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Abstract 
In the contemporary era, the proliferation of information technology has led 
to an unprecedented surge in data generation, with this data being dispersed 
across a multitude of mobile devices. Facing these situations and the training 
of deep learning model that needs great computing power support, the distri-
buted algorithm that can carry out multi-party joint modeling has attracted 
everyone’s attention. The distributed training mode relieves the huge pressure 
of centralized model on computer computing power and communication. 
However, most distributed algorithms currently work in a master-slave mode, 
often including a central server for coordination, which to some extent will 
cause communication pressure, data leakage, privacy violations and other is-
sues. To solve these problems, a decentralized fully distributed algorithm based 
on deep random weight neural network is proposed. The algorithm decompos-
es the original objective function into several sub-problems under consistency 
constraints, combines the decentralized average consensus (DAC) and alternat-
ing direction method of multipliers (ADMM), and achieves the goal of joint 
modeling and training through local calculation and communication of each 
node. Finally, we compare the proposed decentralized algorithm with several 
centralized deep neural networks with random weights, and experimental re-
sults demonstrate the effectiveness of the proposed algorithm. 
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1. Introduction 

In recent years, with the rapid development of digital technology and network 
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technology, the scale of data we can collect is unprecedented, and it presents three 
characteristics: one is the large scale of data, the other is the high dimension of 
data, and the third is the distributed storage of data. These characteristics of data 
bring us a lot of challenges in processing data [1]. Traditional centralized machine 
learning is limited to a single machine for processing calculations, which has re-
vealed many drawbacks. The problem of limited training data size and long train-
ing time makes centralized learning unable to meet the requirements of processing 
today’s big data, so it is necessary to deploy the data to be processed to multiple 
machines for joint modeling in a distributed manner, which also corresponds to 
this feature of data distributed storage [2]. Therefore, it is of great significance 
to apply fast and efficient distributed learning algorithm to the original neural 
network. 

On the other hand, in recent years, deep neural networks have become a very 
popular research direction in the field of machine learning, and have made ma-
jor breakthroughs in many fields. Although deep neural networks are favored by 
everyone because of their excellent performance, with the rapid development of 
digitalization and the three characteristics of data presentation, stand-alone can 
no longer meet the training requirements of deep neural networks. Therefore, the 
application of distributed optimization algorithms to deep neural networks has 
become a new research trend. As early as 2012, Dean et al. [3], a researcher at 
Google, developed two distributed training algorithms, Downpour SGD and 
Sandblaster L-BFGS, in the training of a large-scale deep neural network. It is of 
great significance. Of course, there is a gradual increase in research on distributed 
deep neural networks, and many frameworks that support distributed training 
have emerged, such as the TensorFlow framework proposed by Abadi et al. [4] 
and the Horovod framework proposed by Sergeev et al. [5] 

To realize distributed training of models, two distributed frameworks are gener-
ally adopted [6], one is master-slave mode, and the other is point-to-point mode. 
In master-slave mode, there is a central node, which is responsible for collecting 
and aggregating data or model parameters sent by other child nodes for processing 
and calculation, and then sending the calculated results to them respectively [7] 
[8]. Such a communication architecture may cause problems with communica-
tion stress on the one hand [9], and risks of data leakage and misuse on the other 
[10]. In a point-to-point distributed architecture, there is no central node in the 
network, and the state between nodes is the same. Depending on the topology of 
the network, a node communicates with one or more other nodes, and after sev-
eral rounds of communication, the entire network eventually reaches the goal of 
consistency. This decentralized, fully distributed architecture not only saves some 
communication overhead, but also data or model parameters are communicated 
only between adjacent nodes, thus preserving data privacy [11]. Due to the advan-
tages of this framework, there have been many researches and applications on 
this distributed framework in recent years, and the application examples in deep 
learning are [12] [13] and so on. 

