

( ) 1 , , d

f ff x
x x
∂ ∂ ∇ =  ∂ ∂ 

  and n  is the outward normal vector at  

{ }1, , dx x x= ∈∂Ω . 

To borrow the setting of learning theory (see [22]), we rewrite the problem 
(3). Let *f  be an unknown function and g be a given function. Then, the col-
location points { }1, , mz x x int= ⊂ Ω  and { }1, ,m m ux xν + += ⊂ ∂Ω  for the 
Neumann boundary problem: 

 
( ) ( )
( ) ( )

* , ,

,x

f x f x x
f x

g x x
n

 = ∈Ω

∂

= ∈∂Ω
∂


 (4) 

are scattered points with values ( )*
i ix i xy f x η= + , 1,2, ,i m=  , and  

( )
ix iy g x= , 1, 2, ,i m m m u= + + + , where for a given ( )1, , d

i i ix x x= ∈Ω , 

ixξ  is a random variable subject to a condition distribution ( )| iy xρ  satisfy-

ing ( )| iy x Bρ ≤ , B is a given constant number,  

( ) ( ) [ ] ( ) ( )| ,
d | 0x xx B B

E y y xρ η η ρ⋅ −
= =∫  and 

1
22

1
i

m

x
i

σ σ
=

 = < +∞ 
 
∑  and  

( ) ( )2 2
|x xxEρσ η⋅= . The correspondence of (4) is: 

 

( )
( ) ( )

, 1, 2, , ,

, 1, ,

i

i

i x

x
i

x x

f x y i m

f x
g x i m m u

n
=

 = =

∂ = = + + ∂







 (5) 

We shall give an investigation on the convergence analysis of problem (5) 
when Ω  is the unit ball { }: 1d dB x R x= ∈ ≤  and ∂Ω  is the unit sphere 

{ }1 : 1d dS x R x− = ∈ = . The paper is organized as follows. In Section 2.1, we 
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shall provide some notions on the kernel-regularized regression learning, which 
contain the concept of reproducing kernel Hilbert spaces, the concept of ker-
nel-regularized regression learning model and the kernel-regularized semi-super- 
vised regression learning model. In Section 2.2, we shall provide some notions and 
results on spherical analysis. In particular, we shall define an RKHS with spherical 
harmonics, which have the reproducing property for the outward normal vector 
operator. The Neumann boundary value problem with the RKHS as the hypo-
thesis space is defined. Based on these notions, we define in Section 2.3 a kind of 
kernel-regularized learning algorithm for solving the Neumann boundary value 
problem, show the representation theorem and give the error decomposition, with 
which we give the learning rates (i.e. the main Theorem 2.1) in Section 2.4. In Sec-
tion 3, we shall give some lemmas, which will be used to show Theorem 2.1 in Sec-
tion 4. Section 5 is the appendices containing some knowledge about the convex 
function, a kind of RKHS ( )n

K ρΩ



  defined in a Sobolev space ( )nH ρΩ



 asso-
ciating a general domain Ω  and its boundary ∂Ω , and a probability inequality 
defined on a general RKHS. 

Throughout the paper, we denote by ( )A O B=  the fact that there is a con-
stant C independent of A and B such that A CB≤ . We say ~a B  if both 

( )A O B=  and ( )B O A= . 

2. Kernel-Regularized Regression and Error Analysis 

We first provide some notions and results about the kernel-regularized regression 
learning problem. 

2.1. Notions and Results on Kernel-Regularized Regression 

Follow all the definitions and notions in Section 1. Let  
( ) ( ), :xK y K x y R= Ω×Ω→  be a Mercer kernel (i.e. it is continuous, symme-

try and positive semi-definite, i.e. for any given integer 1l ≥  and any given set 

{ }1 2, , , lx x x ⊂ Ω , the matrix ( )( )
, 1,2, ,

,i j i j l
K x x

= 

 is positive definite) satisfy-

ing ( ) ( ) ( )( )
1

2 2, d dK x y x yρ ρΩ ΩΩ×Ω
< +∞∫ . The reproducing kernel Hilbert 

space ( ),K KH ⋅  associated with ( ),K x y  is a Hilbert space consisting of all 

the real functions defined on Ω such that: 

( ) , , , .x KKf x f K x f H= ∀ ∈Ω ∀ ∈  
Define an operator ( ),K f x  as: 

( ) ( ) ( ), d , .K xf x f y K y xρΩΩ
= ∈Ω∫

 
Then, ( ) ( )2 2: L Lρ ρΩ Ω→ . Denoted by kλ  the k-th eigenvalue associated 

with eigenfunction kϕ . Then, we have by the Mercer theorem that: 

( ) ( ) ( )
0

, , , ,l l l
l

K x y x y x yλϕ ϕ
+∞

=

= ∈Ω∑
 

where we assume the convergence on the right side is absolute (for every ,x y∈Ω ) 
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and uniform on ,x y∈Ω . If { } 0k k
ϕ +∞

=
 forms an orthonormal system in ( )2L ρΩ , 

then: 

( )( )

( ) ( ) ( )
( )

1
22

1
2 2

0 0
: ,

K K

l
l l K

l l l

H L

a f
f x a f x f

ρ

ϕ
λ

Ω

+∞ +∞

= =

=

 
   = = = < +∞ 
   

 

∑ ∑



 

where 
1 1
2 2

K K K=    . 

Let ( ){ } 1
,

m
k k k

z x y
=

=  be a set of observations about an unknown function 
*f . Then, to obtain an good approximation of *f , one usually borrow the 

kernel-regularized regression learning model: 

 ( )( )2arg min ,
K

z z Kf H
f f fλ

∈
= +  (6) 

where ( ) ( )( )2

1

1 m

z k k
k

f y f x
m =

= −∑  is the empirical variance. In learning theory, 

the convergence analysis is sum up to bound the convergence rate for the error 
([23] or [24]): 

 
( )2

* .z L
f f

ρΩ
−  (7) 

When the observation set z has the form ( ){ } { } 11
,

m u
k k m l lk

z x y x + ==
=  , i.e. the 

nodes { } 1

u
m l l

x + =
 have no labeled observation values { } 1

u
m l l

y + =
, we call this case 

the semi-supervised learning. In practical applications, most of the observations 
belong to semi-supervised samples since data is precious. Many mathematicians 
have paid their attentions to this field (see e.g. [18] [19] [21] [25] [26] [27] [28]). 
The main ideas of dealing with this problem are add a term to make the use of 
unlabeled data, i.e. we need to modify (8) as the form of: 

 ( ) ( )( )2
, , ,arg min , 0.

