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Abstract 
The phenomenon of electrical attraction and repulsion between charged par-
ticles is well known, and described mathematically by Coulomb’s Law, yet 
until now there has been no explanation for why this occurs. There has been 
no mechanistic explanation that reveals what causes the charged particles to 
accelerate, either towards or away from each other. This paper gives a detailed 
explanation of the phenomena of electrical attraction and repulsion based on 
my previous work that determined the exact wave-function solutions for both 
the Electron and the Positron. It is revealed that the effects are caused by 
wave interactions between the wave functions that result in Electromagnetic 
reflections of parts of the particle’s wave functions, causing a change in their 
momenta. 
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1. Introduction 

It is universally accepted that like charges repel and unlike charges attract and 
Coulomb’s Law describes this behaviour very well. However, it is seldom ques-
tioned as to why this is so. What is it about particles that make them charged 
and what causes the attraction or repulsion to occur? There is very little work 
done on examining and trying to understand what mechanisms could cause this 
behaviour between fundamental physics particles. The only work I can find that 
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touches on this is that done by James Clerk Maxwell [1] in his foundational work 
on Electromagnetism. He attempts to explain the effects of magnetism as pressure 
between spinning loops of an ethereal type of fluid that fills space and supports 
the existence of magnetic fields. He says “…pressure in the equatorial direction 
arises from the centrifugal force of vortices or eddies in the medium having their 
axes in directions parallel to the lines of force”. In a similar sort of line of thought, 
I have analysed the problem given the insight I have gained from my work on 
determining the electron/positron wave functions, comprised of Electromagnetic 
waves. 

In earlier work [2] [3], it was found that the wave functions of the Electron 
and Positron each comprise a three-dimensional spiral wave that is rotating, 
such that there is a flow of wave phase either outwards or inwards as it rotates. 
This direction of the phase flow is what determines if the particle is negatively or 
positively charged. These spiral wave structures can be further broken down into 
the sum of inwardly and outwardly travelling spherical waves. The sum of the 
energies of the Electric and Magnetic fields in these waves over a small volume 
of space (containing the particle at the center) yields that particle’s rest mass en-
ergy equivalent [4]. 

There is an energy balance between the inward and outward waves (i.e. the mag-
nitude of the energy of the inflowing waves equals that of the outflowing waves) 
resulting in no net energy loss/gain for the particle as a whole. This is a guaran-
teed feature of the wave functions, as they are mathematical solutions to both the 
Classical and Schrödinger wave equations; thus, they represent temporally stable 
wave structures.  

For an Electron there exists, at any point in space, a phase flow of the wave 
function’s waves outward with respect to the Electron’s centre. The phase flow 
causes the attraction/repulsion, classically associated with the electric field (Cou-
lomb’s Law) when it interacts with other charged particles’ wave functions. As one 
moves further from the Electron’s centre, the amplitude of the waves decreases, 
and so too does the electric field and its associated Coulomb force due to these 
waves (i.e. lower wave amplitude = lower momentum in waves = lower force on 
other charged particles). 

When the electric field of the electron interacts with other charged particles 
(for example, another identical electron), the inward and outward waves of each 
Electron overlap in space. When this happens, at the interface between the two 
electrons (at exactly equal distances between each electron’s centre), the two out-
ward waves will form a standing wave and the two inward waves will form a stand-
ing wave—each of these standing waves will have no phase flow in space as an 
equal amount and frequency of each Electromagnetic wave is coming from each 
side of the interface location in space. Thus, the nodes of the standing wave at 
this point will not be moving. 

As the overall wave function of the electron has an outward phase flow, when 
a stationary node forms at this midway point, the outward wave will be reflected 
and Doppler shifted to form an inward wave of higher frequency than usual. In 
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the space between the two Electrons, the nodes from the electron’s centre to the 
midway point become progressively slower, until at the midway point, the node 
stops completely. Thus, the interface between two electrons provides a frequency 
conversion, or momentum change, to the inward/outward waves in the region be-
tween the two Electrons. These frequency/momentum changes will propagate 
through each node of the Electron’s wave function to the electron’s centre causing 
the whole electron to move—thus, the electron has been accelerated. 

