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Abstract 
Climate is a major driver of vector proliferation and arbovirus transmission, 
with temperature being a primary focus of research. Unlike other mosquito-
borne diseases, Zika virus transmission involves both sexual transmission be-
tween humans and environmental transmission pathways, a characteristic 
largely overlooked in existing studies. This paper develops a temperature-de-
pendent transmission model based on the unique transmission characteristics 
of the Zika virus. We estimated the historical transmission of Zika virus in 
Brazil using a temperature-dependent basic reproduction number to assess the 
impact of climate change on Zika virus spread in the region. Results indicate 
that the temperature range for Zika virus outbreaks is between 23.34˚C and 
33.99˚C, peaking at 3.2 at 29.4˚C. This range and peak temperature are ap-
proximately 1˚C lower than those found in models that do not consider envi-
ronmental transmission pathways. By incorporating seasonal variations into 
the model and categorizing ten Brazilian cities into five climatic types based 
on temperature changes, we simulated historical and future daily average tem-
peratures using the GFDL-ESM4 temperature model. We analyzed the control 
periods and virus risks across different regions and projected Zika virus trans-
mission risk in Brazil under four Shared Socioeconomic Pathways (SSP126, 
SSP245, SSP370, and SSP585). The results suggest that under the SSP126 sce-
nario, the control periods will extend by 2 - 3 months with rising temperatures. 
This study concludes by discussing the impact of temperature changes on con-
trol measures, emphasizing the importance of reducing adult mosquito popu-
lations through the Sterile Insect Technique (SIT) to mitigate future risks. 
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1. Introduction 

Zika virus, a viral disease transmitted to humans through the bite of infected Ae-
des aegypti mosquitoes, emerged in the Americas in 2015, causing a massive epi-
demic. Between May and December 2015, about 440,000∼1300,000 suspected 
cases were reported in Brazil alone. Not only that, but Zika virus has spread widely 
across multiple regions, with 89 countries and territories having reported evidence 
of Zika virus transmission as of 2016 [1]-[3]. Therefore, it is crucial to predict the 
spread of Zika virus. The primary vector for the transmission of the Zika virus is 
the Aedes aegypti mosquito. Research indicates that, as small ectothermic organ-
isms, the fitness, life history, and vector capacity of these mosquitoes exhibit a 
nonlinear and unimodal relationship with environmental temperature. Therefore, 
temperature is an important driver influencing the population dynamics of Aedes 
aegypti mosquitoes [4]-[6]. Ryan et al. [7] applied empirical parametric models of 
vector transmission of Aedes aegypti and Aedes albopictus as a function of tem-
perature to predict cumulative monthly global transmission risks in the current 
climate. Their research shows that under climate change, the scale of the virus 
transmitted by Aedes mosquitoes increases significantly. Carlson et al. [8] com-
piled a spatially explicit global occurrence dataset from Zika virus surveillance and 
serological surveys and constructed a niche model to map the potential distribu-
tion of the virus. Their study indicates that the temperature in areas suitable for 
Zika virus transmission is higher than that in areas at risk for dengue fever. Tesla 
et al. [9] updated an existing temperatures-dependent basic reproduction model 
using thermal responses of Aedes traits in order to infer the effect of temperature 
on Zika virus transmission, and their results indicate that the optimal transmis-
sion temperature for Zika virus is 29˚C. Huber et al. [10] extended the SEI-SEIR 
model for Zika virus to include nonlinear, temperature-dependent vector param-
eters. They used this model to assess the impact of temperature on the breadth 
and scale of epidemics. Their research indicates that as temperatures rise, the 
global range suitable for Zika virus outbreaks will expand, potentially putting a 
larger proportion of the world’s population at risk. Van Wyk et al. [11] utilized a 
temperature-dependent basic reproduction number ( 0R ) model to predict the 
risk of Zika virus and dengue viruses in five regions of Brazil. Their model pre-
dicted that the 0R  for the Zika virus peaks at approximately 2.7 at around 30.5˚C. 
All of this research suggests that understanding how temperature changes affect 
Zika virus is important for us to predict and prevent the spread of Zika virus. 

It is important to note that unlike viruses such as Japanese encephalitis, malaria, 
dengue fever, filariasis, Zika virus has a human-to-human transmission pathway 
in addition to mosquito bite transmission [3] [12], as well as an environmental 
infection pathway [13]. Environmental infection pathways provide new routes for 
mosquitoes to contract the virus, which may have led to an underestimation of 
the Zika virus in previous model assessments. In this paper, we will investigate the 
impact of climate change on Zika virus based on a new model of temperature-
dependent Zika virus transmission in Aedes aegypti mosquitoes to obtain the 
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basic reproduction number related to temperature. Our research extended previ-
ous work [9]-[11], in addition to adding environmental infection pathways, as 
well as analyzing and comparing actual temperatures in ten different Brazilian 
cities to refine the potential risk of Zika virus outbreaks in different regions. Fu-
ture annual risk projections are given through five different climate types. In ad-
dition, this paper also pays attention to the influence of temperature on the con-
trol parameters, and then analyzes the change of the synergistic effect between 
control measures and temperature. 