In addition, the choice of algorithm for deep neural network also has an im-
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portant impact on the efficiency of the model. Gradient algorithm is that most 
widely used neural networks learn algorithms in deep neural networks. However, 
traditional gradient algorithms have some disadvantage, such as easy to fall into 
local minimum points, slow convergence speed, strong dependence on initial pa-
rameters, etc. [14]. For deep networks, gradient algorithms also have gradient va-
nishing or gradient explosion problems, which will affect the training efficiency 
and make it difficult to exert the strong learning ability of the deep neural net-
work [15]. In order to solve these problems, this paper proposes a distributed 
learning method based on deep random weight neural network. Compared with 
traditional neural network, random weight neural network has a very fast train-
ing speed, reduces the probability of falling into local minimum point, and ensures 
good approximation and generalization ability. Representative deep random neur-
al networks, such as multi-hidden layer feedforward neural networks (MLFN) [16], 
limit learners for deep structures (H-ELM) [17], deep random vector function-
al-link neural networks based on stacked autoencoders (sdRVFL) [18] [19], etc., 
where sdRVFL has faster and better generalization ability than the above deep 
random networks. 

Based on the solid foundation of the above models and theories, combining 
the advantages of current deep neural networks and distributed learning frame-
works in various aspects, this paper creates a point-to-point fully distributed 
deep vector functional-link model algorithm called D-sdRVFL on the proposed 
deep random vector functional-link neural network (sdRVFL). Our proposed 
algorithm is based on the decentralized average consensus (DAC) [20] and al-
ternating direction method of multipliers (ADMM) [21]. In the process of 
distributed model training, we first use ADMM algorithm to transform the 
global consistency optimization problem of the model into equivalent sub- 
problems to solve. In the process of solving, we involve the values that need 
global information to calculate. We use DAC algorithm to achieve global con-
sistency only through communication between nodes, avoiding the existence 
of central nodes, and finally realizing decentralized and completely distributed 
training of deep learning models. The main contributions of this paper are as 
follows: 
• A peer-to-peer distributed learning algorithm based on deep RVFL is pro-

posed, in which multiple nodes can jointly train modeling without a central 
server, while also protecting data privacy. 

• According to two different connection variants of deep RVFL network, we 
propose corresponding distributed deep neural network algorithms. 

• The proposed D-sdRVFL algorithm is comparable to the centralized deep RVFL 
algorithm in performance. The experimental results on multiple classification 
datasets show that the proposed algorithm has little difference in model ac-
curacy with the centralized deep RVFL, and the training speed of the model 
is improved. Compared with the centralized algorithm, the point-to-point 
distributed algorithm has great advantages in dealing with large-scale high- 
dimensional data, and at the same time, it also protects data privacy to a cer-
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tain extent. 
The rest of this paper is structured as follows. Section 2 briefly introduces the 

basic concepts and training optimization process of two kinds of deep RVFL 
networks. In Section 3, decentralized fully distributed optimization algorithms 
are proposed for two kinds of deep RVFL networks. In Section 4, we compare 
the performance of the proposed distributed algorithm with other centralized deep 
random weight algorithms. Section 5 summarizes the paper. 

2. Preliminary 

In this section, we will introduce the basic structure of deep RVFL and its opti-
mization problems, and introduce the concept of the decentralized average con-
sensus (DAC) as the theoretical basis for our extension of the network to decen-
tralized distributed deep networks. 

2.1. Deep RVFL with Direct Links 

In the Deep RVFL with direct links network, the original data first goes through 
L hidden layers for feature extraction to obtain complex high-level features, and 
then enters the RVFL classifier. The learning and optimization of the whole net-
work are also divided into two parts, one is the optimization of the reconstruc-
tion matrix of the hidden layer encoder, and the other is the optimization of the 
weight matrix of the RVFL classifier. 

The hidden layers in depth RVFL are composed of stacked self-encoded layers 
of L layers, and the output of each hidden layer represents lH . In the hidden 
layer, the output result of the previous layer is used as the input value of the next 
layer. The optimization problem for each coding layer is as follows: 

 2
1 1

1ˆ arg min
2l

l l l l l lλ−= − +
U

U Z U H U  (1) 

where 1l−H  is the output of the coding layer of the 1l − th layer, and is also the 
input of the encoder of the coding layer of the lth layer, lZ  is the output of the 
encoder of the coding layer of the lth layer obtained by the activation function, 
and H0 = X, our goal is to optimize the weight matrix U of the decoder of the 
coding layer, lλ  is the regularization parameter of the lth layer. 