The aim of this paper and the modelling results it presents is to demonstrate 
that the known attractive or repulsive force that exists between charged particles 
can be accurately modelled and explained theoretically using Classical Physics 
when the wave structure of charged particles (such as the electron and positron) 
is taken into consideration. 

2. Method 

The interaction between the dynamic, three-dimensional, Electromagnetic wave 
structures of two or more such charged particles can account for the observed 
attraction/repulsion through an incident radiation pressure at the node interfaces 
in the space occupied by the particles’ wave structures. 

When Electromagnetic waves reflect perfectly, they impart a radiation pres-
sure equal to twice the incident radiation pressure. So, by identifying all the points 
in space where such reflection is occurring, over the region containing the two 
(or more) charged particle wave functions that are interacting, it is possible to 
calculate an overall radiation pressure that is acting on the particle. When this is 
done (for example, between two Electrons, two Positrons, or an Electron and a 
Positron) the total force acting on each particle can be determined. Then, by us-
ing Newton’s 2nd Law (F = ma), the acceleration of each particle can be deter-
mined. For two Electrons or two Positrons, the wave reflections occur predomi-
nantly in the space between the two particles—thus, causing an outward force 
that repels each particle from the other. For an Electron and a Positron, the re-
gions that reflect are predominantly outside the two-particle system—thus, caus-
ing an inward, attractive force between the two particles. The following two fig-
ures are plots of the magnitude of the x-axis component of the reflected Electro-
magnetic energy for two different modelled particle configurations: 1) Two Elec-
trons, 2) An Electron and a Positron. 

The amount of power coupling between the two particles (electrons) depends 
on the amount of reflection of the waves from each particle on the other. This 
amount depends on the minimum RMS power of the two interacting waves along 
the axis connecting the two particle centres (the x-axis in this model), as the waves 
can only reflect when equal but opposite Electromagnetic wave components meet 
at the reflection point. 

The regions in the space occupied by the two wave functions that have the most 
reflected power differ between two particles with the same charge, Figure 1, where 
the reflected power is mostly in the space between the particle centers, thus caus-
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ing repulsion; and between two oppositely charged particles, Figure 2, where the 
reflected power is mostly in the space outside of the two particles, thus causing 
an inward, attractive force. 

 

 
Figure 1. Wave reflections between two Electrons. Wave reflection occurs predominantly 
in the space between particle centers. 

 

 
Figure 2. Wave reflections between an Electron and a Positron. Wave reflection occurs 
predominantly in the space outside of the two particle centers. 
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The power values of each Electromagnetic wave are calculated from the Poynting 
Vector (vector cross product) of the RMS Electric and Magnetic field values of 
the minimum power of the two interacting waves at each point [5]: 

 
2RMS

Eε =  (1) 

Electric energy density: 

 
2 2

0 0

2 4
RMS

e
E

u
ε ε ε⋅ ⋅

= =∴  (2) 

Poynting vectors (power flow): 
 1 1 1RMS RMSS E H= ×  (3) 

 2 2 2RMS RMSS E H= ×  (4) 

Minimum power of the two waves (one from each particle) at a point in space: 
 min 1 2S S S∧=  (5) 

There is an additional factor that determines the amount of power coupling 
between the two particles—the relative orientations of the polarizations of the 
two waves and how much they align and thus, reflect off each other. As the in-
terface area between the two electrons is a circle, the amount of coupling between 
the two Electromagnetic waves will vary sinusoidally (around this circle) with the 
angle difference between the polarizations of the two waves. 

However, this effect is taken care of in the maths as the dot product of the two 
Electromagnetic waves is used to determine the amount of reflection during the 
calculation of the total reflected power between the two particles’ wave functions. 
See Appendix for an extract of the code used to determine the acceleration be-
tween the two electrons. 

Alignment (dot product) of the two particles’ Electric fields (using Normal-
ized E vectors): 

Normalized electric field vectors: 1NE  and 2NE : 

 1
1

1
N

EE
E

=  (6) 

 2
2

2
N

EE
E

=  (7) 

 1 2Ndot N NE E E= ⋅  (8) 

AP  is the RMS Electromagnetic power flow at each area element within the 
modelled region. 