2. Methods 
2.1. Model 

The SEIR-SEI compartment modeling framework is used to simulate the trans-
mission of Zika virus. At the same time, we introduced temperature dependence 
into the model using the fitted thermal response curves of mosquito life history 
characteristics provided by Mordecai et al. [14]. The complete model is: 
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The SEIR part of the model indicates that the population is divided into four 
categories: susceptible population ( HS ), exposed population ( HE ), infected pop-
ulation ( HI ), and recovered population ( HR ). In Equations (1)-(4), ( T ) denotes 
the temperature dependence function, and ( )H Tβ  represents the transmission 
rate of mosquitoes to humans. Specifically, ( ) ( ) ( )H m MHT b T Tβ β= , ( )mb T , 
where ( )mb T  is the bite rate and ( )MH Tβ  is the probability of mosquito infec-
tivity. The term ( )H Tβ ρ  represents the rate of transmission from the infected 
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population to the susceptible population. Hµ  is the natural mortality rate of hu-
mans, Hα  is the rate at which the exposed population becomes infected, r  is 
the rate of human recovery, and ΛH  is recruitment rate. 

The SEI 1 2m m  part of the model describes the vector population, which is di-
vided into adult and juvenile mosquitoes. The adult mosquito population MN  is 
divided into susceptible ( MS ), exposed ( ME ), and infected ( MI ) populations. 
We further divided immature mosquitoes into two groups based on whether the 
water they were growing in was contaminated or not. Immature mosquitoes grow-
ing in polluted water are represented by 1m , while those growing in unpolluted 
water are represented by 2m . In Equations (5)-(9), ( )( )Λ 0M T >  is recruitment 
rate, where ( ) ( )ΛM F MT N Tθ= ∗ , FN  is the number of female mosquitoes, 
and ( )M Tθ  is the egg-laying rate of female mosquitoes. ( )( )Λ 0 1M Tα α≤ ≤  is 
the recruitment rate of mosquitoes in polluted waters, and ( )M Tδ  is the proba-
bility of transitioning from ME  to MI . ( )1 ΛMα−  is the recruitment rate of 
mosquitoes in unpolluted waters. ( )M Tβ  is the transmission rate from humans 
to mosquitoes, where ( ) ( ) ( )M m HMT b T Tβ β= , and MHβ  is the mosquito infec-
tion probability. ( ) , 1, 2ib T i =  is the transformation rate from juvenile to adult 
mosquitoes, and , 1, 2i iµ =  is the mortality rate of juvenile mosquitoes. wβ  de-
notes the infection rate of mosquitoes in contaminated water, ( )M Tµ  is the 
mortality rate of adult mosquitoes, and K  is the density inhibition coefficient. 

While C  represents the average virus concentration in sewage, where 0β  is 
the scaling coefficient and θ  represents the purification rate of virus concentra-
tion per unit time. 

The SEIR-SEI 1 2m m C−  flowchart mentioned above is shown in Figure 1. 
 

 
Figure 1. Flowchart of the Zika virus model. 

2.2. The Basic Reproduction Number 

One indicator that should not be ignored in infectious disease models is the basic 
reproduction number 0R  [15]. 0R  represents the average number of individu-
als one infected person will transmit the disease to before recovering. If 0 1R > , 
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the epidemic will continue to spread. When 0 1R < , the epidemic will disappear. 
In this paper, 0R  is the focus indicator. 

The basic reproduction number 0R  can be calculated using the next-genera-
tion matrix method [15], which is: 

 ( ) ( ) ( ) ( )0 1 2 32 ,R T R T R T R T= + +  
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2.3. Temperature-Dependent Parameters 

Mosquitoes are crucial vectors in the transmission of the Zika virus (ZIKV). In 
the equations Equations (1)-(10), many parameters related to mosquitoes are tem-
perature-dependent, such as the oviposition rate of female mosquito Mθ , recruit-
ment rate (ΛM ), the survival probability of egg adult MV , the probability of larva 
growing into adult ib , the mortality rate of adult Mµ , the bite rate mb , etc. In 
addition, parameters related to Zika virus transmission, such as the mosquito 
transmission probability ( MHβ ), mosquito infection probability ( HMβ ), and the 
conversion rate from ME  to MI  ( Mδ ), are also directly influenced by temper-
ature. Use the method mentioned in [15] to establish a relationship with the tem-
perature related parameters in Equations (1)-(10), as shown in Table 1. The Brière 
function takes the form ( )( )

1
2

0 mcT T T T T− − , and the quadratic function takes 
the form ( )( )0mc T T T T− − , where T  denotes the temperature, 0T  denotes 
the minimum critical thermal temperature, and mT  denotes the maximum criti-
cal thermal temperature. c  is the value of the parameter fitted by Mordecai et al. 
[14] through actual data. 

