
Journal of Applied Mathematics and Physics, 2024, 12, 1247-1262
https://www.scirp.org/journal/jamp

ISSN Online: 2327-4379
ISSN Print: 2327-4352

DOI: 10.4236/jamp.2024.124077 Apr. 28, 2024 1247 Journal of Applied Mathematics and Physics

Fully Distributed Learning for Deep Random
Vector Functional-Link Networks

Huada Zhu1, Wu Ai1,2*

1School of Mathematics and Statistics, Guilin University of Technology, Guilin, China
2Guangxi Colleges and Universities Key Laboratory of Applied Statistics, Guilin, China

Abstract
In the contemporary era, the proliferation of information technology has led
to an unprecedented surge in data generation, with this data being dispersed
across a multitude of mobile devices. Facing these situations and the training
of deep learning model that needs great computing power support, the distri-
buted algorithm that can carry out multi-party joint modeling has attracted
everyone’s attention. The distributed training mode relieves the huge pressure
of centralized model on computer computing power and communication.
However, most distributed algorithms currently work in a master-slave mode,
often including a central server for coordination, which to some extent will
cause communication pressure, data leakage, privacy violations and other is-
sues. To solve these problems, a decentralized fully distributed algorithm based
on deep random weight neural network is proposed. The algorithm decompos-
es the original objective function into several sub-problems under consistency
constraints, combines the decentralized average consensus (DAC) and alternat-
ing direction method of multipliers (ADMM), and achieves the goal of joint
modeling and training through local calculation and communication of each
node. Finally, we compare the proposed decentralized algorithm with several
centralized deep neural networks with random weights, and experimental re-
sults demonstrate the effectiveness of the proposed algorithm.

Keywords
Distributed Optimization, Deep Neural Network, Random Vector
Functional-Link (RVFL) Network, Alternating Direction Method of
Multipliers (ADMM)

1. Introduction

In recent years, with the rapid development of digital technology and network

How to cite this paper: Zhu, H.D. and Ai,
W. (2024) Fully Distributed Learning for
Deep Random Vector Functional-Link Net-
works. Journal of Applied Mathematics and
Physics, 12, 1247-1262.
https://doi.org/10.4236/jamp.2024.124077

Received: March 18, 2024
Accepted: April 25, 2024
Published: April 28, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2024.124077
https://www.scirp.org/
https://doi.org/10.4236/jamp.2024.124077
http://creativecommons.org/licenses/by/4.0/

H. D. Zhu, W. Ai

DOI: 10.4236/jamp.2024.124077 1248 Journal of Applied Mathematics and Physics

technology, the scale of data we can collect is unprecedented, and it presents three
characteristics: one is the large scale of data, the other is the high dimension of
data, and the third is the distributed storage of data. These characteristics of data
bring us a lot of challenges in processing data [1]. Traditional centralized machine
learning is limited to a single machine for processing calculations, which has re-
vealed many drawbacks. The problem of limited training data size and long train-
ing time makes centralized learning unable to meet the requirements of processing
today’s big data, so it is necessary to deploy the data to be processed to multiple
machines for joint modeling in a distributed manner, which also corresponds to
this feature of data distributed storage [2]. Therefore, it is of great significance
to apply fast and efficient distributed learning algorithm to the original neural
network.

On the other hand, in recent years, deep neural networks have become a very
popular research direction in the field of machine learning, and have made ma-
jor breakthroughs in many fields. Although deep neural networks are favored by
everyone because of their excellent performance, with the rapid development of
digitalization and the three characteristics of data presentation, stand-alone can
no longer meet the training requirements of deep neural networks. Therefore, the
application of distributed optimization algorithms to deep neural networks has
become a new research trend. As early as 2012, Dean et al. [3], a researcher at
Google, developed two distributed training algorithms, Downpour SGD and
Sandblaster L-BFGS, in the training of a large-scale deep neural network. It is of
great significance. Of course, there is a gradual increase in research on distributed
deep neural networks, and many frameworks that support distributed training
have emerged, such as the TensorFlow framework proposed by Abadi et al. [4]
and the Horovod framework proposed by Sergeev et al. [5]

To realize distributed training of models, two distributed frameworks are gener-
ally adopted [6], one is master-slave mode, and the other is point-to-point mode.
In master-slave mode, there is a central node, which is responsible for collecting
and aggregating data or model parameters sent by other child nodes for processing
and calculation, and then sending the calculated results to them respectively [7]
[8]. Such a communication architecture may cause problems with communica-
tion stress on the one hand [9], and risks of data leakage and misuse on the other
[10]. In a point-to-point distributed architecture, there is no central node in the
network, and the state between nodes is the same. Depending on the topology of
the network, a node communicates with one or more other nodes, and after sev-
eral rounds of communication, the entire network eventually reaches the goal of
consistency. This decentralized, fully distributed architecture not only saves some
communication overhead, but also data or model parameters are communicated
only between adjacent nodes, thus preserving data privacy [11]. Due to the advan-
tages of this framework, there have been many researches and applications on
this distributed framework in recent years, and the application examples in deep
learning are [12] [13] and so on.