K
z z u m Kf H

f E f f fλ γ γ λ γ
∈

= + Ω + >  (8) 

For example, in [19], one choose  

( )
( )

( ) ( )( )2

, ,2
, 1

l u

u m i j i j
i j

f f x f x W
u m
γγ

+

=

Ω = −
+

∑ , where ,i jW  are edge weights in 

the data adjacency graph. Also, in [21], one chooses: 

( ) ( ) ( )
( ) ( ) ( )( )

( ) ( )

2

,
, 1,

,
1

,
exp ,

m u

u m ij i j
i j i j

K i j
ij

f w f x f x
m u m u

d x x
w

σ

σ

γγ

σ

+

= ≠

Ω = × −
+ + −

  = − 
  

∑

 
where 0σ >  and 

( ) ( ) ( ) ( ), , , 2 , .K x y K
d x y K K K x x K y y K x y= − = + −

 
These choices encourage us to choose suitable ( ),u m fγ Ω  to give good ap-

proximation solution for problem (5). 
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2.2. Some Results on Spherical Analysis 

In this subsection, we shall define a kind of RKHS with spherical harmonics, with 
which define a kernel-regularized regression learning algorithm for solving prob-
lem (5) when Ω is the unit ball dB  and show the learning rates. 

Let { }: 1d dB x R x= ∈ ≤  denote the unit ball in d-dimensional Euclidean 

space dR  with the usual inner product ,x y , and ,x x x=  is the usual 

Euclidean norm. For weight ( ) ( )21W x x
µ

µ = − , 1µ > − , we denote by  

( ) ( ), ,d d
p pL B L B Wµ µ≡ , 1 p≤ < +∞ , the space of measurable functions defined 

on dB  with: 

( ) ( ) ( )( ),

1
2d , 1d dp

p

L B B
f f x W x x p

µ µ= < +∞ ≤ < +∞∫
 

and for p = +∞ , we assume that ,L µ∞  denotes the space ( )dC B  of continuous 
functions on 

dB  with the uniform norm. 
We denote by d

nΠ  the space of all polynomials in d variables of degree at 
most n, and by ( )d

n Wµν  the space of all polynomials of degree n which are or-
thogonal to polynomials of low degree in ( )2,

dL Bµ . The ( )d
n Wµν  is mutually 

orthogonal in ( )2,
dL Bµ  and (see [29]): 

( ) ( ) ( )2,
0 0

, .
n

d d d d
n n k

n k
L B W Wµ µ µν ν

∞

= =
= Π =⊕ ⊕

 
Let dσ  denote the Lebesgue measure on { }1 : 1dS x x− = =  and denote the 

area of 1dS −  by dσ , ( )1
2d 2 2d

d
d S

dσ σ− π= = Γ∫ . Let d
n  denote the space 

of homogeneous harmonic polynomials of degree n, which are homogeneous 

polynomials of degree n satisfying equation 
( )

2

2
1

0
d

kk

pp
x=

∂
∆ = =

∂
∑ . Also, we de-

note by d
n  the set of homogeneous polynomials of degree n. It is well known 

that: 

1 3
: dim .

1 2
d d
n n

n d n d
a H

n n
+ − + −   

= = −   − −     
Let ( )1 dW B

µ
 denote the set of functions whose 1-th derivatives are all in 

( )2,
dL Bµ , i.e. 

( ) ( ) ( )2
2,

1 2
21

1
: .d d

d
W B L B

W B f f f
µµ

α

µ
α ≤

 
= = ∂ < +∞ 
  
 
 

 
 
∑

 

In this case, ( )221

1
: 1

d
d i

i
S x x x−

=

 = = = 
 

∑  and 

 ( ) ( ) ( )1 1

1
, , , .

d
i d dx

i
i

f fx x x x x x S
n x

−

=

∂ ∂
= = ∈

∂ ∂
∑ 



 (9) 

Define a subclass of ( )1 dW B
µ

 as: 
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( ) ( ) ( ) ( ) ( )1

1
2 2

21 : d d .n d d
n d

H B S

f
f W B f f x W x x

nµ

ξ
µ µµ

ξ σ ξ−

 
 ∂  = ∈ = + < +∞  ∂  

 

∫ ∫







 
An inner product defined on n

µ



  is: 

( ) ( ) ( ) ( ) ( ) ( )1, d d .n d dB S

f gf g f x g x W x x
n nµ µ ξ ξ σ ξ−

∂ ∂
= +

∂ ∂∫ ∫

   
Denoted by ( ),d

n W Sµν  the space of orthogonal polynomials with respect to 
, n

µ
⋅ ⋅ 


. Then, by Theorem 3 of [30], we know ( ),d

n W Sµν  contains a mutually 
orthonormal basis { }, , : 1, 2, ,d d

n k n k nQ Q k a≡ =   with respect to , n
µ

⋅ ⋅ 


. Then, 

there holds the expansion: 

( ) ( ) ( ), ,
0 1

~ , , ,
d
ka

d n
k l k l

k l
f x a f Q x x B f µ

∞

= =

∈ ∈∑∑



 

where ( ), ,,
S

k l k la f f Q
µ

=  and by the Bessel inequality, we have: 

( )
1
22

,
0 1

.
d
k

n

d

k l
k l

a f f
µ

∞

= =

 
≤ < +∞  

 
∑∑ 



 
Let ( ), : d dK x y B B Rµ × →  be a Mercer kernel with the form: 

 ( ) ( ) ( )
0

, : , , , ,d d
x k k

k
K y K x y P x y x B y Bµ µ λ

∞

=

= = ∈ ∈∑  (10) 

where ( ) ( ) ( ), ,
1

,
d
ka

k k l k l
l

P x y Q x Q y
=

= ∑  and 
0

k k
k

cλ
∞

=

< +∞∑  with 0kλ >  being de-

fined as ( ) ( )sup , 0,1,2,
d

k k
x B

P x x c k
∈

= =  . 

Define 

( )( ) ( ) ( )

( ) ( ), ,
0 1

, : ,

,

n

d
k

xK K H

a
d

k k l k l
k l

f x f x f K

a f Q x x B

µ µ
µ

λ
∞

= =

= = ⋅

= ∈∑ ∑

 

 
and ( )

1
2n n

K Kµ µ µ=
 

   . Then, 

( ) ( )
( )

1
2 2

,
, ,

0 1 0 1
: .

d d
k ka a

k ln
k l k l KK

k l k l k

a f
a f Q x f µµ λ

∞ ∞

= = = =

 
    = = < +∞      

∑∑ ∑∑




 

For ( ) ( ) ( ), ,
0 1

d
ka

n
k l k l K

k l
f x a f Q x µ

∞

= =

= ∈∑∑


  and  

( ) ( ) ( ), ,
0 1

d
ka

n
k l k l K

k l
g x a g Q x µ

∞

= =

= ∈∑∑


 , we define: 

( ) ( ), ,

0 1
, .

d
ka

k l k l
K

k l k

a f a g
f g µ

λ

∞

= =

= ∑∑
 

Then, we shall show in Proposition 2.1 that n
K µ



  is an RKHS associated with 
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kernel (10). 
To give quantitatively description for the kernel K µ , we give two assumptions. 
Assumption A. Assume ( ) ( )1 d dK C B Bµ ∈ × . 