According to the relationships listed in Table 1, a unimodal relationship be-
tween temperature and parameters Mθ , ib , Mµ , Mβ , Hβ , Mδ  is drawn. It 
can be seen from Figure 2 that parameter Hβ , Mβ , Mδ , Mθ , ib , 1

Mµ
−  is the 

largest when the temperature reaches 31.6˚C, 32.2˚C, 37.8˚C, 29.6˚C, 28.9˚C, 
29.9˚C respectively. The temperature ranges corresponding to the values of pa-
rameters Hβ , Mβ , Mδ  and Mθ , ib , 1

Mµ
−  being greater than or equal to 0  
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Table 1. Thermal response matching life history characteristics of Aedes aegypti. 

Trait Definition Function Fitted Parameters 

mb  Biting rate Brière 42.02 10c −= ×  13.35minT =  40.08maxT =  

MHβ  The probability of mosquito infectivity Brière 48.49 10c −= ×  17.05minT =  35.83maxT =  

Hβ  The rate of mosquito transmission to humans m MHb β∗     

HMβ  The probability of mosquito infection Brière 44.91 10c −= ×  12.22minT =  37.46maxT =  

Mβ  Human and mosquito transmission rate m HMb β∗     

Mδ  The probability from ME  to MI  Brière 56.65 10c −= ×  10.68minT =  45.90maxT =  

Mθ  Egg laying rate per female mosquito per day Brière 38.56 10c −= ×  14.58minT =  34.61maxT =  

FN  The number of female mosquitoes FN  is a constant    

ΛM  Recruitment rate ΛM M FNθ= ∗     

MΦ  Egg adult development rate Brière 57.86 10c −= ×  11.36minT =  39.17maxT =  

MV  Survival probability of egg adult Quadratic 35.99 10c −= − ×  13.56minT =  38.29maxT =  

ib  The probability from im  to MS  i M Mb V= Φ ∗     

1
Mµ
−  Adult lifespan Quadratic 11.48 10c −= − ×  9.16minT =  37.73maxT =  

 

 
Figure 2. The effect of temperature on parameters. 
 

are [ ]17.1 C,36.2 CT ∈   , [ ]13.9 C,37.4 CT ∈   , [ ]10.8 C,45.9 CT ∈   ,  
[ ]14.5 C,34.7 CT ∈   , [ ]13.5 C,38.9 CT ∈   , [ ]14.5 C,34.7 CT ∈   , respectively. 

2.4. Estimation of Parameter Values in the Model 

The natural mortality rate of human beings is set at 0.00004Hµ =  with reference 
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to the relevant literature [16]. The average recovery rate for Zika virus is set at 
0.5r =  according to [17]. According to [13], the sewage purification rate is set at 
0.84θ = . Considering that the average annual temperature in Brazil is 24 CT =   

[18], substituting this temperature into Table 1 yields the following values for the 
corresponding parameters: 0.063Mθ = , 0.083ib = , 0.0332Mµ = ,  

0.1054Mβ = , 0.1008Hβ = , and 0.0995Mδ = . To estimate the remaining fixed 
parameter values in the model described by Equations (1)-(9), we fitted the pa-
rameters using the least squares method. The data used were the weekly number 
of suspected Zika virus infections from April 4, 2015, to December 4, 2015 [19]. 
Not only that, we also obtained the population data of Brazil in 2015 from the 
Brazilian census in 2015 for the approximate determination of the initial popula-
tion range [20]. 

Assuming that the cumulative number of new infections per week is recorded 
as ( )P t , then ( )P t  satisfies the following expression: 

 d ,
d H H
P E
t

ηα=  

where η  represents the proportion of reported cases. The data we fit starts from 
April 4, 2015. Therefore, we set ( )0P , representing the number of new infections 
in Brazil on March 28, 2015, to 7343. 