In addition, the choice of algorithm for deep neural network also has an im-

https://doi.org/10.4236/jamp.2024.124077

H. D. Zhu, W. Ai

DOI: 10.4236/jamp.2024.124077 1249 Journal of Applied Mathematics and Physics

portant impact on the efficiency of the model. Gradient algorithm is that most
widely used neural networks learn algorithms in deep neural networks. However,
traditional gradient algorithms have some disadvantage, such as easy to fall into
local minimum points, slow convergence speed, strong dependence on initial pa-
rameters, etc. [14]. For deep networks, gradient algorithms also have gradient va-
nishing or gradient explosion problems, which will affect the training efficiency
and make it difficult to exert the strong learning ability of the deep neural net-
work [15]. In order to solve these problems, this paper proposes a distributed
learning method based on deep random weight neural network. Compared with
traditional neural network, random weight neural network has a very fast train-
ing speed, reduces the probability of falling into local minimum point, and ensures
good approximation and generalization ability. Representative deep random neur-
al networks, such as multi-hidden layer feedforward neural networks (MLFN) [16],
limit learners for deep structures (H-ELM) [17], deep random vector function-
al-link neural networks based on stacked autoencoders (sdRVFL) [18] [19], etc.,
where sdRVFL has faster and better generalization ability than the above deep
random networks.

Based on the solid foundation of the above models and theories, combining
the advantages of current deep neural networks and distributed learning frame-
works in various aspects, this paper creates a point-to-point fully distributed
deep vector functional-link model algorithm called D-sdRVFL on the proposed
deep random vector functional-link neural network (sdRVFL). Our proposed
algorithm is based on the decentralized average consensus (DAC) [20] and al-
ternating direction method of multipliers (ADMM) [21]. In the process of
distributed model training, we first use ADMM algorithm to transform the
global consistency optimization problem of the model into equivalent sub-
problems to solve. In the process of solving, we involve the values that need
global information to calculate. We use DAC algorithm to achieve global con-
sistency only through communication between nodes, avoiding the existence
of central nodes, and finally realizing decentralized and completely distributed
training of deep learning models. The main contributions of this paper are as
follows:
• A peer-to-peer distributed learning algorithm based on deep RVFL is pro-

posed, in which multiple nodes can jointly train modeling without a central
server, while also protecting data privacy.

• According to two different connection variants of deep RVFL network, we
propose corresponding distributed deep neural network algorithms.

• The proposed D-sdRVFL algorithm is comparable to the centralized deep RVFL
algorithm in performance. The experimental results on multiple classification
datasets show that the proposed algorithm has little difference in model ac-
curacy with the centralized deep RVFL, and the training speed of the model
is improved. Compared with the centralized algorithm, the point-to-point
distributed algorithm has great advantages in dealing with large-scale high-
dimensional data, and at the same time, it also protects data privacy to a cer-

https://doi.org/10.4236/jamp.2024.124077

H. D. Zhu, W. Ai

DOI: 10.4236/jamp.2024.124077 1250 Journal of Applied Mathematics and Physics

tain extent.
The rest of this paper is structured as follows. Section 2 briefly introduces the

basic concepts and training optimization process of two kinds of deep RVFL
networks. In Section 3, decentralized fully distributed optimization algorithms
are proposed for two kinds of deep RVFL networks. In Section 4, we compare
the performance of the proposed distributed algorithm with other centralized deep
random weight algorithms. Section 5 summarizes the paper.

2. Preliminary

In this section, we will introduce the basic structure of deep RVFL and its opti-
mization problems, and introduce the concept of the decentralized average con-
sensus (DAC) as the theoretical basis for our extension of the network to decen-
tralized distributed deep networks.

2.1. Deep RVFL with Direct Links

In the Deep RVFL with direct links network, the original data first goes through
L hidden layers for feature extraction to obtain complex high-level features, and
then enters the RVFL classifier. The learning and optimization of the whole net-
work are also divided into two parts, one is the optimization of the reconstruc-
tion matrix of the hidden layer encoder, and the other is the optimization of the
weight matrix of the RVFL classifier.

The hidden layers in depth RVFL are composed of stacked self-encoded layers
of L layers, and the output of each hidden layer represents lH . In the hidden
layer, the output result of the previous layer is used as the input value of the next
layer. The optimization problem for each coding layer is as follows:

 2
1 1

1ˆ arg min
2l

l l l l l lλ−= − +
U

U Z U H U (1)

where 1l−H is the output of the coding layer of the 1l − th layer, and is also the
input of the encoder of the coding layer of the lth layer, lZ is the output of the
encoder of the coding layer of the lth layer obtained by the activation function,
and H0 = X, our goal is to optimize the weight matrix U of the decoder of the
coding layer, lλ is the regularization parameter of the lth layer.