Assumption B. Assume 
( ) ( )

1

,
sup 0,1,2,

d

x k
k

x S

P x x
c k

n−∈

∂
′= =

∂




 and 

 
0

.k k
k

cλ
∞

=

′ < +∞∑  (11) 

Since { }, , : 1, 2, ,d d
n k n k nQ Q k a≡ =   are algebraic polynomials, kc  and kc′  

must exist. The real numbers kλ  satisfy (11) are also existent, for example, we 
can take ( ) ( )e 0,1,2,k kc c

k kλ ′− += =  . 
If (11) holds, then by Theorem 2.4 in [31], or Theorem 4.2 in [32] or Proposi-

tion 6.2 in [33] that: 

 ( )( ) ( ) ( )( ) 1 1

0
, : , , , ,d d

x y x k x y k
k

K y K x y P x y x S y Sα β µ µ α βλ
∞

− −

=

∂ ∂ = = ∂ ∂ ∈ ∈∑  (12) 

and the convergence in the right-side of (12) is absolute and uniform on  
1 1d dS S− −× . 

Proposition 2.1. Assume above Assumptions A and B hold. Then, 
1) There holds the reproducing property: 

 ( ) ( ), , , .n d
x KK

f x f K f x Bµµ
µ= ⋅ ∈ ∈



  (13) 

2) There holds the reproducing property for the outward normal vector oper-
ator, i.e. 

 
( ) ( ) 1, , , .x x x n d

K
K

f x K
f f x S

n n µ

µ

µ
−∂ ∂ ⋅

= ∈ ∈
∂ ∂



 

  (14) 

3) Define 

( ) ( )
1

sup sup .
d d

x
x xK

x B x S K

k K K
nµ

µ

µ µ

−∈ ∈

∂
= ⋅ + ⋅

∂


 
Then, for all dx B∈  and 1dy S −∈ , we have: 

 ( ) ( )
, .x

K K

f y
f x k f k f

n
µ µ

∂
≤ ≤

∂


 (15) 

Proof. See the proofs in Section 4. 

Let { } 1

m l
i i

x +

=
 be observations drawn i.i.d. according to dB

ρ ,  

( )*
ii i xy f x η= + , 1,2, ,i m=   and for a given 

i

d
i xx B ξ∈  is a random varia-

ble subject to a condition distribution ( )|d iB
y xρ  satisfying ( )| iy x Bρ ≤  (B 

is a given constant number), ( ) ( ) [ ] ( ) ( )| ,
| 0dx xx BB B

E y d y xρ η η ρ⋅ −
= =∫ ,  

( )
1

2 2
dd x BB

dσ σ ρ= < +∞∫  and ( ) ( )2 2
|dB

x xxEρσ η⋅= . Then, ( ){ } 1
,

m
i i i

z x y
=

=  can be 

regarded as observations drawn i.i.d. according to ( ) ( ) ( ), |d dB B
x y x y xρ ρ ρ=  

and { } 1

m l
i i m

x +

= +
 be samples drawn i.i.d. according to 1dS

ρ − . The correspondence 
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of problem (5) then is: 

 
( )
( ) ( ) ( )

1

, 1, 2, , ,

, 1, ,

ii x

d
i ik

i ik
k

f x y i m

f x f x
x g x i m m l

n x=

 = =

∂ ∂

= = = + +
∂ ∂

∑







 (16) 

We shall give an investigation on the numerical solutions of problem (16) with 
kernel-regularized approaches. A kernel learning algorithm with n

K µ



  being 
the hypothesis space will be defined in Section 2.2. The representation theorem 
for it is provided and an error decomposition for its error analysis is given, from 
which a learning rate for Algorithm (16) is shown. 

2.3. Kernel-Regularized Regression 

With above notions in hand, we now give following kernel-regularized learning 
algorithms for giving solutions for problem (16): 

 ( ) ( ) ( )
2

2
,

1arg min ,
n
K

m l
x i

z z i Kf i m

f x
f f g x f

l n
µ

µ
λ λ

+

∈ =

 ∂
= + − +  ∂ 

∑ 


  (17) 

where ~l m , i.e. there exist 1 20, 0c c> >  such that 1 2
lc c
m

≤ ≤  and 

( ) ( )( )2

1

1 .
i

m

z i x
i

f f x y
m =

= −∑
 

Corresponding to (17), we define a model for the observations without the dis-
turbances 

ixξ  by: 

 ( ) ( ) ( )
2

2
,

1arg min ,
n
K

m l
x i

iX X Kf i m

f x
f f g x f

l n
µ

µ
λ λ

+

∈ =

 ∂
= + − +  ∂ 

∑ 


  (18) 

where 

( ) ( ) ( )( )2*

1

1 .
m

i iX
i

f f x f x
m =

= −∑
 

The integral model for (18) is defined as: 

 ( ) ( ) ( ) 11

2
2arg min d ,ddn

K

x
KSSf

f x
f f g x f

n
µ

µ
λ ρ λ−−

∈

∂ 
= + − + 

∂ 
∫ 


  (19) 

where 

( ) ( ) ( )( )2* d .dd BB
f f x f x ρ= −∫

 
Proposition 2.2. (Representation theorem). Assume above Assumptions A and 

B hold. Then, 
1) Algorithm (17) has unique solution ,zf λ  and there are coefficients { } 1

m l
i i

a +

=
 

depending upon *
,, , , , ,zm l f z fλλ  and g such that: 

 ( ) ( )
( )

,
1 1

.m k
i

m l
x x

z i x m k
i k

K
f a K a

n

µ
µ

λ
+

+
= =

∂ ⋅
⋅ = ⋅ +

∂∑ ∑ 

 (20) 

2) Algorithm (18) has unique solution ,Xf λ  and there are coefficients { } 1

m l
i i

b +

=
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depending upon *
,, , , , ,Xm l f X fλλ  and g such that: 

 ( ) ( )
( )

,
1 1

.m k
i

m l
x x

i x m kX
i k

K
f b K b

n

µ
µ

λ
+

+
= =

∂ ⋅
⋅ = ⋅ +

∂∑ ∑ 

 (21) 

3) Algorithm (19) has unique solution fλ  and there is a function ( )*, f
G x

λ
 

depending upon *, fλ  and a function ( ),gp xλ  depending upon λ  and g 
such that: 

 ( ) ( ) ( ) ( ) ( )
* 11 ,,

d d .d dd d
x x

x gf B SB S

K
f G x K p x

n

µ
µ

λ λλ
ρ ρ −−

∂ ⋅
⋅ = ⋅ +

∂∫ ∫ 

 (22) 

Proof. See the proof in Section 4. 
(20) shows that Algorithm (17) can be replaced by some coefficient regularized 

models and is a new topic, such kind of research can be found from literature [34] 
[35]. 