2.5. Seasonal Forcing 

The temperature fluctuation curve indicates a certain periodicity, hence we intro-
duce a seasonal component. Observations reveal that the annual temperature in 
Brazil exhibits a trend of being higher at both ends of the year and lower in the 
middle. Consequently, we model the temperature as a function of time, establish-
ing a cosine curve with a period of 365 days, as shown below, 

 ( ) ( )2cos .
2 365

max min
mean

T T
T t t Tω

−  π  = ∗ − − +  
  

 (11) 

where T  is the temperature (in degrees Celsius) and ( t ) is the time in days, 
,max meanT T  and minT  represent the annual maximum, mean, and minimum tem-

peratures, respectively. ω  is the phase shift that aligns the sinusoidal function 
with the seasonal factors of each Brazilian city. We combined Equations (1)-(9), 
Equation (2) with the actual temperatures of the Brazilian cities as a way to analyze 
the effect of seasonal variations on the propagation of Zika virus in different cities 
of the Brazilian region. 

2.6. Removal of Data Outliers 

In this paper, boxplot method is used to detect outliers. Boxplot was invented in 
1977 by John Tukey, an American statistician, which shows the characteristics of 
the actual data and visually identifies outliers in the data batch [21]. To construct 
a boxplot, it is essential to determine the maximum value, minimum value, me-
dian, and the lower ( 1Q ) and upper quartiles ( 3Q ) of the data. The difference 
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between the upper and lower quartiles is referred to as the interquartile range 
(IQR). Outliers are defined as data points that fall outside the range of  
( )1 31.5 , 1.5Q IQR Q IQR+ − . As an example, the daily high temperature data of 
Porto Alegre from January 1, 2015, to January 1, 2023, and from January 5, 2015, 
to January 5, 2023, are used to plot the corresponding box plots, as shown in Fig-
ure 3. As can be seen from Figure 3, there is no abnormal temperature on January 
1, 2015-2023, while there is an abnormal temperature on January 5, 2015-2023 
that needs to be removed. 

 

 
Figure 3. High temperature data processing from January 1, 2015 to 2023 and January 5, 
2015 to 2023 in Porto Alegre (Boxplot method). 

2.7. Sensitivity Analysis 

In order to examine the sensitivity of the control parameters to the basic repro-
duction number, this paper uses the normalized forward sensitivity index method 
[22]. Mathematically, the sensitivity index (SI) of 0R  with respect to parameter 
p  is defined as: 

 0 0

0

: .R
p

R pr
p R

∂
= ×
∂

 

The sensitivity index can be either positive or negative. A positive sensitivity 
index indicates that the basic reproduction number increases as the parameter in-
creases, whereas a negative sensitivity index indicates that the basic reproduction 
number decreases as the parameter increases. In addition, to assess the reliability 
and robustness of the model, we used the partial rank correlation coefficient (PRCC) 
method [23] to determine the effect of changes in the parameters identified by the 
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fit calibration on the basic reproduction number of the model. The PRCC pro-
vides a quantitative assessment of the impact of each parameter on the model out-
put. The sign and magnitude of the PRCC indicate the direction and strength of 
the effect of each parameter on the output variables. Positive PRCC values suggest 
that an increase in the parameter results in an increase in the basic reproduction 
number, while negative PRCC values suggest that an increase in the parameter 
results in a decrease in the basic reproduction number. A larger absolute value of 
PRCC represents a more significant effect. Additionally, we used the Latin hyper-
cube sampling method to generate 10000 random samples for each parameter. 
These samples cover the range of possible parameter values. 

3. Data 
3.1. Historical Weather Data 

Because the Zika virus outbreak in Brazil started since 2015, this paper uses data 
from 2015-2023 as a historical baseline. Historical daily low and daily high tem-
peratures for 9 years (2015-2023) were compiled from [24]. From this, the average 
daily temperature, the annual maximum temperature, the average annual temper-
ature, and the annual minimum temperature were obtained for the calendar years 
2015-2023. The corresponding ω  values for each city were obtained by least 
squares fitting of the obtained data with Equation (11). 