After L self-encoding layers, the final feature representation LH is obtained.
We need to connect LH with the original data X and then enter the classifier
of RVFL. We use cX to represent the input value of the classifier, and cX can
be defined as:
 [], .c L=X H X (2)

In the RVFL classifier, the learning objective is to optimize the weight matrix
β , and the optimization objective function is as follows:

 2 21ˆ arg min
2 2c

λ
= − +X T

β
β β β (3)

where T is the target matrix, λ is the regularization parameter.

https://doi.org/10.4236/jamp.2024.124077

H. D. Zhu, W. Ai

DOI: 10.4236/jamp.2024.124077 1251 Journal of Applied Mathematics and Physics

2.2. Deep RVFL with Dense Direct Links

In the Deep RVFL with dense direct links network, the original data is first sub-
jected to feature extraction through hidden layers, and in the self-encoding lay-
ers of the L layers in the hidden layers, each self-encoding layer is connected with
the subsequent self-encoding layer, so that the input value of each subsequent hid-
den layer includes the output values of all the previous hidden layers, and each
hidden layer input lX can be represented as follows:

 []1 1, , ,l l−= X X H H (4)

where X is the original data, lH is the output value of each hidden layer, and
the form of the output value may refer to formula:

 ˆ ,l l l=H Z U (5)

except that the input value of each layer is changed.
After passing through L hidden layers, we get the output value LH of the hid-

den layer. We connect the output value lH of each hidden layer with the orig-
inal data and enter the classifier of RVFL as a whole. We use cX to represent
the input value of the classifier, which can be expressed as:

 []1, , , .c L= X X H H (6)

The optimization problem in the RVFL classifier is the same as in Equation
(3), we need to solve the optimal weight matrix β .

2.3. Decentralized Average Consensus (DAC)

DAC [15] is an algorithm that iterates continuously over the parameters of each
node to reach a global average, requiring only communication between nodes.
Here, we assume that there are N nodes in the network. In the kth iteration, the
parameter of a node i is iψ , and the update of the DAC of each local node is as
follows:

 () ()
1

1
N

i ij i
j

k b kψ ψ
=

= −∑ (7)

where ijB b = B is an adjacency matrix of size N N× , The parameters will
gradually converge to the global average value through continuous iteration, as
follows:

 () ()
1

1lim 0 , .
N

i ik i
k i

N
ψ ψ

→+∞ =

= ∀ ∈∑ (8)

3. Fully Distributed Deep RVFL Network

In this section, we extend the previous two forms of deep RVFL to the peer-to-
peer distributed learning framework. By using DAC and ADMM methods to op-
timize the weights of each hidden layer of each node and the weights of their
RVFL classifiers. The following describes two distributed deep RVFL networks
and their solving processes.

https://doi.org/10.4236/jamp.2024.124077

H. D. Zhu, W. Ai

DOI: 10.4236/jamp.2024.124077 1252 Journal of Applied Mathematics and Physics

3.1. Problem Description

In a distributed learning network based on a point-to-point architecture, we as-
sume that the network has N nodes that are connected to their neighbors and
can communicate with each other. The whole dataset is randomly distributed
among nodes. Here, we assume that the dataset local to the ith node is iX and

iY , and each node is trained locally for the deep RVFL network. Then in distri-
buted scenarios, the whole global optimization problem becomes minimizing the
sum of the loss functions at each node. The following formula is used to express,
assuming that the loss function at the ith node is ()if z , then the global objec-
tive function is:

 () ()*

1
arg min : .

N

i
i

F f
=

 = =

∑z z z (9)

3.2. Fully Distributed Deep RVFL Network with Direct Links

From the introduction of the second part, we know that in deep RVFL directly
connected networks, the optimization of the model is divided into two parts, one is
the optimization of the decoder reconstruction weight matrix of the self-encoder
in the hidden layer, and the other is the optimization of the RVFL classifier weight
matrix. We extend the optimization problem to distributed scenarios. Suppose
we are in a topological network of N nodes, and each node only communicates
with its neighbors. From the analysis and deduction in the previous subsection,
the optimization problem (1) is decomposed into N subproblems for cumulative
solution:

2

1 11

1ˆ arg min
2i

l

N
i i i i

l l l l l l
i

λ−
=

= − +∑
U

U Z U H U (10)

where lλ is the regularization parameter of the hidden layer of the lth layer. By
solving the above objective function, we obtain the optimal reconstruction ma-
trix lU of each hidden layer, and each node can use lU to extract the features
of the hidden layer. After optimizing the RVFL classifier weight matrix, we as-
sume the same distributed topology scenario, and then problem (3) naturally
becomes the following form:

2 2

=1

1ˆ arg min
2 2

N
i i i i
c

i

λ
= − +∑ X T

β
β β β (11)

where ,i i i
c L = X H X , i

LH is the output value of the hidden layer for each
node, iX is the original data for each node and iT is the target matrix for
each node.

3.3. Fully Distributed Deep RVFL Network with Dense Direct
Links

Here, the deep RVFL with dense direct links is also extended to a distributed sce-
nario. The difference from the fully distributed deep RVFL network with direct
links lies in the connection between the hidden layers. Each hidden layer in the

https://doi.org/10.4236/jamp.2024.124077

H. D. Zhu, W. Ai

DOI: 10.4236/jamp.2024.124077 1253 Journal of Applied Mathematics and Physics

front and all hidden layers in the back are connected, so that features with lower
complexity can be used multiple times, so that the features extracted by the hidden
layers are more representative and meaningful. Suppose that on a certain node, the
input value i

lX of a certain hidden layer can be represented as follows:

 1 1, , , .i i i i
l l− = X X H H (12)

The distributed optimization problem can then look at problems (10) and (11) for
the optimization problem of the entire network, as in the case of direct connections.