After L self-encoding layers, the final feature representation LH  is obtained. 
We need to connect LH  with the original data X  and then enter the classifier 
of RVFL. We use cX  to represent the input value of the classifier, and cX  can 
be defined as: 
 [ ], .c L=X H X  (2) 

In the RVFL classifier, the learning objective is to optimize the weight matrix 
β , and the optimization objective function is as follows: 

 2 21ˆ arg min
2 2c

λ
= − +X T

β
β β β  (3) 

where T  is the target matrix, λ  is the regularization parameter. 
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2.2. Deep RVFL with Dense Direct Links 

In the Deep RVFL with dense direct links network, the original data is first sub-
jected to feature extraction through hidden layers, and in the self-encoding lay-
ers of the L layers in the hidden layers, each self-encoding layer is connected with 
the subsequent self-encoding layer, so that the input value of each subsequent hid-
den layer includes the output values of all the previous hidden layers, and each 
hidden layer input lX  can be represented as follows: 

 [ ]1 1, , ,l l−= X X H H  (4) 

where X  is the original data, lH  is the output value of each hidden layer, and 
the form of the output value may refer to formula: 

 ˆ ,l l l=H Z U  (5) 

except that the input value of each layer is changed. 
After passing through L hidden layers, we get the output value LH  of the hid-

den layer. We connect the output value lH  of each hidden layer with the orig-
inal data and enter the classifier of RVFL as a whole. We use cX  to represent 
the input value of the classifier, which can be expressed as: 

 [ ]1, , , .c L= X X H H  (6) 

The optimization problem in the RVFL classifier is the same as in Equation 
(3), we need to solve the optimal weight matrix β . 

2.3. Decentralized Average Consensus (DAC) 

DAC [15] is an algorithm that iterates continuously over the parameters of each 
node to reach a global average, requiring only communication between nodes. 
Here, we assume that there are N nodes in the network. In the kth iteration, the 
parameter of a node i is iψ , and the update of the DAC of each local node is as 
follows: 

 ( ) ( )
1

1
N

i ij i
j

k b kψ ψ
=

= −∑  (7) 

where ijB b =    B is an adjacency matrix of size N N× , The parameters will 
gradually converge to the global average value through continuous iteration, as 
follows: 

 ( ) ( )
1

1lim 0 , .
N

i ik i
k i

N
ψ ψ

→+∞ =

= ∀ ∈∑   (8) 

3. Fully Distributed Deep RVFL Network 

In this section, we extend the previous two forms of deep RVFL to the peer-to- 
peer distributed learning framework. By using DAC and ADMM methods to op-
timize the weights of each hidden layer of each node and the weights of their 
RVFL classifiers. The following describes two distributed deep RVFL networks 
and their solving processes. 
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3.1. Problem Description 

In a distributed learning network based on a point-to-point architecture, we as-
sume that the network has N nodes that are connected to their neighbors and 
can communicate with each other. The whole dataset is randomly distributed 
among nodes. Here, we assume that the dataset local to the ith node is iX  and 

iY , and each node is trained locally for the deep RVFL network. Then in distri-
buted scenarios, the whole global optimization problem becomes minimizing the 
sum of the loss functions at each node. The following formula is used to express, 
assuming that the loss function at the ith node is ( )if z , then the global objec-
tive function is: 

 ( ) ( )*

1
arg min : .

N

i
i

F f
=

 = = 
 

∑z z z  (9) 

3.2. Fully Distributed Deep RVFL Network with Direct Links 

From the introduction of the second part, we know that in deep RVFL directly 
connected networks, the optimization of the model is divided into two parts, one is 
the optimization of the decoder reconstruction weight matrix of the self-encoder 
in the hidden layer, and the other is the optimization of the RVFL classifier weight 
matrix. We extend the optimization problem to distributed scenarios. Suppose 
we are in a topological network of N nodes, and each node only communicates 
with its neighbors. From the analysis and deduction in the previous subsection, 
the optimization problem (1) is decomposed into N subproblems for cumulative 
solution: 

 
2

1 11

1ˆ arg min
2i

l

N
i i i i

l l l l l l
i

λ−
=

= − +∑
U

U Z U H U  (10) 

where lλ  is the regularization parameter of the hidden layer of the lth layer. By 
solving the above objective function, we obtain the optimal reconstruction ma-
trix lU  of each hidden layer, and each node can use lU  to extract the features 
of the hidden layer. After optimizing the RVFL classifier weight matrix, we as-
sume the same distributed topology scenario, and then problem (3) naturally 
becomes the following form: 

 
2 2

=1

1ˆ arg min
2 2

N
i i i i
c

i

λ
= − +∑ X T

β
β β β  (11) 

where ,i i i
c L =  X H X , i

LH  is the output value of the hidden layer for each 
node, iX  is the original data for each node and iT  is the target matrix for 
each node. 