3.2. Future weather data 

World Climate Research Programme (WCRP) Working Group on Coupled Mod-
elling (WGCM) collects and compares simulation results from various global cli-
mate models through Coupled Model Intercomparison Project(CMIP). Accord-
ing to statistics, in 2016 alone, climate-related articles published in the Journal of 
Climate that explicitly cited CMIP5 accounted for 45% of all articles [25]. This is 
a great indication that CMIP plays an extremely important role in climate re-
search. WCRP organized CMIP6 [24] refcmip6.1, refcmip6.2, refcmip6.3, ref-
cmip6.4, and the number of models participating in CMIP6 this time increased 
significantly compared with the past. Only the model development team partici-
pating in CMIP6 increased by 13 institutions compared with CMIP5, and the 
model of CMIP6 increased by more than 70 to 112 compared with the more than 
40 model versions of CMIP5. With the information [24] ref6.41, ref6.42, it is clear 
that GFDL-ESM4 [24] ref6.5 is the most accurate model for capturing historical 
temperatures in South America in the CMIP6 model. Therefore, the GFDL-ESM4 
model was selected in this paper to obtain historical and predicted future temper-
ature data. The relevant files were downloaded from the public website [24] 
refhttp, and by looking at the file information, it is known that the resolution 
(number of meridional grids × number of latitudinal grids) of the GFDL-ESM4 
model is 288 × 180, which means that the grid resolution of GFDL-ESM4 is 1˚ × 
1.25˚. In order to extract the relevant data of the required ten cities, we use nearest 
neighbor interpolation to process the grid resolution of the data to 0.5˚ × 0.5˚, and 
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then extract the nearest model grid point to each city, which represents the city. 
In the projections, the years 2060-2070 were selected as the projection years. 

Four Shared Socioeconomic Pathways(SSP) climate scenarios were used: SSP126, 
SSP245, SSP370 and SSP585 [24] refssp. These scenarios represent different levels 
of climate-related socioeconomic development and their corresponding GHG 
concentrations. SSP126 is a low-emission scenario that requires significant global 
efforts and government intervention to achieve. In contrast, SSP585 is a high-
emission, baseline scenario characterized by increasing greenhouse gas emissions 
and concentrations, with no climate change intervention. SSP245 and SSP370 fall 
between these two extremes, suggesting that future societies can partially adapt. 

4. Results 
4.1. Data Fitting 

Table 2 presents the parameter values calibrated through data fitting, with the 
fitting results being statistically significant as indicated by the p-values [26]. We 
substituted these fitting results into Equation (1) and compared the predicted re-
sults with the actual results (as shown in Figure 4), finding a good agreement be-
tween them. 

 
Table 2. Parameter values for Brazil region data fitting calibration. 

Parameter 
Parameter  

value 
Standard error Confidence interval p-value 

K  0.000010249 3.34E−06 [3.3186e−6, 0.00001718] 0.0056449 

α  0.756631 0.196735 [0.348628, 1.164635] 0.775284E−4 

Hα  0.00848635 0.00165192 [0.005060478, 0.0119122] 0.7808999E−5 

0β  1.9637 0.00020044 [1.9633, 1.9641] 0.5436e−5 

wβ  0.018233 0.0001472 [0.017928, 0.018538] 0.7244e−3 

η  0.00522087 7.592665E−4 [0.00364625, 0.00679549] 0.614422E−7 

ρ  0.59029 0.0026858 [0.58472, 0.59586] 0.927e−38 

1µ  0.910935 0.368895 [0.1458932, 1.675978] 0.021773 

2µ  0.870216 0.296051 [0.2562443, 1.484187] 0.007586 

 
It is crucial to consider the robustness and reliability of the model, acknowl-

edging that environmental changes or specific geographical factors may cause 
some of the fitted parameters to vary within a certain range. We employed PRCC 
quantitative analysis to assess the impact of the parameter values obtained from 
model fitting on the basic reproduction number of the model. As illustrated in 
Figure 5, none of the parameters are sensitive to 0R , except for parameters 1µ  
and 2µ . According to [27], the mortality rate 2µ  ranges from 0.8 to 0.9, and 
our fitting results fall within this range. Despite our inability to find relevant  
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Figure 4. The fit of p :graph comparing predicted infection data with actual infection data. 

 

 
Figure 5. Effect of fitting parameters on 0R  at different temperatures. 

 
literature on mosquito mortality in polluted waters, our assumption that mosqui-
toes in polluted water bodies are subject to density control, which increases mos-
quito mortality, makes the fitting results reasonable to some extent. Consequently, 
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appropriate parameter changes are not expected to significantly impact the pre-
dicted results of the model, thereby confirming the model’s reliability. 

4.2. Effect of Temperature on Zika Virus Spreading 

From Figure 6, it can be seen that there is a single-peak relationship between tem-
perature and the basic reproduction number, with 0R  peaking at 3.2, which cor-
responds to a temperature of about 29.4˚C. The temperature range where 0 1R >  
is ( )23.34 C,33.99 CxT ∈   . 

 

 
Figure 6. The effect of temperature T  on 0R . 

 
From Figure 7, it can be seen that when the temperature is between 18˚C and 

35˚C, the final number of infected people remains greater than zero. At other tem-
peratures, the final number of infected people tends to zero. 