3.4. Fully Distributed Solutions

For the above objective function to solve the global optimal weight matrix, there
are two aspects of the problem, one is to minimize the sum of loss functions, the
other is to achieve global consistency, which is actually an optimization problem
with constraints. For such problems, ADMM method can be used to solve. Be-
low we outline the principles of ADMM.

ADMM algorithm combines Lagrangian multiplier method and dual decom-
position, and solves the original problem by optimizing the original problem and
dual problem alternately. ADMM is typically applied to constrained optimiza-
tion problems of the form:

() ()1 1 2 2

1 1 2 2

min
s.t. 0.

f g+

+ − =P P R
θ θ

θ θ
 (13)

The core idea of ADMM is to transform constrained optimization problems
into equivalent unconstrained ones, and this process realizes the interpretation
of constraints by introducing Lagrangian multiplier terms. In this way, we ob-
tain the augmented Lagrangian function of the above problem, and then find its
partial derivative to obtain the specific iterative formula of variables.

In addition, there have been many literatures on the convergence analysis and
convergence rate judgment of distributed ADMM algorithm, and it has been

proved in [22] that this algorithm converges at the rate 1O
k

.

According to the principle of ADMM above, we set the auxiliary variable lV
so that the parameters of each node converge to the same value. Then, problem
(10) is rewritten as follows:

2

1 1
1

1min
2

s.t. 0, 1, 2, ,

N
i i i
l l l l l

i
i
l l i N

λ−
=

− +

− = =

∑

Z U H V

U V
 (14)

where lλ denotes the regularization parameter for each hidden layer, then we
obtain the augmented Lagrangian for the above problem as follows:

{ } { }() () ()2

1 1
1 1

2

1

1, ,
2

.
2

l

N N
i i i i i i i
l l l l l l l l l l l

i i
N

il
l l

i

Lρ λ

ρ

Τ

−
= =

=

= − + + −

+ −

∑ ∑

∑

U V Z U H V U V

U V

µ µ
 (15)

For each of the hidden layers, where i
lµ is the dual variable of the ith node,

https://doi.org/10.4236/jamp.2024.124077

H. D. Zhu, W. Ai

DOI: 10.4236/jamp.2024.124077 1254 Journal of Applied Mathematics and Physics

lρ is the penalty term. In each iteration process, the local objective functions of
i
lU and lV are first optimized alternately, and then the dual variable i

lµ is
updated, and the iteration formula is as follows:

 () () ()()1 arg min , ,
li

l

i i i
l l l lt L t tρ+ =

U
U U V µ (16)

 () () ()()1 arg min 1 , ,
li

l

i i
l l l lt L t tρ+ = +

V
V U V µ (17)

 () () () ()()1 1 1i i i
l l l l lt t t tρ+ = + + − +U Vµ µ (18)

where t represents the tth iteration. Equations (16) and (17) can be calculated to
obtain closed solutions. Then, we can obtain the iterative steps as follows:

 () ()() () () ()()1

11i i i i i i
l l l l l l l l lt t tρ ρ

−Τ Τ

−+ = + + −U Z Z I Z H V µ (19)

 () ()/
ˆ ˆ1

l ll N l lt Sλ ρ+ = +V U µ (20)

 () () () ()()1 1 1i i i
l l l l lt k t tρ+ = + + − +U Vµ µ (21)

where ()1

1ˆ 1N i
l li t

N =
= +∑U U , ()1

1ˆ N i
l li t

N =
= ∑µ µ , are the average of global

nodes. In master-slave mode, this requires a central node to aggregate informa-
tion from all nodes to compute. Here, we use the decentralized average consen-
sus (DAC) algorithm to achieve global average consistency only by communica-
tion between nodes, instead of the role of central nodes, thus avoiding the exis-
tence of central nodes and realizing decentralized distributed optimization. We
obtain an estimate of the mean value by (7) and (8).

In addition, ()κ ⋅ stands for the element-wise soft threshold operator [23],
which is defined as follows:

 ()
,

0,
, .

a a
a a

a a
κ

κ κ
κ

κ κ

− >
= ≤
 + < −

 (22)

Through the above calculation, we find the optimal reconstruction matrix ˆ i
lU

of each hidden layer, the data enters each hidden layer to find the optimal re-
construction matrix and then enters the next layer, and the optimization of the
hidden layer is completed before the optimization of the RVFL classifier.

For problem (11), we also use ADMM combined with DAC to solve it, set
auxiliary variable V , so (11) is rewritten as follows:

2 2

1

1min
2 2

s.t. 0, 1, 2, , .