We give the following error decomposition: 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

2
2

1

2 2

2 2
1 1

22 2

22 2
1 1

,*
,

*
, , ,

, , ,

*
, , ,

, , ,

dB
dS

d dB B

d dS S

dd d BB B

d dS S

z
z L

L

z X XL L

z X X

L L

z X X LL L

z X X

LL L

f
f f g

n

f f f f

f ff
g

n n n

f f f f f f

fff f f g
n n n n n

λ
λ ρ

ρ

λ λ λρ ρ

λ λ λ

ρ ρ

λ λ λλ λ ρρ ρ

λ λ λ λ λ

ρρ ρ

−

− −

− −

∂
− + −

∂

≤ − + −

∂ ∂∂
+ − + −

∂ ∂ ∂

≤ − + − + −

∂∂∂ ∂ ∂
+ − + − + −

∂ ∂ ∂ ∂ ∂



  

    

( )1dS −
 

( ) ( )

( ) ( )
( )

( ) ( )

2
2

1

2
2

1

, ,
, ,

, *
,

*
, , ,

2 , ,

2 , , ,

dB
dS

dB
dS

z X
z X L

L

X
X L

L

z X XK K

ff
f f

n n

f f
f f K f g

n n

k f f f f K f gµ µ

λ λ
λ λ ρ

ρ

λ λ
λλ ρ

ρ

λ λλ λ

λ

λ

−

−

 ∂∂ ≤ − + − ∂ ∂ 
 
 ∂ ∂ + − + − + ∂ ∂ 
 

≤ − + − +

 

 

    (23) 

where in the last derivation, we have used (15) and 

( ) ( )
( ) ( ) 112

2
2 2* *, , inf d ,ddn dBK

KSSLf

f x
K f g f f g x f

n µ

µ
ρ

λ ρ λ−−
∈

 ∂ 
 = − + − +  ∂  

∫ 



 
which controls the approximation errors. Then, to bound the error: 

( ) ( ) ( )
2

2
1

,* *
, ,, , ,

dB
dS

z
z z L

L

f
f f g f f g

n
λ

λ λ ρ
ρ −

∂
= − + −

∂




 
we need only to bound upper bounds for the sample errors , ,z X K

f f µλ λ−  and 

,,X K
f f µρ λλ −  respectively. 
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2.4. Learning Rates 

Theorem 2.1. Let the above Assumptions A and B hold and let ,zf λ  be the so-
lution of (17) and let ( )* df C B∈  and ( )1

2
dS

g L ρ −∈ . Then, for any ( )0,1δ ∈ , 
with confidence 1 δ− , holds: 

 

( ) ( )

( ) ( )

( ) ( )

2
2

1

,*
,

**

3
2

*
*

, , 4log

, ,
, , .

dB
dS

d

z
z L

L

C B

f
f f g

n

fK f g
O

m mm

K f g
K f g

l

λ
λ ρ

ρ

λσ
δλ δ λλ

λ
λ

λ δ

−

∂
− + −

∂

  
  = + +  

   

+ + 




 (24) 

If 
( )*f x

g
n

∂
=

∂


 for 1dx S −∈ , then 

( ) ( )
* *

, ,, , n
dB

z z H
f f g f fλ λ ρ

= − 
 

and in this case, 

( ) ( ) ( )
2 2* * *, , , inf , 0,nn dBK

KHf
K f g K f f f f µ

µ
ρ

λ λ λ λ
∈

 
= = − + > 

 





 

where the norm ( )n
dB

H ρ
⋅   is defined in Section 2.2. The decay for ( )* ,K f λ  

has recently been discussed in [36]. 
We then have the following Corollary 2.1. 
Corollary 2.1. Let Assumptions A and B hold and let ,zf λ  be the solution of 

(17) and ( )* df C B∈ . If ( ) ( )*f x
g x

n
∂

=
∂


 for 1dx S −∈ . Then, for any ( )0,1δ ∈ , 

with confidence 1 δ− , holds: 

( )

( ) ( ) ( ) ( )

*
,

** *
*

3
2

, , ,4log , .

n
dB

d

z H

C B

f f

fK f K f g
O K f

m m lm

λ ρ

λ λσ λ
δλ δ λ λ δλ

−

  
  = + + + +  

    



 (25) 

By (25), we know if ( ) ( )0
m mλ λ += ↓ → +∞  is chosen in such a way that 

( )*

0
lim , 0K f
λ

λ
+→

= , 
3
2 mλ → +∞  when m → +∞ , then, with confidence 1 δ− , 

holds (since ~m l ): 

 ( )
*

,lim 0.n
dB

z Hm
f fλ ρ→+∞

− =  (26) 

2.5. Further Discussions 

We now give some explanation on the results and the assumptions. 
1) There are three reasons encouraging us to choose dD B=  and 1dD S −∂ =  
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to show the kernel-regularized regression model for solving the Neumann boun-
dary problem (5). 

i) When dD B=  and 1dD S −∂ = , we can easily give explicit representation 
for outward normal derivatives (see (9)). Therefore, we can extend the method used 
in this paper to the domains whose outward normal derivatives may be computed 
easily. 

ii) By the statement in Section 2.1, we know a tool for us to construct a re-
producing kernel Hilbert space is the orthonormal basis. We notice that function 
orthogonal basis theory has been developed not only on the unit ball dB  (see 
[37]) and the unit sphere 1dS −  (see [29]), but also on the some Sobolev space 
associated with both dB  and 1dS −  (see e.g. [30]). These facts also encourage 
us to choose dD B=  and 1dD S −∂ =  for problem (5). 

iii) In learning theory, the learning rate estimate for the kernel-regularized 
learning algorithm are sum up to bound the error bounds, which belong to the 
scope of approximation theory. One can make use of the rich spherical approx-
imation theory skills to bound the learning rates (see [24]). 

2) In the present paper, we give two Assumptions A and B. They are reasonable. 
Since ( ),kp x y  is a bivariate polynomial on d dB B×  for a given k,  

( ),x kp x x
n

∂
∂


 is still a polynomial whose sup can be attained on 1dS − . The As-

sumption B is reasonable. By the same way, we know ( )
,
sup ,

d
k k

x y B
d p x yα

∈

= ∂  can 

be attained. If we choose ( )e 0k
l

β
λ β−= > , then, we can have 

 
( ) ( )1 d dK C B Bµ ∈ × . So, the Assumption A is reasonable as well. 

3) The convergence in the present paper are uniform convergence (see (26)), 
which admits the reliability for the proposed method. 

3. Lemmas 

To give the feature description of the optimal solutions of Algorithms (17)-(19), 
we need the concept of Gâteaux derivative. 