3.3. Fully Distributed Deep RVFL Network with Dense Direct 
Links 

Here, the deep RVFL with dense direct links is also extended to a distributed sce-
nario. The difference from the fully distributed deep RVFL network with direct 
links lies in the connection between the hidden layers. Each hidden layer in the 
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front and all hidden layers in the back are connected, so that features with lower 
complexity can be used multiple times, so that the features extracted by the hidden 
layers are more representative and meaningful. Suppose that on a certain node, the 
input value i

lX  of a certain hidden layer can be represented as follows: 

 1 1, , , .i i i i
l l− =  X X H H  (12) 

The distributed optimization problem can then look at problems (10) and (11) for 
the optimization problem of the entire network, as in the case of direct connections. 

3.4. Fully Distributed Solutions 

For the above objective function to solve the global optimal weight matrix, there 
are two aspects of the problem, one is to minimize the sum of loss functions, the 
other is to achieve global consistency, which is actually an optimization problem 
with constraints. For such problems, ADMM method can be used to solve. Be-
low we outline the principles of ADMM. 

ADMM algorithm combines Lagrangian multiplier method and dual decom-
position, and solves the original problem by optimizing the original problem and 
dual problem alternately. ADMM is typically applied to constrained optimiza-
tion problems of the form: 

 
( ) ( )1 1 2 2

1 1 2 2

min
s.t. 0.

f g+

+ − =P P R
θ θ

θ θ
 (13) 

The core idea of ADMM is to transform constrained optimization problems 
into equivalent unconstrained ones, and this process realizes the interpretation 
of constraints by introducing Lagrangian multiplier terms. In this way, we ob-
tain the augmented Lagrangian function of the above problem, and then find its 
partial derivative to obtain the specific iterative formula of variables. 

In addition, there have been many literatures on the convergence analysis and 
convergence rate judgment of distributed ADMM algorithm, and it has been  

proved in [22] that this algorithm converges at the rate 1O
k

 
 
 

. 

According to the principle of ADMM above, we set the auxiliary variable lV  
so that the parameters of each node converge to the same value. Then, problem 
(10) is rewritten as follows: 

 

2

1 1
1

1min
2

s.t. 0, 1, 2, ,

N
i i i
l l l l l

i
i
l l i N

λ−
=

− +

− = =

∑



Z U H V

U V
 (14) 

where lλ  denotes the regularization parameter for each hidden layer, then we 
obtain the augmented Lagrangian for the above problem as follows: 

{ } { }( ) ( ) ( )2

1 1
1 1

2

1

1, ,
2

.
2

l

N N
i i i i i i i
l l l l l l l l l l l

i i
N

il
l l

i

Lρ λ

ρ

Τ

−
= =

=

= − + + −

+ −

∑ ∑

∑

U V Z U H V U V

U V

µ µ
 (15) 

For each of the hidden layers, where i
lµ  is the dual variable of the ith node, 
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lρ  is the penalty term. In each iteration process, the local objective functions of 
i
lU  and lV  are first optimized alternately, and then the dual variable i

lµ  is 
updated, and the iteration formula is as follows: 

 ( ) ( ) ( )( )1 arg min , ,
li

l

i i i
l l l lt L t tρ+ =

U
U U V µ  (16) 

 ( ) ( ) ( )( )1 arg min 1 , ,
li

l

i i
l l l lt L t tρ+ = +

V
V U V µ  (17) 

 ( ) ( ) ( ) ( )( )1 1 1i i i
l l l l lt t t tρ+ = + + − +U Vµ µ  (18) 

where t represents the tth iteration. Equations (16) and (17) can be calculated to 
obtain closed solutions. Then, we can obtain the iterative steps as follows: 

 ( ) ( )( ) ( ) ( ) ( )( )1

11i i i i i i
l l l l l l l l lt t tρ ρ

−Τ Τ

−+ = + + −U Z Z I Z H V µ  (19) 