4.3. Impact of Seasonal Variations on Zika Virus Transmission in 
the Brazilian Region 

In order to study the potential impact of seasonal variations on different cities in 
the Brazilian region, a total of ten important Brazilian cities were selected for anal-
ysis: Manaus, Palmas, Macapa, Rio de Janeiro, Teresina, Recife, Aracaju, Sao 
Paulo, Porto Alegre, and Florianópolis. 

4.3.1. Analysis of Basic Reproduction Numbers in Different Regions 
Based on Historical Temperatures 

Based on the methodology described in Section 3, the values of , ,max mean minT T T  
and ω  were calculated for the 10 cities over the period from 2015 to 2023 and 
substituted into Equation (11). This enabled us to obtain the temperature as a 
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function of time for different years in each city, and consequently, the basic 
reproduction number under the influence of temperature exhibited a corresponding 
change. Taking Porto Alegre as an example, Figure 8 illustrates the city’s temperature 
variation for each year from 2015 to 2023, while Figure 9 depicts the corresponding  

 

 
Figure 7. The effect of temperature T  on HI . 

 

 
Figure 8. Daily temperature versus fitted seasonal temperature profile in Porto Alegre, 2015-2023. 
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Figure 9. Daily change in basic reproduction number in Porto Alegre, 2015-2023. 

 
variation in the basic reproduction number. Therefore, the dates that require at-
tention for Zika virus prevention and control vary from year to year, as can be 
seen from Figure 9, in 2015, Porto Alegre focused on the prevention and control 
of Zika virus during the periods of January 1, 2015 to March 19, 2015 and Novem-
ber 26, 2015 to December 31, 2015, respectively. Whereas in 2018, the dates that 
needed to be focused on the prevention and control of Zika virus were during the 
period from January 1, 2018 to May 25, 2018 and from October 1, 2018 to Decem-
ber 31, 2015, which is almost the whole year. 

Next, consideration was given to extracting commonalities from these nine 
years of data to generate a new dataset, which could be used to construct a basic 
reproduction number model that can represent the period from 2015 to 2023. 
However, it is not reasonable to represent the data as a mean only, as the daily 
mean temperature is not constant across the years and there are likely to be ex-
tremes in a given year. It is important that such extremes are detected and dealt 
with when analyzing the data to avoid biasing the results of the analysis [28]. 

Using the boxplot methodology mentioned in Section 2, outliers were removed, 
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and a model of the historical annual mean temperature change in the same city 
was constructed based on the mean values. This, in turn, yielded a model of the 
change in the basic reproduction number. Using Porto Alegre as an example, we 
plotted the seasonal temperature variation and the corresponding average annual 
trend of the basic reproduction number (see Figure 10, Figure 11). The model is  

 

 
Figure 10. Temperature modeling in Porto Alegre, 2015-2023. 

 

 
Figure 11. The basic reproduction number model for Porto Alegre, 2015-2023. 

https://doi.org/10.4236/jamp.2024.1212260


Z. M. Yue et al. 
 

 

DOI: 10.4236/jamp.2024.1212260 4228 Journal of Applied Mathematics and Physics 
 

a risk estimation model based on historical temperatures, which allows us to esti-
mate the risk of Zika virus at current temperatures, determine the approximate 
basic reproduction number, and identify the approximate time periods for which 
Zika virus prevention and control are needed. 

By comparison, we find that some of these ten regions have similar temperature 
variations, while others are quite different. Therefore, the ten regions are catego-
rized according to the type of climate [29] and the average annual temperature: 1) 
Tropical Rainforest Climate Cities: exemplified by Manaus, Palmas, and Macapa, 
all with an average daily temperature of around 27˚C. 2) Tropical Savanna Climate 
Cities: exemplified by Rio de Janeiro. 3) Tropical Climate Cities: exemplified by 
Teresina. 4) Cities with Tropical Monsoon Climate: exemplified by Recife and 
Aracaju. 5) Subtropical Climate Cities: exemplified by Sao Paulo, Porto Alegre, 
and Florianópolis. The following analysis focuses on these five climate types of 
cities. To integrate the data for cities within the same category, the box plot 
method was used to identify outliers in the average daily temperatures of different 
cities on the same date. These outliers were then removed, and the remaining data 
were averaged. 