Reflected Power between two particles’ wave function at the same point in 
space: 

 min2A NdotP E S= × ×  (9) 

The Power value obtained is then converted into a pressure by dividing by the 
speed of light [6]. To work out the actual force between the two particles, we 
need to simplify the calculation by conceptually reducing each particle to a point 
particle at its wave function centre, with an effective area of interaction of one 
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grid point in the model. The force between them is due to wave reflections at the 
mid-way point between them—where waves from each side are equal. 

 A
A

Pp
c

=  (10) 

In a similar way to the Shell Theorem for gravity, where the force between two 
bodies due to the mass of one spherical body can be treated as all coming from a 
single point at that spherical body’s centre of mass, the attractive/repulsive force 
between charged particles can be treated similarly, but centered around the charged 
particle’s center of charge. 

If we start from the situation where both particles are together almost at the 
same point, then there is a single grid point of area interacting between them. As 
the particles move apart, the volume of the sphere from each particle’s centre to 
the center of the other particle’s wave function represents all of the contributing 
grid points to the total force attributed to the single central point. 

As the volume of a sphere is: 

 34
3

V r= π , (11) 

where r is the distance between the two particle centres (on the x-axis). 

 1 2r x x= −  and 0r >  (12) 

If d is the number of grid points between the two particle centres, rather than 
r (which is in meters): 

 1 2
1rd x x

dx dx
= = −  (13) 

Expressing this in terms of d: 

 
3

34 4
3 3

rV d
dx

 = π = π 
 

 (14) 

This quantity is a dimensionless number (a number of grid points). 
At each grid point in the model, there is a pressure element Ap . The actual 

force at each grid point can be determined by multiplying this pressure element 
by the area of a single grid point. 

If AF  is the infinitesimal Force element at each location in the 3D volume 
being integrated. It is equal to the infinitesimal pressure element multiplied by 
the infinitesimal area over which the pressure acts: 

 A AF p dA= ⋅  (15) 

In the model, to calculate the Force between the two particles, first a sum of 
the finite model force elements is calculated: 

 ( )max max max
0 0 0 d d dx x y y z z

sum Ax y zF F x y z= = =

= = =
= ⋅ ⋅∑ ∑ ∑  (16) 

Then, this sum needs to be divided by the number of grid points within the 
sphere from one particle’s center to the other (based on the Shell theorem consid-
erations discussed above), to give an average Force per grid point, which is: 
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34

3

sum
avg

F
F

d
=

π
 (17) 

But, there is another consideration too. The force between the two particle 
centers acts along the line connecting the two centers, so every grid point (each 
with a force of avgF ) along this line from the center of the particle feeling the  

force and the mid-point between the particles 
2
d , (at a single area element,  

where the force is considered to have originated—the wave reflection point be-
tween the two particles) contributes to the force between the two particles along 
this line. These force elements sum to give the total force along this line. So, the 
force would be: 

 
3 2

2
4 82
3 3

sum
sum

total avg

d F FdF F
d d

⋅
= ⋅ = =

π π
 (18) 

Once this has been done, the actual force between the two particles can be de-
termined by substituting in the force sum defined earlier sumF . 

Thus, the Force between the two particles as a sum of finite model elements is: 

 ( )max max max
0 0 0

2

1 d d d
8
3

x x y y z z
total Ax y zF F x y z

d

= = =

= = =
= ⋅ ⋅

π
∑ ∑ ∑  (19) 

This sum counts grid-point elements and the divisor at the front divides by 
the number of grid-point elements. In a definite integral using SI units, dr counts 
meters. So, (14) becomes: 

 
28

3
r
dr

 π 
 

, where 1 mdr =  (20) 

Thus, this results in the dimensionless number: 

 28
3

rπ , where 
r

r r
d

=  (21) 

Integrating over the 3D volume containing the two particles’ wave functions, 
the Force between the two particles is: 

 ( )max max max

0 0 02

1
8
3

x x y y z z
total Ax y z

F F x y
r

z
= = =

= = =
= ⋅ ∂ ∂ ∂

π
∫ ∫ ∫



 (22) 

For a cube of space being modelled, with cubic infinitesimal volumes being 
integrated: 

 x y z∂ = ∂ = ∂  (23) 

and, 

 max max maxx y z= =  (24) 

If dA is the area of one infinitesimal 2D square (in the y/z axis plane) on 
which the infinitesimal pressure Ap  acts (in the integration), we can see that: 
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 dA y z= ∂ ⋅∂  (25) 