Let ( ), ⋅


  be a Hilbert space, ( ) { }:F f R→ ∞   be a real function. 
We say F is Gâteaux differentiable at f ∈  if there is a ξ ∈  such that for 
any g ∈  there holds: 

( ) ( )
0

lim , Ht

F f tg F f
g

t
ξ

→

+ −
=

 
and write ( )f F f ξ∇ =  as the Gâteaux derivative of ( )F f  at f. 

To prove Theorem 2.1, we need some lemmas. 
Lemma 3.1. There hold the following equations: 
1) ,zf λ  satisfies equation: 

 
( )( ) ( ) ( ) ( )

( )

( )

,
,

1 1

,

1 1

0.

m k
i i

m l
xz m k

z i x x m k
i k

z

Kf x
f x y K g x

m l n n

f

µ
λµ

λ

λλ

++
+

= =

∂ ⋅ ∂
− ⋅ + −  ∂ ∂ 

+ ⋅ =

∑ ∑  

 (27) 
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2) ,Xf λ  satisfies equation: 

 
( )( )( ) ( )

( )
( )

( )

( )

,*
,

1 1

,

1 1

0.

m k
i

m l
xm kX

i i x m kX
i k

X

Kf x
f x f x K g x

m l n n

f

µ
λµ

λ

λλ

++
+

= =

  ∂ ⋅∂
− ⋅ + −  ∂ ∂ 

+ ⋅ =

∑ ∑  

 (28) 

3) fλ  satisfies equation: 

 
( ) ( )( ) ( ) ( ) ( ) ( )

( )

11
* d d

0.

d dd d
x

x B SB S

f x K
f x f x K g x

n n

f

µ
λµ

λ

λ

ρ ρ

λ

−−

∂ ∂ ⋅ 
− ⋅ + − 

∂ ∂ 
+ ⋅ =

∫ ∫  

 (29) 

Proof. Proof of 1). Define ( )z fΩ  as: 

( ) ( ) ( ) ( )
2

2

1

1 , .
l

k m n
z z m k K K

k

f x
f f g x f f

l n µ µλ+
+

=

 ∂
Ω = + − + ∈ 

∂ 
∑





 
 

Then, 

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

0

0
2 2

01

lim

lim 2 , ,

1 lim ,

z z

t

z z
Kt

k m k m k m
k m k ml

tk

f th f
t

f th f
h f

t
f x h x f x

t g x g x
n n n

l t

µλ

+

+

+

→

→

+ + +
+ +

→=

Ω + −Ω

+ −
= +

   ∂ ∂ ∂
+ − − −   ∂ ∂ ∂   + ∑

  

 
 

where 

( ) ( ) ( ) ( )( ) ( )( )

( )( ) ( )

( )( ) ( )

( )( ) ( )

2 2

0 01

1

1

1

1lim lim

2

2 ,

2,

i i

i

i i

i i

m i i x i xz z

t ti
m

i x i
i
m

i x x Ki
m

i x x
i K

f x th x y f x yf th f
t m t

f x y h x
m

f x y h K
m

h f x y K
m

µ

µ

µ

µ

+ +→ →=

=

=

=

+ − − −+ −
=

= −

= − ⋅

= − ⋅

∑

∑

∑

∑

 

 

and 

 

( ) ( ) ( ) ( ) ( )

( ) ( )
( )

2 2

01

1

1 lim

2, .k m

k m k m k m
k m k ml

tk

l
xk m

k m
k

K

f x h x f x
t g x g x

n n n
l t

Kf x
h g x

l n n µ

µ

+

+

+ + +
+ +

→=

+
+

=

   ∂ ∂ ∂
+ − − −   ∂ ∂ ∂   

∂ ⋅ ∂
= −  ∂ ∂ 

∑

∑

  

 

 (30) 

It follows 

( ) ( )

( )( ) ( ) ( ) ( )
( )

0

1 1

lim

2 2, 2 .k m
i i

z z

t

m l
xk m

i x x k m
i k

K

f th f
t

Kf x
h f x y K g x f

m l n n µ

µ
µ λ

+

+

→

+
+

= =

Ω + −Ω

∂ ⋅ ∂
= − ⋅ + − + 

∂ ∂ 
∑ ∑  
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By the definition of Gâteaux derivative, we have: 

( ) ( )( ) ( )

( ) ( )
( )

( )

1

1

2

2 2 .

i i

k m

m

f z i x x
i

l
xk m

k m
k

f f x y K
m

Kf x
g x f

l n n

µ

µ

λ+

=

+
+

=

∇ Ω = − ⋅

∂ ⋅ ∂
+ − + ⋅ 

∂ ∂ 

∑

∑  

 
By Fermat’s rule (see 1) in Proposition A1) and the definition of ,zf λ , we have 

( )
,

0
z

f z f f
f

λ=
∇ Ω = , i.e. (27) holds. 

Lemma 3.2. There hold the inequality: 

 ( ) ( ), ,
1

2
i i

m

z x xX K i K

f f y K
mµ

µ

µ
λ λ η

λ =

− ≤ ⋅∑  (31) 

and the inequality: 

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )11

,,

* *

=1

=1

2 1d

1d .

dd i

dd m k

X K

m

x i i xBB
i K

l
k m

x m k xSS
k K

f f

f x f x K f x f x K
m

f xf x
g x K g x K

n l n

µ

µ

µ

ρ λλ

µ µ
λ λ

µ µ

ρ
λ

ρ −− +

+
+

−


≤ − ⋅ − − ⋅


 ∂∂ 
+ − ⋅ − − ⋅     ∂ ∂    

∑∫

∑∫  

 (32) 

Proof. The definition of ,zf λ  and the inequality (43) give: 

( ) ( )
( )( ) ( ) ( )( )
( )

( ) ( ) ( )

( )

, ,

,, ,
1

, , ,

1

22
, ,

0
2

2

i

z z z X
m

i x z i iX X
i

l
m k m kX z m k X

m k
k

z XK K

f f

f x y f x f x
m

f x f xf x
g x

l n n n

f fµ µ

λ λ

λλ λ

λ λ λ

λ λλ

=

+ ++
+

=

≥ Ω −Ω

≥ − −

  ∂ ∂∂
+ − −    ∂ ∂  

+ −

∑

∑   

 

( )( ) ( )

( )
( )

( )

, , ,
1

,

1

2

, ,, , ,

2,

2

, 2 ,

i i

m k

m

z i x xX X
i

l
xm kX

m k
k

K

z zX X XK K

f f f x y K
m

Kf x
g x

l n n

f f f f f

µ

µ µ

µ
λ λ λ

µ
λ

λ λλ λ λλ λ

+

=

+
+

=

≥ − − ⋅

  ∂ ⋅∂
+ −  ∂ ∂ 

+ − + −

∑

∑  

 

where we have used (44). Since (28) and ( )*
i ix i xy f x η= + , we have: 

( ) ( )
( ) ( )