N
i i i
c

i
i i N

λ
=

− +

− = =

∑

X T V

V

β

β
 (23)

We get the augmented Lagrange function as follows:

{ } { }() () ()2 2

1 1

2

1

1, ,
2 2

.
2

N N
i i i i i i i

c
i i

N
i

i

Lρ
λµ

ρ

Τ

= =

=

= − + + −

+ −

∑ ∑

∑

V X T V V

V

β β µ β

β
 (24)

https://doi.org/10.4236/jamp.2024.124077

H. D. Zhu, W. Ai

DOI: 10.4236/jamp.2024.124077 1255 Journal of Applied Mathematics and Physics

Then, the ADMM iterations are as follows:

 () ()() () () ()()1

1i i i i i i
c c ct t tρ ρ

−Τ Τ
+ = + + −X X I X T Vβ µ (25)

 ()
ˆ ˆ

1t

N

ρ
λρ

+
+ =

+
V β µ (26)

 () () () ()()1 1 1i i it t t tρ+ = + + − +Vµ µ β (27)

where ()1

1ˆ 1N i
i t

N =
= +∑β β and ()1

1ˆ N i
i t

N =
= ∑µ µ in (26) are the average

value of the global nodes, and the DAC algorithm is also used to obtain the av-
erage value, and the calculation is carried out according to Formulas (7) and (8).
Through the calculation of the above formula, the global optimal value of the
RVFL classifier weight matrix is finally obtained.

In order to understand the training process of the distributed algorithm more
clearly, the pseudocode of Algorithm 1 shows the iterative steps of the decentralized
distributed algorithm in the directly connected deep RVFL network. The algorithm
for dense connections is similar to Algorithm 1 and will not be repeated here.

4. Experiments and Analysis

In order to verify the effectiveness and feasibility of the proposed algorithm, and

https://doi.org/10.4236/jamp.2024.124077

H. D. Zhu, W. Ai

DOI: 10.4236/jamp.2024.124077 1256 Journal of Applied Mathematics and Physics

the robustness of the algorithm in the face of network layer number changes. We
designed two experiments. The first part of the experiment is mainly to compare
with other algorithms in terms of performance, by comparing the model accu-
racy and training time of each model algorithm on the same data set. In the
second part, we change the number of hidden layers of the depth model to ob-
serve the accuracy and training time of the proposed distributed algorithm, and
verify its robustness.

We will introduce the experimental setup below, including a brief description
of the dataset, metrics to measure the accuracy of the model, a description of the
training time of the model, and the selection and parameter setting of the model
algorithm compared with it. Make the superiority of the proposed algorithm
more convincing.

4.1. Experimental Setup
4.1.1. Training Datasets
In the selection of data, we use the data sets used for classification tasks on the
classical UCI dataset, carefully selected according to the size of the data set, there
are large data sets with a total data volume of more than one million, and there
are small data sets with a total data volume of less than ten thousand. Minmax
normalization is performed on the data, and the performance of the observation
model on different orders of magnitude data sets is better. Details about the da-
taset are presented in Table 1, and further descriptions of the data can be found
on the UCI dataset website.

4.1.2. Evaluation Index
In the accuracy evaluation of the model, we select the classification accuracy as
the evaluation index. The closer the classification prediction of the model is to
the actual situation, the higher the accuracy of the model. The calculation formula
for the classification accuracy is as follows:

 the number of correctly classified samplesCAR 100%.
the total number of samples

= × (28)

In terms of training time, we measure the training time of each node. For exam-
ple, in a centralized model, there are no redundant nodes, so the training time

Table 1. Overview of the UCI datasets.

Dataset #Patterns #Features #Classes

bank 4521 17 2

credit-approval 690 15 2

glass 214 9 6

musk-2 6598 166 2

statlog-image 2310 18 7

waveform 5000 21 3

https://doi.org/10.4236/jamp.2024.124077

H. D. Zhu, W. Ai

DOI: 10.4236/jamp.2024.124077 1257 Journal of Applied Mathematics and Physics

of its nodes is the training time of the model. In a distributed model, because
multiple nodes participate in each optimization, the training time of each node
needs to be divided by the corresponding number of nodes and then compared
with the centralized model.

4.1.3. Testing Models and Parameter Setting
For comparison model selection, we not only compare the proposed distributed
algorithm model with the corresponding centralized model, but also select two
representative deep random weight neural networks H-ELM and ML-KELM and
centralized deep RVFL models sdRVFL (d) and sdRVFL (dense) as comparison
objects for vertical and horizontal comparison.

We set all the models for comparison, and they keep consistent in the number
of hidden layers and neurons to ensure the rationality of comparison. In this
paper, the number of hidden layers is set to 3, the number of neurons is fixed to
32, and other parameters are simulated according to the optimal values men-
tioned in the paper where the model is located. For centralized depth RVFL and
distributed depth RVFL, we uniformly adjust regularization term λ and Lagran-
gian parameter ρ synchronously, λ is set to λ = 0.01, 0.1, 1.10, 100, ρ is set to ρ =
0.01, 0.1, 1, 10, 100. The maximum iteration number of DAC algorithm is 500,
and the iteration termination limit of DAC algorithm is 0.001.