This results in a temperature model and a basic reproduction number model 
that can represent the cities of these five climate types, as shown in Figure 12, 
Figure 13. From Figure 12, it can be seen that the temperatures of the cities of  

 

 
Figure 12. Daily changes in urban temperatures for five climate types, 2015-2023. 
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Figure 13. Daily changes in the basic reproduction number in cities for five climate types, 2015-2023. 
 

different climate types in the Brazilian region vary considerably, which leads to a 
large difference in the corresponding basic reproduction number models. From 
Figure 13, it can be seen that cities with Tropical Rainforest Climate and Tropical 
Monsoon Climate have 0 1R >  almost year-round. This suggests that the gov-
ernment needs to focus on the prevention and control of Zika virus throughout 
the year in these two types of cities. In cities with a Tropical Savanna Climate, the 
time periods requiring Zika virus control are from January 1 to May 5 and from 
October 20 to December 31. In Subtropical Climate type cities, the time period for 
Zika virus prevention and control are from January 1 to March 26 and from No-
vember 18 to December 31. 

4.3.2. Risk Prediction for Zika Virus Based on Future Temperature Data 
In Section 3, we obtained temperature projections for ten regions in Brazil for 
2060-2070 under different scenarios. These data can be used to project changes in 
Zika virus risk for cities with different climate types under various SSP climate 
scenarios. We plotted the trends in temperature and the basic reproduction num-
ber for five climate type cities under different SSP climate scenarios, as shown in 
Figures 14-18. From these plots, it can be seen that there are differences in the 
risk of Zika virus under different SSP climate scenarios. When the future is under 
the SSP126 climate scenario, the risk of Zika virus is smaller compared to the  
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Figure 14. Modeling Temperature and Basic Reproduction Numbers for Cities with Tropical Rainforest Climate Types, 2060-2070. 
 

 
Figure 15. Modeling Temperature and Basic Reproduction Numbers for Cities in the Tropical Savanna Climate Type, 2060-2070. 
 

 
Figure 16. Modeling Temperature and Basic Reproduction Numbers for Cities with Tropical Climate Types in 2060-2070. 
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Figure 17. Temperature and basic reproduction number modeling for cities with tropical monsson climate types, 2060-2070. 
 

 
Figure 18. Temperature and basic reproduction number modeling for Subtropical Climate Climate type cities in 2060-2070. 
 

SS585 climate scenario. However, regardless of the scenario, the time in the future 
when Zika virus needs to be prevented and controlled will expand. In particular, 
the areas covered by the tropical rainforest climate zone, the tropical climate zone, 
and the tropical monsoon climate zone are risk zones throughout the year. 

Using the above five climate types as a proxy and extending the projections to 
the entire Brazilian region, we have mapped the Zika virus risk projections for 
Brazil for different months based on the future temperatures projected by SSP126 
for the years 2060-2070. As shown in Figure 19, the months with the highest prev-
alence of Zika virus in Brazil will be from August to December. Additionally, we 
found that the northwestern region of Brazil will be in the Zika virus early warning 
stage almost all year round, indicating that authorities should focus their Zika vi-
rus prevention and control efforts on these areas. This is because Zika virus may 
be more likely to cause an outbreak after a long period of accumulation. 
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Figure 19. Zika virus risk forecasting map of Brazil. 

4.4. Control Strategies of Zika Virus under the Influence of  
Temperature 

This section discusses the sensitivity of control parameters to the basic reproduc-
tion number from a control perspective and provides a reference for the selection 
and implementation of control measures. Commonly used control measures in-
clude: 1) Reducing the values of parameters Hβ  and Mβ  by installing anti-
mosquito screens, using mosquito nets, and other similar measures. 2) Increasing 
the values of parameters Mµ  and iµ  through the use of insecticides and other 
interventions. 3) Maintaining the cleanliness of the water environment to reduce 
the values of parameters α  and 0β . 4) Reduce the mosquito population ( FN ) 
using the Sterile Insect Technique (SIT). 

The sensitivity index of 0R  to each model control parameter at different tem-
peratures are shown in Figure 20. Two different sensitivity analyses were used: 
the normalized forward sensitivity index and PRCC, presented in Figure 20(a) 
and Figure 20(b), respectively. From Figure 20(a), Figure 20(b), it can be seen that 

0,α β  are insensitive to 0R  when the temperature ( )17 C,36 CT ∈   . This is also 
confirmed by Figure 20(c) and Figure 20(d), where changes in the values of α  
and 0β  are barely able to make 0 1R < . On the other hand, Mµ  exhibits the 
highest sensitivity to 0R . As shown in Figure 20(h), increasing the value of Mµ  
to a critical level can reduce 0R  below 1. Additionally, FN , Hβ  and Mβ  are 
also sensitive to 0R . This we can also see in Figures 20(e)-(i). Particularly when 