So, 

 max max max

2 0 0 0

3
8

x x y y z z A
x y z

PF dA x
cr

= = =

= = =

 = ⋅ ∂ π  ∫ ∫ ∫  (26) 

The acceleration of the particle is thus: 

 Fa
m

=  (27) 

When the model is run (configured for two Electrons repelling), and the re-
sults are recorded for a range of different modelled data points in the 3D space, a 
graph can be obtained comparing the calculated Electron Acceleration compared 
to the known Electron acceleration (determined using Coulomb’s Law). This has 
been done for x, y, and z-axis data points ranging from 100 to 315 data points 
along each axis. Due to memory constraints on the computer, a region of space 
with more than 315 points along each axis cannot be modelled, but as you can 
see from the following graph, as the number of modelled points increases (and 
thus, the accuracy of the calculation), the percentage match between the model 
and the known acceleration approaches 100%. 

3. Results 

The following results graphs are based on data I obtained from my 3D finite ele-
ment computer model. They are investigations, using the computer model, into 
the accuracy of my theoretical model in matching the predictions of Coulomb’s 
Law, given the physical restrictions and limits on the computer model. 

The first graph, Figure 3, shows the percentage match to Coulomb’s Law given 
a static separation distance between two modelled electron wave functions, but 
with differing number of model elements down all three axes. 

The second graph, Figure 4, shows the percentage match to Coulomb’s Law 
over a range of separation distances of two modelled electron wave functions, 
using the maximum attainable number of model elements down all three axes. 

As you can see, the accuracy of the model’s calculations increases as the num-
ber of modelled points increases (as one would expect) and the curve asymptotes 
to a 100% match with the expected electron acceleration (given by Coulomb’s 
Law). 

Also, a plot can be made of the modelled acceleration between the two elec-
trons over a range of particle separations (from 1% to 100% of the actual modelled 
width; which in this case is 7.4E11 meters): 

As you can see from the plot, at very short ranges, the normally repulsive 
force between the electrons becomes attractive. This effect is a known effect. See 
reference [7] for discussion on this in regards to Casimir forces, but my finding 
may also be contributing to the observed charge clumping at high charge densities. 

Then, at about 10% of the distance (7.4E−12 metres), the force between the 
two electrons becomes repulsive, and reaches about 100% of the expected classical  
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Figure 3. Percentage match between the model and reality over number of modelled grid points. Modelled space was 7.4E−11 
metres cubed. The separation of the two electrons was 7.4E−11 metres. 
 
 

 
Figure 4. Percentage match between the model and reality over separation distance (on the x-axis) as a percentage of the modelled 
space when the two electron’s spins are aligned parallel (aligned to the y-axis) and orthogonal (one electron aligned to the x-axis 
and the other to the y-axis). Modelled space was 7.4E−11 metres cubed. 
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value from about 75% of the modelled distance onwards. This distance equates 
to about 5.55E−11 metres between electron centres. 

The force on the particles is about ±2% depending on the orientation (orthogo-
nal v’s aligned), but the average of the two orientations is about 100.2% of a match 
to Coulomb’s Law. 

4. Conclusions 

Modelling electrons and positrons as spherical standing waves according to the 
wave-function equations determined earlier [2] and the electrostatic interactions 
(Coulomb forces) between such charged particles as being due to the radiation 
pressure between such standing waves due to the interactions between the waves 
that comprise the wave functions is able to predict, quite accurately, the known 
amount of attractive/repulsive force between such particles in the real world. Only 
simple, known Classical Physics principles have been employed here in the model 
and the explanation for the Coulomb forces. 

With all of these model calculations, there is a balance between the size of the 
actual physical space being modelled and the number of modelled data grid points 
within that space. To get more accurate calculations, we would need a larger num-
ber of data points per wavelength of the electron wave function’s waves, but to get 
a greater proportion of the electron’s energy included in the calculations, we would 
need a greater physical size of the space being modelled. 

These two requirements work in opposite directions, and due to memory con-
straints and computation time, the maximum number of data points along each 
size of the modelled cube of space that is able to be achieved with the current com-
puter model is 315. Doubling the number of points down each side results in 8 
times as many points in space, and each data point in the model’s code holds many 
different data variables for each of the possible fields being calculated when the 
model runs, which has the effect of multiplying the memory requirements by a 
lot more than a factor of 8. 