4.2. Performance
4.2.1. Classification Accuracy
Through experimental verification on 6 classification data, as shown in Table 2
above, we find that our proposed distributed depth models D-sdRVFL(d) and
D-sdRVFL (dense) have good performance on classification tasks, and partic-
ipate in the comparison of centralized depth models sdRVFL(d − l1/l2) and
sdRVFL(dense − l1/l2) and H-ELM models differ only 3% to 4% in classification
accuracy on average, and ML-KELM models differ less than 1% in classification
accuracy on average, indicating that our proposed distributed depth model can
match the performance of centralized models. In addition, the classification ac-
curacy of D-sdRVFL(dense) model is higher than that of D-sdRVFL(d) model.

Table 2. CAR (%) for different algorithms on the test datasets.

Dataset H-ELM ML-KELM sdRVFL(d − l1/l2) sdRVFL(dense − l1/l2) D-sdRVFL(d) D-sdRVFL(dense)

musk-2 94.65 84.60 94.49 95.20 88.38 88.59

waveform 86.27 85.60 84.67 85.73 81.47 82.40

bank 89.08 88.63 89.00 89.15 88.63 88.56

glass 58.46 49.23 58,46 60.00 56.92 56.92

statlog-image 93.91 82.61 91.74 92.17 87.97 89.28

credit-approval 81.46 85.85 81.48 87.04 77.78 79.26

Mean Acc. 83.97 79.42 83.30 84.88 80.19 80.84

https://doi.org/10.4236/jamp.2024.124077

H. D. Zhu, W. Ai

DOI: 10.4236/jamp.2024.124077 1258 Journal of Applied Mathematics and Physics

4.2.2. Training Time
As shown in Table 3, we observe that for the D-sdRVFL(d) and D-sdRVFL(dense)
models with 5 agents and 3 hidden layers, the actual training time per agent is
slightly higher than that of the centralized model, but the training time is greatly
reduced compared to the ML-KELM model. In the following experiments, we
discussed the change of training time of each agent in distributed model after
changing the number of hidden layer network layers in the network. We found
that with the increase of network layers and the number of agents, the training
time of single agent will decrease continuously. On the contrary, the training time
of centralized model will increase continuously.

4.3. Correlation Analysis of Model Robustness

In this experiment, we change the number of hidden layers in the network to ob-
serve the changes in classification accuracy and training time. Three representa-
tive data sets were selected as the data sets of this experiment, namely musk-2,
waveform and credit-approval. These three data sets also represent large, medium
and small data sets.

As shown in Figure 1, in this experiment we compared the classification ac-
curacy and training time of two centralized depth models and two proposed dis-
tributed models, and the number of hidden layers changed from 3 to 7. For the
model classification accuracy, on the dataset Waveform, the model classification
accuracy of centralized deep RVFL model and distributed deep RVFL model
does not change significantly with the increase of network layers, the difference
between the highest and lowest is less than 2%, there is no obvious increase and
decrease, and the highest accuracy does not appear in the model with the most
layers. In Musk-2, the classification accuracy of centralized deep RVFL model
and D-sdRVFL(d) model does not change significantly with the increase of net-
work layers, while in D-sdRVFL(dense) model, the classification accuracy of
model increases with the increase of network layers, and reaches the highest
when the number of hidden layers reaches 6, and decreases after reaching 7 layers.
In credit-approval dataset, the classification accuracy of centralized deep RVFL
model and D-sdRVFL(d) model increases first and then decreases with the in-
crease of network layers, while in D-sdRVFL(dense) model, the classification

Table 3. Average training time (s) per node for different algorithms on training datasets.

Dataset H-ELM ML-KELM sdRVFL(d − l1/l2) sdRVFL(dense − l1/l2) D-sdRVFL(d) D-sdRVFL(dense)

musk-2 0.138 19.275 0.097 0.231 0.430 0.840

waveform 0.040 7.583 0.031 0.046 0.114 0.240

bank 0.041 5.424 0.019 0.037 0.060 0.092

glass 0.062 0.012 0.014 0.023 0.083 0.160

statlog-image 0.033 2.135 0.032 0.052 0.116 0.234

credit-approval 0.057 0.116 0.014 0.024 0.102 0.212

https://doi.org/10.4236/jamp.2024.124077

H. D. Zhu, W. Ai

DOI: 10.4236/jamp.2024.124077 1259 Journal of Applied Mathematics and Physics

Figure 1. Comparison of CAR and training time between distributed deep network model and centralized deep network model
with the number of layers of the network changing, other parameters unchanged.

https://doi.org/10.4236/jamp.2024.124077

H. D. Zhu, W. Ai

DOI: 10.4236/jamp.2024.124077 1260 Journal of Applied Mathematics and Physics

accuracy decreases gradually with the increase of network layers. Each model
shows different characteristics on different data sets, but when other parameters
are fixed and only the number of layers is changed, the classification accuracy of
the model does not change greatly, the maximum change is not more than 7%,
most of them are concentrated in about 2%, and the change of distributed model
is slightly larger than that of centralized model, thus verifying the robustness of
the model.