, ,

2

, ,, ,
1

0

2, .
i i

z z z X

m

z x x zX X Ki K

f f

f f y K f f
m µ

µ

λ λ

µ
λ λλ λη λ

=

≥ Ω −Ω

≥ − ⋅ + −∑
 

It follows: 

( ) ( )

( ) ( )

2

, ,, ,
1

,,
1

2,

2 .

i i

i i

m

z z x xX XK i K

m

x x zX Ki K

f f f f y K
m

y K f f
m

µ
µ

µ
µ

µ
λ λλ λ

µ
λλ

λ η

η

=

=

− ≤ − ⋅

≤ ⋅ × −

∑

∑
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(31) thus holds. 
Proof of (32). Define ( )X fΩ  as: 

( ) ( ) ( ) ( )
2

2

1

1 , .
l

k m n
m kX X K K

k

f x
f f g x f f

l n µ µλ+
+

=

 ∂
Ω = + − + ∈ 

∂ 
∑





 
 

Then, by the definition of ,Xf λ  and inequalities (43) and (44), we have: 

( ) ( )

( ) ( )( ) ( )

( ) ( )
( )

,

*
,

1

,
1

2

, ,

0

2,

2,

,2 .

i

m k

X X X

m

i i xX
i K

l
xm k

m kX
k

K

X XK K

f f

f f f x f x K
m

Kf x
f f g x

l n n

f f f f f

µ

µ

µ µ

λλ

µ
λ λλ

µ
λ

λλ

λ λ λλ λλ λ

+

=

+
+

=

≥ Ω −Ω

≥ − − ⋅

∂ ⋅ ∂
+ − − 

∂ ∂ 

+ − + −

∑

∑  

 
By (29), we have: 

( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )
( )

11

*
,

*

1

2

,
1

0 , d

1 d

1 .

dd

ddi

m k

xX BB

m
x

i i x SS
i

l
xm k

m k X Kk
K

f f f x f x K

f x K
f x f x K g x

m n n

Kf x
g x f f

l n n µ
µ

µ
λ λλ

µ
λµ

λ

µ
λ

λλ

ρ

ρ

λ

−−

+

=

+
+

=

≥ − − ⋅

∂ ∂ ⋅ 
− − ⋅ + − ∂ ∂ 

∂ ⋅ ∂
− − + − 

∂ ∂ 

∫

∑ ∫

∑

 

 

 
It follows: 

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

( ) ( )
( )

11

2

,

* *
,

1

1

1, d

d

1

ddi

dd

m k

X K

m

i i x xX BB
i

x
SS

l
xm k

m k
k

K

f f

f f f x f x K f x f x K
m

f x K
g x

n n

Kf x
g x

l n n

µ

µ

λλ

µ µ
λ λ λλ

µ
λ

µ
λ

λ

ρ

ρ −−

+

=

+
+

=

−

≤ − − ⋅ − − ⋅

∂ ∂ ⋅ 
− − ∂ ∂ 

∂ ⋅ ∂
+ − 

∂ ∂ 

∑ ∫

∫

∑

 

 

 

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

( ) ( )
( )

11

* *

1

,

1

1 d

d

1 .

ddi

dd

m k

m

i i x x BB
i K

x
X SSK

l
xm k

m k
k

K

f x f x K f x f x K
m

f x K
f f g x

n n

Kf x
g x

l n n

µ

µ

µ

µ µ
λ λ

µ
λ

λλ

µ
λ

ρ

ρ −−

+

=

+
+

=


≤ − ⋅ − − ⋅


∂ ∂ ⋅ 
× − + − ∂ ∂ 

∂ ⋅ ∂
− −  ∂ ∂  

∑ ∫

∫

∑

 

 

 
Above inequality gives (32). 
Lemma 3.3. There hold following inequalities. 
1) For any ( )0,1δ ∈ , with confidence 1 δ− , holds: 

 , ,
2 .z X K

kf f
mµλ λ
σ

λ δ
− ≤  (33) 
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2) For any ( )0,1δ ∈ , with confidence 1 δ− , holds: 

( ) ( ) ( )*2 * *

,

22 , , , ,2log .
dC B

X K

k fk K f g k K f g
f f

m m lµλλ

λ λ

δλ λ λ δ

 
 − = + + 
 
 

 (34) 

Proof. Proof of (33). The definition of ( )dK Bµ⋅  and (14) give: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

1 1 1

2
, 1

1 1 1,

1 , .

i i i i j j

i j

m m m

x x x x x x
i i jK K

m

x x i j
i j

y K y K y K
m m m

y y K x x
m

µ µ

µ µ µ

µ

η η η

η η

= = =

=

⋅ = ⋅ ⋅

=

∑ ∑ ∑

∑
 

By Markov inequality, we have: 

 ( ) ( )2

, ,

, , 2 .
z X K

z X K

E f f
P f f

µ

µ

λ λ

λ λ ε
ε

−
− > ≤  (35) 

Then, by (31), we have: 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2
2

, , 2 2
1

2 2
1 1

2 2
, 1

4

4 ,

4 , .

i i

i i j j

i j

m

z x xX K i K

m m

x x x x
i j K

m

x x i j
i j

f f y K
m

y K y K
m

y y K x x
m

µ
µ

µ

µ
λ λ

µ µ

µ

η
λ

η η
λ

η η
λ

=

= =

=

− ≤ ⋅

≤ ⋅ ⋅

=

∑

∑ ∑

∑
 

Since ( ) ( )| 0xxEρ η⋅ = , we have: 

( ) 2 2 22 2
, , 2 2

4 4d .ddz xX BBK

k kE f f
m mµλ λ

ση ρ
λ λ

− ≤ =∫
 

By (35), we have: 

( )
2 2

, , 2 2
41 .z X K

kP f f
mµλ λ
σε

λ ε
− ≤ ≥ −

 

Taking 
2 2

2 2

4k
m
σδ

λ ε
= . We have 

2k
m
σε

λ δ
=  and (33) thus holds. 