The two graphs I have presented here are about as good a balance between these 
competing requirements that I can achieve with my current modelling capability. 
I’m sure that someone with a supercomputer could do a much better job of this 
modelling, but unfortunately, I do not have one nor have access to one. 
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Appendix: The Code Used to Determine the Acceleration from the Two Particle’s Wave 
Function 

    PowerCount_neg:=0; 
    PowerSum_neg:=0; 
    PowerCount_pos:=0; 
    PowerSum_pos:=0; 
  
    p1_p2_diff:=abs(particle2_x-particle1_x); 
 
    for xpos:=0 to GridWidth-1 do begin {scan grid’s x coords} 
      for ypos:=0 to GridHeight-1 do begin {scan grid’s y coords} 
        for zpos:=0 to GridDepth-1 do begin {scan grid’s z coords} 
          Power_x1:=particle1_Power[xpos, ypos, zpos].x;  //  The RMS Power flow from particle 1 
          Power_x2:=particle2_Power[xpos, ypos, zpos].x;  //  The RMS Power flow from particle 2 
 
          vect:=particle1_E[xpos,ypos,zpos]; 
          vect2:=particle2_E[xpos,ypos,zpos]; 
          vect.x:=0; 
          vect2.x:=0; 
          vect:=Normalize(vect); 
          vect2:=Normalize(vect2); 
          dot_v1v2:=abs(VectorDot(vect,vect2)); 
 
          // The Force imparted upon reflection is double the incident radiation pressure 
          reflected_power:=2*dot_v1v2*min(abs(Power_x1),abs(Power_x2)); 
 
          ReflectedPowerAtPoint:=0; 
 
          if ((Power_x1 > 0) and (Power_x2 < 0)) then begin 
            if (xpos > particle1_x) and (xpos < particle2_x) then begin 
              ReflectedPowerAtPoint:=ReflectedPowerAtPoint-reflected_power; 
            end 
            else begin 
              ReflectedPowerAtPoint:=ReflectedPowerAtPoint + reflected_power; 
            end; 
          end 
          else if ((Power_x1 < 0) and (Power_x2 > 0)) then begin 
            if (xpos > particle1_x) and (xpos < particle2_x) then begin 
              ReflectedPowerAtPoint:=ReflectedPowerAtPoint-reflected_power; 
            end 
            else begin 
              ReflectedPowerAtPoint:=ReflectedPowerAtPoint + reflected_power; 
            end; 
          end; 
     
          if ReflectedPowerAtPoint < 0 then begin 
            Inc(PowerCount_neg); 
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            PowerSum_neg:=PowerSum_neg + ReflectedPowerAtPoint; 
          end 
          else begin 
            Inc(PowerCount_pos); 
            PowerSum_pos:=PowerSum_pos + ReflectedPowerAtPoint; 
          end; 
     
        end; // for zpos 
      end; // for ypos 
    end; // for xpos 
  
    // Total Pressure = The sum of both the Positive & Negative Power  
    // divided by speed of light 
    Pressure:=(PowerSum_neg + PowerSum_pos)/SpeedOfLight; 
 
    // The actual pressure at a single, central grid point, where r is the number of grid points between the two 
    // particle centers. 
    // 
    // (4/3)πr^3/(r/2) is the number of grid points in the sphere extending from the particle center, 
    // to the other particles’ center, multiplied by the number of grid points along the line that 
    // the force acts (from the particle center that the force acts on, to the mid-point between particles). 
    // 
    // The actual pressure, where p1_p2_diff is the number of grid points between the two particle centres. 
    Pressure:=Pressure/( (4/3)*Pi*power(p1_p2_diff, 3)/(p1_p2_diff/2) ); 
 
    // Total force is pressure * the area of 1 point 
    Force:= Pressure*PointArea; 
 
    Accel:=Force/ElectronMass; // F = m*a 
 
    ExpectedAccel := sqr(ElectronCharge)/sqr(ActualWidth*(p1_p2_diff/GridWidth)); 
    ExpectedAccel := ExpectedAccel * Ek/ElectronMass; 
 
    AccelPercentageMatch := 100*Accel/ExpectedAccel; 
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