As for the training time of the model, it can be seen from the training results
of the three data sets that the training time of a single node in the centralized
model will increase with the increase of the number of hidden layers of the net-
work, while the training time of each node in the distributed model will gradu-
ally decrease with the increase of the number of layers of the network, and the
average training time of each node in the distributed network will be lower than
that of the centralized network when the number of layers of the network is great-
er than 4. With the increase of the number of layers of the network, distributed
networks have more and more obvious advantages in training time, but can main-
tain robustness in training effect.

5. Conclusions

Based on the deep RVFL model, this paper proposes a completely distributed
deep RVFL algorithm. In the fully distributed framework, agents in the network
topology only communicate with each other, and do not need to interact with
the original data. At the same time, DAC and ADMM algorithms are used to
achieve collaborative optimization between agents in hidden layer and output
layer, avoiding the existence of central servers and effectively protecting data pri-
vacy. Through experiments on several representative classification data sets show
that the proposed algorithm has good classification accuracy and can greatly save
the training time of each agent. At the same time, the robustness of the model is
verified by changing the number of hidden layers.

The outlook for future work is mainly divided into two aspects. Firstly, in the
aspect of algorithm, DAC and ADMM algorithms are used for collaborative op-
timization, which needs two iterations and consumes more training time. In the
later research, other collaborative optimization methods will be selected to re-
duce the number of iterations in the process, thus further reducing the training
time. Second, in terms of model application, relevant experiments have been car-
ried out only on classification tasks to verify the effectiveness of the model, while
experiments on other tasks of machine learning need to be expanded and veri-
fied.

Acknowledgements

This work was supported in part by the National Natural Science Foundation
of China (No. 62166013), the Natural Science Foundation of Guangxi (No.
2022GXNSFAA035499) and the Foundation of Guilin University of Technol-

https://doi.org/10.4236/jamp.2024.124077

H. D. Zhu, W. Ai

DOI: 10.4236/jamp.2024.124077 1261 Journal of Applied Mathematics and Physics

ogy (No. GLUTQD2007029).

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Gupta, D. and Rani, R. (2019) A Study of Big Data Evolution and Research Challenges.

Journal of Information Science, 45, 322-340.
https://doi.org/10.1177/0165551518789880

[2] Peteiro-Barral, D. and Guijarro-Berdinas, B. (2013) A Survey of Methods for Distri-
buted Machine Learning. Progress in Artificial Intelligence, 2, 1-11.
https://doi.org/10.1007/s13748-012-0035-5

[3] Dean, J., et al. (2012) Large Scale Distributed Deep Networks. NIPS’12: Proceedings
of the 25th International Conference on Neural Information Processing Systems,
1, 1223-1231.

[4] Abadi, M., et al. (2016) TensorFlow: A System for Large-Scale Machine Learning.
12th USENIX Symposium on Operating Systems Design and Implementation, Savan-
nah, 2-4 November 2016, 265-283.

[5] Sergeev, A. and Del Balso, M. (2018) Horovod: Fast and Easy Distributed Deep Learn-
ing in Tensorflow. arXiv: 1802.05799.

[6] Zhang, D., Chen, X., Wang, D. and Shi, J. (2018) A Survey on Collaborative Deep
Learning and Privacy-Preserving. 2018 IEEE 3rd International Conference on Data
Science in Cyberspace (DSC), Guangzhou, 18-21 June 2018, 652-658.
https://doi.org/10.1109/DSC.2018.00104

[7] Li, P., Li, J., Huang, Z., Li, T., Zhi Gao, C., Yiu, S. and Chen, K. (2017) Multi-Key
Privacy-Preserving Deep Learning in Cloud Computing. Future Generation Comput-
er Systems, 74, 76-85. https://doi.org/10.1016/j.future.2017.02.006

[8] Kwabena, O., Qin, Z., Zhuang, T. and Qin, Z. (2019) Mscryptonet: Multi-Scheme
Privacy-Preserving Deep Learning in Cloud Computing. IEEE Access, 7, 29344-29354.
https://doi.org/10.1109/ACCESS.2019.2901219

[9] Nedic, A., Olshevsky, A. and Rabbat, M. (2017) Network Topology and Commu-
nication-Computation Tradeoffs in Decentralized Optimization. Proceedings of the
IEEE, 106, 953-976. https://doi.org/10.1109/JPROC.2018.2817461

[10] Liang, Y., Cai, Z., Yu, J., Han, Q. and Li, Y. (2018) Deep Learning Based Inference
of Private Information Using Embedded Sensors in Smart Devices. IEEE Network,
32, 8-14. https://doi.org/10.1109/MNET.2018.1700349

[11] Cattivelli, F. and Sayed, A.H. (2010) Diffusion LMS Strategies for Distributed Esti-
mation. IEEE Transactions on Signal Processing, 58, 1035-1048.
https://doi.org/10.1109/TSP.2009.2033729

[12] Chang, K., et al. (2018) Distributed Deep Learning Networks among Institutions for
Medical Imaging. Journal of the American Medical Informatics Association: JAMIA,
25, 945-954. https://doi.org/10.1093/jamia/ocy017

[13] Jiang, Z., Balu, A., Hegde, C. and Sarkar, S. (2017) Collaborative Deep Learning in
Fixed Topology Networks. 31st Conference on Neural Information Processing Systems
(NIPS 2017), Long Beach, 4-9 December 2017, 5904-5914.