We now show (34). Take 

( ) ( )( ) ( ) ( ) ( )( ) ( )* *

1

1d dd i

m

x i i xBB
i K

A f x f x K f x f x K
m µ

µ µ
λ λρ

=

= − ⋅ − − ⋅∑∫
 

and 

( ) ( ) ( )

( ) ( )
( )

11

1

d

1 .

dd

m k

x
SS

l
xm k

m k
k

K

f x K
B g x

n n

Kf x
g x

l n n µ

µ
λ

µ
λ

ρ −−

++
+

=

∂ ∂ ⋅ 
= − ∂ ∂ 

∂ ⋅ ∂
− − 

∂ ∂ 

∫

∑

 

 

 
Then, 

 ( ),,
2 ,X K

f f A Bµρ λλ λ
− ≤ +  (36) 
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where 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

* *

1

1d

1d .

dd i

dd i

m

x i xBB
i K

m

x i xBB
i K

A f x K f x K
m

f x K f x K
m

µ

µ

µ µ
λ λ

µ µ

ρ

ρ

=

=

≤ ⋅ − ⋅

+ ⋅ − ⋅

∑∫

∑∫
 

Since 

( ) ( ) ( ) ( ) ( )

( )2 *
2

, ,

x xK

K

f x K f x K x k f x

k K f g
k f

µ

µ

µ µ
λ λ λ

λ

λ

⋅ = ≤

≤ ≤
 

and ( ) ( ) ( ) ( )
* * *

dx K C B
f x K k f x k fµ

µ ⋅ ≤ ≤ , we have by (47) that, with confi-

dence 1 δ− , holds: 

 
( ) ( )

*2 * 22 , , 2log .
dC B

k fk K f g
A

m m

λ

δλ λ λ

 
 ≤ + 
 
 

 (37) 

On the other hand, take ( ) ( ) ( )
f x

x g x
n

λξ
∂ 

= − 
∂ 


. Then, 

( ) ( ) ( )
( )

11
1

1d .m k
dd

l
xx

m kSS
k

K

KK
B x x

n l n µ

µµ

ξ ρ ξ +
−− +

=

∂ ⋅∂ ⋅
= −

∂ ∂∑∫  

 
By the definition of K µ⋅ , we have: 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11

11

1 11 1

1

2

1

1

1

1d ,

1d

, d d

12 , d

m k
dd

m i
dd

d dd d

m i
dd

l
xx

m kSS
k

l
xu

m iSS
i

K

x u
S SS S

K

l
xx

m i SS
i

K

KK
B x x

n l n

KK
u x

n l n

K K
x u x u

n n

KK
x x

l n n

µ

µ

µ

µµ

µµ

µ µ

µµ

ξ ρ ξ

ξ ρ ξ

ξ ξ ρ ρ

ξ ξ ρ

+
−−

+
−−

− −− −

+
−−

+
=

+
=

+
=

∂ ⋅∂ ⋅
= −

∂ ∂

∂ ⋅∂ ⋅
−

∂ ∂

∂ ⋅ ∂ ⋅
=

∂ ∂

 ∂ ⋅∂ ⋅
 −
 ∂ ∂ 

∑∫

∑∫

∫ ∫

∑∫

 

 

 

 

( )

( )
( ) ( )

( ) ( ) ( ) ( )

1

2
2

1

2
, 1,

1 ,

1 , .

m k m k

m k m i

l
x x

m k
k

K

l
x x

m i m j
k i k i

K

x

K K
x

n nl

K K
x x

n nl

µ

µ

µ µ

µ µ

ξ

ξ ξ

+ +

+ +

+
=

+ +
= ≠

∂ ⋅ ∂ ⋅
+

∂ ∂

∂ ⋅ ∂ ⋅
+

∂ ∂

∑

∑

 

 

 

Since (14), we have: 

( ) ( ) ( ), ,x u u x
x

K

K K
K u

n n n nµ

µ µ
µ∂ ⋅ ∂ ⋅ ∂ ∂

=
∂ ∂ ∂ ∂
   

 

( ) ( )
( ), m i

m i

xx u x
x

u xK

KK
K u

n n n nµ

µµ
µ+

+=

∂ ⋅∂ ⋅ ∂ ∂
=

∂ ∂ ∂ ∂
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and 

( ) ( )
( ), ,m k m k

m k

x x u u
u

u xK

K K
K u

n n n nµ

µ µ
µ+ +

+=

∂ ⋅ ∂ ⋅ ∂ ∂
=

∂ ∂ ∂ ∂
   

 

( ) ( )
( )

,

, .m k m i

m i m k

x x u x
x

u x x xK

K K
K u

n n n nµ

µ µ
µ+ +

+ += =

∂ ⋅ ∂ ⋅ ∂ ∂
=

∂ ∂ ∂ ∂
   

 
It follows that: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1 11 1

11

2

1

2
2

1

2
, 1, ,

d d

12 d

1

1 .

d dd d

dd

m i

m k

m i m k

u x
x S SS S

l
u x

m i x SS
i u x

l
u u

m k u
k u x

l
u x

m i m j x
k i k i u x x x

B x u K u x u
n n

x x K u x
l n n

x K u
n nl

x x K u
n nl

µ

µ

µ

µ

ξ ξ ρ ρ

ξ ξ ρ

ξ

ξ ξ

− −− −

−−

+

+

+ +

+
= =

+
= =

+ +
= = = =

∂ ∂
=

∂ ∂
 ∂ ∂

−   ∂ ∂ 
∂ ∂

+
∂ ∂

∂ ∂
+

∂ ∂

∫ ∫

∑∫

∑

∑

 

 

 

 

 

Since ( )1 2, , ,m m m lx x x+ + +  are i.i.d. according to 
1dS

ρρ −
, we have: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

11

1 11 1

11

2 2

2

1 d

d d

1 d ,

dd

d dd d

dd

x x
x SS

u x
x S SS S

x x
x SS

E B x K x x
l n n

x u K u x u
n n

x K x x
l n n

µ

µ

µ

ξ ρ

ξ ξ ρ ρ

ξ ρ

−−

− −− −

−−

∂ ∂=  ∂ ∂
∂ ∂ − ∂ ∂ 

∂ ∂ ≤  ∂ ∂ 

∫

∫ ∫

∫

 

 

 

 

where we have used the fact that: 

( ) ( ) ( ) ( ) ( )1 11 1 d d 0d dd d
u x

x S SS S
x u K u x u

n n
µξ ξ ρ ρ− −− −

∂ ∂
≥

∂ ∂∫ ∫  

 

since ( )u x
xK u

n n
µ∂ ∂

∂ ∂
 

 is a positive definition function about u and x. According 

to Assumption B, we have: 

( ) 2 ,u x
xK u k

n n
µ∂ ∂

≤
∂ ∂
 

 

It follows that: 

( ) ( ) ( )( )11

2
2 2 d .dd SS

kE B x x
l

ξ ρ −−≤ ∫
 

By Markov inequality, we have: 

( )
( )

( ) ( )( )
( )

11

2

2

2
2

2

2
*

2

d

, , .

dd SS

E B
P B

k x x
l
k K f g
l

ε
ε

ξ ρ
ε

λ
ε

−−

> ≤

≤

≤

∫
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Take ( )
2

*
2 , ,k K f g

l
δ λ

ε
= . Then, 

( )* , ,k K f g

l

λ
ε

δ
= . It follows that with 

confidence 1 δ− : 

 
( )* , ,

.
k K f g

B
l

λ

δ
≤  (38) 

Collecting (38), (37) and (36), we arrive at (34). 