 ( ) ( )/
ˆ ˆ1

l ll N l lt Sλ ρ+ = +V U µ  (20) 

 ( ) ( ) ( ) ( )( )1 1 1i i i
l l l l lt k t tρ+ = + + − +U Vµ µ  (21) 

where ( )1

1ˆ 1N i
l li t

N =
= +∑U U , ( )1

1ˆ N i
l li t

N =
= ∑µ µ , are the average of global  

nodes. In master-slave mode, this requires a central node to aggregate informa-
tion from all nodes to compute. Here, we use the decentralized average consen-
sus (DAC) algorithm to achieve global average consistency only by communica-
tion between nodes, instead of the role of central nodes, thus avoiding the exis-
tence of central nodes and realizing decentralized distributed optimization. We 
obtain an estimate of the mean value by (7) and (8). 

In addition, ( )κ ⋅  stands for the element-wise soft threshold operator [23], 
which is defined as follows: 

 ( )
,

0,
, .

a a
a a

a a
κ

κ κ
κ

κ κ

− >
= ≤
 + < −

  (22) 

Through the above calculation, we find the optimal reconstruction matrix ˆ i
lU  

of each hidden layer, the data enters each hidden layer to find the optimal re-
construction matrix and then enters the next layer, and the optimization of the 
hidden layer is completed before the optimization of the RVFL classifier. 

For problem (11), we also use ADMM combined with DAC to solve it, set 
auxiliary variable V , so (11) is rewritten as follows: 

 

2 2

1

1min
2 2

s.t. 0, 1, 2, , .

N
i i i
c

i
i i N

λ
=

− +

− = =

∑



X T V

V

β

β
 (23) 

We get the augmented Lagrange function as follows: 

 
{ } { }( ) ( ) ( )2 2

1 1

2

1

1, ,
2 2

.
2

N N
i i i i i i i

c
i i

N
i

i

Lρ
λµ

ρ

Τ

= =

=

= − + + −

+ −

∑ ∑

∑

V X T V V

V

β β µ β

β
 (24) 
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Then, the ADMM iterations are as follows: 

 ( ) ( )( ) ( ) ( ) ( )( )1

1i i i i i i
c c ct t tρ ρ

−Τ Τ
+ = + + −X X I X T Vβ µ  (25) 

 ( )
ˆ ˆ

1t

N

ρ
λρ

+
+ =

+
V β µ  (26) 

 ( ) ( ) ( ) ( )( )1 1 1i i it t t tρ+ = + + − +Vµ µ β  (27) 

where ( )1

1ˆ 1N i
i t

N =
= +∑β β  and ( )1

1ˆ N i
i t

N =
= ∑µ µ  in (26) are the average  

value of the global nodes, and the DAC algorithm is also used to obtain the av-
erage value, and the calculation is carried out according to Formulas (7) and (8). 
Through the calculation of the above formula, the global optimal value of the 
RVFL classifier weight matrix is finally obtained. 

In order to understand the training process of the distributed algorithm more 
clearly, the pseudocode of Algorithm 1 shows the iterative steps of the decentralized 
distributed algorithm in the directly connected deep RVFL network. The algorithm 
for dense connections is similar to Algorithm 1 and will not be repeated here. 

 

 

4. Experiments and Analysis 

In order to verify the effectiveness and feasibility of the proposed algorithm, and 
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the robustness of the algorithm in the face of network layer number changes. We 
designed two experiments. The first part of the experiment is mainly to compare 
with other algorithms in terms of performance, by comparing the model accu-
racy and training time of each model algorithm on the same data set. In the 
second part, we change the number of hidden layers of the depth model to ob-
serve the accuracy and training time of the proposed distributed algorithm, and 
verify its robustness. 

We will introduce the experimental setup below, including a brief description 
of the dataset, metrics to measure the accuracy of the model, a description of the 
training time of the model, and the selection and parameter setting of the model 
algorithm compared with it. Make the superiority of the proposed algorithm 
more convincing. 

4.1. Experimental Setup 
4.1.1. Training Datasets 
In the selection of data, we use the data sets used for classification tasks on the 
classical UCI dataset, carefully selected according to the size of the data set, there 
are large data sets with a total data volume of more than one million, and there 
are small data sets with a total data volume of less than ten thousand. Minmax 
normalization is performed on the data, and the performance of the observation 
model on different orders of magnitude data sets is better. Details about the da-
taset are presented in Table 1, and further descriptions of the data can be found 
on the UCI dataset website. 