[14] Alhamdoosh, M. and Wang, D. (2014) Fast Decorrelated Neural Network Ensembles

https://doi.org/10.4236/jamp.2024.124077
https://doi.org/10.1177/0165551518789880
https://doi.org/10.1007/s13748-012-0035-5
https://doi.org/10.1109/DSC.2018.00104
https://doi.org/10.1016/j.future.2017.02.006
https://doi.org/10.1109/ACCESS.2019.2901219
https://doi.org/10.1109/JPROC.2018.2817461
https://doi.org/10.1109/MNET.2018.1700349
https://doi.org/10.1109/TSP.2009.2033729
https://doi.org/10.1093/jamia/ocy017

H. D. Zhu, W. Ai

DOI: 10.4236/jamp.2024.124077 1262 Journal of Applied Mathematics and Physics

with Random Weights. Information Sciences, 264, 104-117.
https://doi.org/10.1016/j.ins.2013.12.016

[15] Pascanu, R., Mikolov, T. and Bengio, Y. (2013) On the Difficulty of Training Recur-
rent Neural Networks. International Conference on Machine Learning, Atlanta, 17-19
June 2013, 1310-1318.

[16] Widrow, B., Greenblatt, A., Kim, Y. and Park, D. (2013) The No-Prop Algorithm: A
New Learning Algorithm for Multilayer Neural Networks. Neural Networks, 37,
182-188. https://doi.org/10.1016/j.neunet.2012.09.020

[17] Tang, J., Deng, C. and Huang, G.-B. (2015) Extreme Learning Machine for Multi-
layer Perceptron. IEEE Transactions on Neural Networks and Learning Systems, 27,
809-821. https://doi.org/10.1109/TNNLS.2015.2424995

[18] Zhang, Y., Wu, J., Cai, Z., Du, B. and Philip, S.Y. (2019) An Unsupervised Parame-
ter Learning Model for RVFL Neural Network. Neural Networks, 112, 85-97.
https://doi.org/10.1016/j.neunet.2019.01.007

[19] Katuwal, R. and Suganthan, P.N. (2019) Stacked Autoencoder Based Deep Random
Vector Functional Link Neural Network for Classification. Applied Soft Computing,
85, Article ID: 105854. https://doi.org/10.1016/j.asoc.2019.105854

[20] Olfati-Saber, R., Fax, J.A. and Murray, R.M. (2007) Consensus and Cooperation in
Networked Multi-Agent Systems. Proceedings of the IEEE, 95, 215-233.
https://doi.org/10.1109/JPROC.2006.887293

[21] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al. (2011) Distributed Opti-
mization and Statistical Learning via the Alternating Direction Method of Multip-
liers. Foundations and Trends® in Machine Learning, 3, 1-122.
https://doi.org/10.1561/2200000016

[22] Wei, E. and Ozdaglar, A. (2012) Distributed Alternating Direction Method of Mul-
tipliers. 2012 IEEE 51st IEEE Conference on Decision and Control (CDC), Maui, 10-13
December 2012, 5445-5450. https://doi.org/10.1109/CDC.2012.6425904

[23] Bredies, K. and Lorenz, D.A. (2008) Linear Convergence of Iterative Soft Threshold-
ing. Journal of Fourier Analysis and Applications, 14, 813-837.
https://doi.org/10.1007/s00041-008-9041-1

https://doi.org/10.4236/jamp.2024.124077
https://doi.org/10.1016/j.ins.2013.12.016
https://doi.org/10.1016/j.neunet.2012.09.020
https://doi.org/10.1109/TNNLS.2015.2424995
https://doi.org/10.1016/j.neunet.2019.01.007
https://doi.org/10.1016/j.asoc.2019.105854
https://doi.org/10.1109/JPROC.2006.887293
https://doi.org/10.1561/2200000016
https://doi.org/10.1109/CDC.2012.6425904
https://doi.org/10.1007/s00041-008-9041-1

	Fully Distributed Learning for Deep Random Vector Functional-Link Networks
	Abstract
	Keywords
	1. Introduction
	2. Preliminary
	2.1. Deep RVFL with Direct Links
	2.2. Deep RVFL with Dense Direct Links
	2.3. Decentralized Average Consensus (DAC)

	3. Fully Distributed Deep RVFL Network
	3.1. Problem Description
	3.2. Fully Distributed Deep RVFL Network with Direct Links
	3.3. Fully Distributed Deep RVFL Network with Dense Direct Links
	3.4. Fully Distributed Solutions

	4. Experiments and Analysis
	4.1. Experimental Setup
	4.1.1. Training Datasets
	4.1.2. Evaluation Index
	4.1.3. Testing Models and Parameter Setting

	4.2. Performance
	4.2.1. Classification Accuracy
	4.2.2. Training Time

	4.3. Correlation Analysis of Model Robustness

	5. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