4. Proofs 
Proof of Proposition 2.1. Proof of 1). For any  

( ) ( ) ( ), ,
0 1

d
ka

n
k l k l K

k l
f x a f Q x µ

∞

= =

= ∈∑∑


 . We rewrite ( ),K x yµ  as: 

( ) ( ) ( )( ) ( ), , ,
0 1

, .
d
ka

y k l k l k l
k l

K x y K x Q y Q xµ µ λ
∞

= =

= = ∑∑
 

Then, 

( )( ) ( )
( ), , ,

0 1 ,

, ,
d
ka

k l k l k l
y K k l k l

Q y a f
f K f yµ

µ λ
λ

∞

= =

= =∑∑
 

which yields (13). 
Proof of 2). Since (9) and (46), we have: 

( ) ( ) ( )

( ) ( )
1

1 1

,
,

, , , , , .

d
i

i
i K

d d

K

f x K x
f x x

n x

f K x x x x S
n

µ

µ

=

−

∂ ∂ ⋅
=

∂ ∂

∂
= ⋅ = ∈

∂

∑





 

(14) thus holds. 
Proof of 3). By (14), we have: 

( ) ( ) ( ), .x x
K K

K K

f x K K
f f k f

n n nµ µ

µ µ

µ µ∂ ∂ ⋅ ∂ ⋅
= ≤ ≤

∂ ∂ ∂
  

 

By the same method, we have by (13) that: 

( ) ( )

( )

,

.

x K

xK K

K

f x f K

f K

k f

µ

µ µ

µ

µ

µ

= ⋅

≤ ⋅

≤  

(15) thus holds. 
Proof of Proposition 2.2. By (27), we have: 

 

( ) ( )( ) ( )

( ) ( ) ( )

, ,
1

,

1

1

1 .

i i

m k

m

z x z i x
i

l
xz m k

m k
k

f y f x K
m

Kf x
g x

l n n

µ
λ λ

µ
λ

λ

λ
+

=

+
+

=

⋅ = − ⋅

∂ ⋅ ∂
+ −  ∂ ∂ 

∑

∑  

 (39) 
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Taking ( )( ),
1

ii x z ia y f x
m λλ

= −  and ( ) ( ),1 z m k
m k m k

f x
a g x

l n
λ

λ
+

+ +

 ∂
= −  ∂ 



 into 

(40), we have (20). 
By (29), we have: 

 

( ) ( ) ( )( ) ( )

( )
( ) ( )

*
, ,

1

,

1

1

1 .

i

m k

m

i i xX X
i

l
xm kX

m k
k

f f x f x K
m

Kf x
g x

l n n

µ
λ λ

µ
λ

λ

λ
+

=

+
+

=

⋅ = − ⋅

  ∂ ⋅∂
+ −   ∂ 

∑

∑  

 (40) 

Taking ( ) ( )( )*
,

1
i i iXb f x f x

m λλ
= −  and ( )

( ),1 m kX
m k m k

f x
b g x

l n
λ

λ
+

+ +
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= −  

 


 

into (40), we have (21). 
By (29), we have: 

 
( ) ( ) ( )( ) ( )

( ) ( ) ( )
11

*1 d

1 d .

dd

dd

x BB

x
SS

f f x f x K

f x K
g x

n n

µ
λ λ

µ
λ

ρ
λ

ρ
λ −−

⋅ = − ⋅
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+ − 

∂ 

∫

∫  

 (41) 

Taking ( ) ( ) ( )( )*
*

,

1
f

G x f x f xλλ λ
= −  and ( ) ( ) ( )

,
1

g

f x
p x g x

n
λ

λ λ
∂ 

= − 
∂ 


  

into (41), we have (22). 
Proof of Theorem 2.1. Collecting (33), (34) and (23), we have: 

 

( ) ( )

( ) ( )

( ) ( )

2
2

1

,*
,

**2

3
2

*
*

, ,2 4log

, ,
2 , , .

dB
dS

d

z
z L

L

C B

f
f f g

n

fK f gk k
m mm

k K f g
K f g

l

λ
λ ρ

ρ

λσ
δλ δ λλ

λ
λ

δ

−

∂
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∂

 
 ≤ + + 
 
 

+ +



 (42) 

(42) yields (24). 
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Appendices 
Appendix 1. Gâteaux Derivative and the Convex Function 

Following Proposition A1 can be found from the Proposition 17.4, Proposition 
17.10 and Proposition 17.12 of [38]. 

Proposition A1. Let ( ), ⋅


  be a Hilbert space and  

( ) { }:F f R→ ∞   be a function defined on  . Then, 

1) If ( )F f  is a convex function, then, ( )F f  attains minimal value at 0f  
if and only if ( )0 0f F f∇ = . 

2) If ( ) { }:F f R→ ∞   is a Gâteaux differentiable function, then ( )F f  
is a convex on   if and only if for any ,f g ∈ , there holds: 

( ) ( ) ( ), .f H
F g F f g f F f− ≥ − ∇

 
In particular, we have: 

 ( )2 2 2 , , .x y y x y x y R− ≥ − ∀ ∈  (43) 

3) For function ( ) 2F f f=


, there holds ( ) 2f F f f∇ =  and there holds 
equality: 

 2 2 2, 2 ,H H H Hf g f g g f g− = − + −  (44) 

i.e. 

( )2 2 2, .gH H HH
f g f g F g f g− = − ∇ + −

 

Appendix 2. Derivatives Reproducing Property 

Let dRΩ ⊂  be a compact subset which is the closure of its nonempty interior 
0Ω . Let ( ),K x y  be a Mercer kernel on Ω×Ω  having the expansion (see e.g. 

[39]): 

 ( ) ( ) ( )
0

, , , ,k k k
k

K x y x y x yλ ϕ ϕ
+∞

=

= ∈Ω∑  (45) 

where the convergence is absolute (for each ,x y∈Ω ) and uniform on Ω×Ω . 
Then, we have a proposition. 

Proposition A2. Let ( ),K x y  be a Mercer kernel of form (45) and  
( ) ( )1K C∈ Ω×Ω . If K  is a reproducing kernel Hilbert space such that: 

( ) ( ), , , , .
K

Kf x f K x f H x= ⋅ ∈ ∈Ω
  

Then, 

 ( ) ( )
( )

, , , 1, , ,n
K

x x Kf x f K x f xα α

ρ
α

Ω
∂ = ∂ ⋅ ≤ ∈ ∈Ω


  (46) 

where 
1

1
d

i
i

α α
=

= ≤∑ . 

Proof. It can be found from Theorem 1 in [12], or see (v) in Theorem 4.7 in 
[40]. 
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Appendix 3. A Probability Inequality 

Proposition A4. [41] Let ξ  be a random variable taking values in a real separa-
ble Hilbert space H on a probability space ( ), , PΩ  . Assume that there are a 
positive constant L such that H Lξ ≤ . Then, for all 1n ≥  and 0 1η< < , it 
holds, with confidence 1 η− , that: 

 ( ) ( )
1

1 4 2log .
n

i
i H

LE
n n

ξ ξ
η=

Ω − ≤∑  (47) 
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