4.1.2. Evaluation Index 
In the accuracy evaluation of the model, we select the classification accuracy as 
the evaluation index. The closer the classification prediction of the model is to 
the actual situation, the higher the accuracy of the model. The calculation formula 
for the classification accuracy is as follows: 

 the number of correctly classified samplesCAR 100%.
the total number of samples

= ×  (28) 

In terms of training time, we measure the training time of each node. For exam-
ple, in a centralized model, there are no redundant nodes, so the training time  

 
Table 1. Overview of the UCI datasets. 

Dataset #Patterns #Features #Classes 

bank 4521 17 2 

credit-approval 690 15 2 

glass 214 9 6 

musk-2 6598 166 2 

statlog-image 2310 18 7 

waveform 5000 21 3 
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of its nodes is the training time of the model. In a distributed model, because 
multiple nodes participate in each optimization, the training time of each node 
needs to be divided by the corresponding number of nodes and then compared 
with the centralized model. 

4.1.3. Testing Models and Parameter Setting 
For comparison model selection, we not only compare the proposed distributed 
algorithm model with the corresponding centralized model, but also select two 
representative deep random weight neural networks H-ELM and ML-KELM and 
centralized deep RVFL models sdRVFL (d) and sdRVFL (dense) as comparison 
objects for vertical and horizontal comparison. 

We set all the models for comparison, and they keep consistent in the number 
of hidden layers and neurons to ensure the rationality of comparison. In this 
paper, the number of hidden layers is set to 3, the number of neurons is fixed to 
32, and other parameters are simulated according to the optimal values men-
tioned in the paper where the model is located. For centralized depth RVFL and 
distributed depth RVFL, we uniformly adjust regularization term λ and Lagran-
gian parameter ρ synchronously, λ is set to λ = 0.01, 0.1, 1.10, 100, ρ is set to ρ = 
0.01, 0.1, 1, 10, 100. The maximum iteration number of DAC algorithm is 500, 
and the iteration termination limit of DAC algorithm is 0.001. 

4.2. Performance 
4.2.1. Classification Accuracy 
Through experimental verification on 6 classification data, as shown in Table 2 
above, we find that our proposed distributed depth models D-sdRVFL(d) and 
D-sdRVFL (dense) have good performance on classification tasks, and partic-
ipate in the comparison of centralized depth models sdRVFL(d − l1/l2) and 
sdRVFL(dense − l1/l2) and H-ELM models differ only 3% to 4% in classification 
accuracy on average, and ML-KELM models differ less than 1% in classification 
accuracy on average, indicating that our proposed distributed depth model can 
match the performance of centralized models. In addition, the classification ac-
curacy of D-sdRVFL(dense) model is higher than that of D-sdRVFL(d) model. 

 
Table 2. CAR (%) for different algorithms on the test datasets. 

Dataset H-ELM ML-KELM sdRVFL(d − l1/l2) sdRVFL(dense − l1/l2) D-sdRVFL(d) D-sdRVFL(dense) 

musk-2 94.65 84.60 94.49 95.20 88.38 88.59 

waveform 86.27 85.60 84.67 85.73 81.47 82.40 

bank 89.08 88.63 89.00 89.15 88.63 88.56 

glass 58.46 49.23 58,46 60.00 56.92 56.92 

statlog-image 93.91 82.61 91.74 92.17 87.97 89.28 

credit-approval 81.46 85.85 81.48 87.04 77.78 79.26 

Mean Acc. 83.97 79.42 83.30 84.88 80.19 80.84 
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4.2.2. Training Time 
As shown in Table 3, we observe that for the D-sdRVFL(d) and D-sdRVFL(dense) 
models with 5 agents and 3 hidden layers, the actual training time per agent is 
slightly higher than that of the centralized model, but the training time is greatly 
reduced compared to the ML-KELM model. In the following experiments, we 
discussed the change of training time of each agent in distributed model after 
changing the number of hidden layer network layers in the network. We found 
that with the increase of network layers and the number of agents, the training 
time of single agent will decrease continuously. On the contrary, the training time 
of centralized model will increase continuously. 

4.3. Correlation Analysis of Model Robustness 

In this experiment, we change the number of hidden layers in the network to ob-
serve the changes in classification accuracy and training time. Three representa-
tive data sets were selected as the data sets of this experiment, namely musk-2, 
waveform and credit-approval. These three data sets also represent large, medium 
and small data sets. 

As shown in Figure 1, in this experiment we compared the classification ac-
curacy and training time of two centralized depth models and two proposed dis-
tributed models, and the number of hidden layers changed from 3 to 7. For the 
model classification accuracy, on the dataset Waveform, the model classification 
accuracy of centralized deep RVFL model and distributed deep RVFL model 
does not change significantly with the increase of network layers, the difference 
between the highest and lowest is less than 2%, there is no obvious increase and 
decrease, and the highest accuracy does not appear in the model with the most 
layers. In Musk-2, the classification accuracy of centralized deep RVFL model 
and D-sdRVFL(d) model does not change significantly with the increase of net-
work layers, while in D-sdRVFL(dense) model, the classification accuracy of 
model increases with the increase of network layers, and reaches the highest 
when the number of hidden layers reaches 6, and decreases after reaching 7 layers. 
In credit-approval dataset, the classification accuracy of centralized deep RVFL 
model and D-sdRVFL(d) model increases first and then decreases with the in-
crease of network layers, while in D-sdRVFL(dense) model, the classification  

 
Table 3. Average training time (s) per node for different algorithms on training datasets. 

Dataset H-ELM ML-KELM sdRVFL(d − l1/l2) sdRVFL(dense − l1/l2) D-sdRVFL(d) D-sdRVFL(dense) 

musk-2 0.138 19.275 0.097 0.231 0.430 0.840 

waveform 0.040 7.583 0.031 0.046 0.114 0.240 

bank 0.041 5.424 0.019 0.037 0.060 0.092 

glass 0.062 0.012 0.014 0.023 0.083 0.160 

statlog-image 0.033 2.135 0.032 0.052 0.116 0.234 

credit-approval 0.057 0.116 0.014 0.024 0.102 0.212 
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Figure 1. Comparison of CAR and training time between distributed deep network model and centralized deep network model 
with the number of layers of the network changing, other parameters unchanged. 
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accuracy decreases gradually with the increase of network layers. Each model 
shows different characteristics on different data sets, but when other parameters 
are fixed and only the number of layers is changed, the classification accuracy of 
the model does not change greatly, the maximum change is not more than 7%, 
most of them are concentrated in about 2%, and the change of distributed model 
is slightly larger than that of centralized model, thus verifying the robustness of 
the model. 

As for the training time of the model, it can be seen from the training results 
of the three data sets that the training time of a single node in the centralized 
model will increase with the increase of the number of hidden layers of the net-
work, while the training time of each node in the distributed model will gradu-
ally decrease with the increase of the number of layers of the network, and the 
average training time of each node in the distributed network will be lower than 
that of the centralized network when the number of layers of the network is great-
er than 4. With the increase of the number of layers of the network, distributed 
networks have more and more obvious advantages in training time, but can main-
tain robustness in training effect. 

5. Conclusions 

Based on the deep RVFL model, this paper proposes a completely distributed 
deep RVFL algorithm. In the fully distributed framework, agents in the network 
topology only communicate with each other, and do not need to interact with 
the original data. At the same time, DAC and ADMM algorithms are used to 
achieve collaborative optimization between agents in hidden layer and output 
layer, avoiding the existence of central servers and effectively protecting data pri-
vacy. Through experiments on several representative classification data sets show 
that the proposed algorithm has good classification accuracy and can greatly save 
the training time of each agent. At the same time, the robustness of the model is 
verified by changing the number of hidden layers. 

The outlook for future work is mainly divided into two aspects. Firstly, in the 
aspect of algorithm, DAC and ADMM algorithms are used for collaborative op-
timization, which needs two iterations and consumes more training time. In the 
later research, other collaborative optimization methods will be selected to re-
duce the number of iterations in the process, thus further reducing the training 
time. Second, in terms of model application, relevant experiments have been car-
ried out only on classification tasks to verify the effectiveness of the model, while 
experiments on other tasks of machine learning need to be expanded and veri-
fied. 
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