( )35 C,35.5 CT ∈   , the sensitivity index of Hβ  to 0R  reaches 1 at one point. 
This suggests that it is crucial to focus on using mosquito nets, repellents, and 
similar measures to reduce mosquito bites when the temperature is around 
( )35 C,35.5 C  . In daily life, we often observe synergistic control through these 
measures. For instance, efforts to prevent mosquito bites simultaneously reduce 
both mosquito-to-human virus transmission ( Hβ ) and human-to-mosquito 
transmission ( Mβ ). Figure 21 illustrates the effect on 0R  when Hβ  and Mβ  
are simultaneously reduced. Meanwhile, we can see from Figure 20(g), Figure 
20(h) that the adult mosquito mortality rate ( Mµ ), the larvae mortality rate ( iµ )  
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Figure 20. Influence of temperature and control parameters on 0R . 
 

cannot be ignored. In addition, we we focused on the use of insecticides and mos-
quito lamps to increase the adult mosquito mortality rate ( Mµ ), and the use of 
earthy yellow sand to fill various pits, depressions, ditches, and other places where 
water tends to accumulate to increase the larvae mortality rate ( iµ ). From Figure 
22(a), it can be seen that 0 1R <  can be achieved when Mµ  and iµ  reach a 
specific range. From Figure 22(b), it is evident that in their synergistic control, 
controlling the adult mosquito mortality rate ( Mµ ) is crucial. For example, at 

30 CT =   and 32 CT =  , the adult mortality rate ( Mµ ) must be greater than 
0.11 to control the outbreak of the Zika virus(as shown in Figure 22(c), Figure 
22(d)). This means that at this point, the life span of adult mosquitoes to be con-
trolled does not exceed an average of about 9 days. 

In addition to the conventional control methods mentioned above, SIT offers a  
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Figure 21. Temperature and Hβ , Mβ  together on 0R . (a) where the white part indicates that 0 1R <  when (b) The green 
part indicates 0 1R >  and the white part indicates 0 1R < . colored part indicates the case where 0 1R > . 
 

 
Figure 22. The effect of temperature and iµ , Mµ  together on 0R : where the white part indicates that 0 1R <  when the pa-

rameter is in the region, and the rest of the colored part indicates the case where 0 1R > . (a) 26 CT =  ; (b) 28 CT =  ; (c) 
30 CT =  ; (d) 32 CT =  . 
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new tool for mosquito vector control [30]-[32]. This technique can reduce the 
reliance on chemical insecticides. As previously analyzed, controlling Zika virus 
requires a high mortality rate for mosquitoes. However, the extensive use of 
chemical insecticides not only pollutes the environment but also leads to insecti-
cide resistance. SIT works by releasing sterilized male mosquitoes to suppress the 
reproduction of the same species, thereby reducing the overall mosquito popula-
tion. This technique has already undergone field trials in several countries and 
has demonstrated significant suppression results [33]-[36]. According to our 
model, if the mosquito population is reduced by 20%, the temperature range 
where the 0R  is greater than 1 will shrink by 0.54˚C, and the peak will decrease 
by about 10.297% (see Figure 23(a)). If mosquito populations are reduced to 50% 
of their current levels, the future risk of transmission could decrease by 29.422% 
(see Figure 23(b)). If the mosquito population is reduced by 80%, even in tropical  

 

 
Figure 23. Effect of reducing the number of female mosquitoes ( FN ) on 0R . (a) The number of mosquitoes decreased by 
20% and 0R  varies with temperature. (b) The basic reproduction number model for tropical rainforest climate cities 
in 2060-2070 when the mosquito population is reduced by 50%. (c) The basic reproduction number model for tropical 
rainforest climate cities in 2060-2070 when the mosquito population is reduced by 80%. 
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rainforest climates, Zika virus will only remain at a low transmission level in the 
future (see Figure 23(c)). Compared to other measures, this approach is more 
effective. 

5. Discussion 

Mordecai et al. [14] used a basic reproduction number model based on parameter 
significance assumptions [37] to predict the impact of temperature on the trans-
mission probability and intensity of Zika virus, chikungunya, and dengue, finding 
that transmission occurs between 18˚C-34˚C, with the peak transmission occur-
ring between 26˚C-29˚C. Tesla et al. [9] updated the previous basic reproduction 
number model by using experimental data and a generalized linear model to esti-
mate the thermal response functions of vector competence parameters, determin-
ing that the optimal temperature for Zika virus transmission is 29˚C, with a range 
of 22.7˚C-34.7˚C. Van Wyk et al. [11] built upon Tesla et al. [9]’s thermal response 
functions and incorporated a general compartmental model for dengue and Zika 
virus to calculate the basic reproduction number, estimating that the optimal tem-
perature for Zika virus transmission is 30.5˚C, with a range of 25.1˚C-34.9˚C. This 
indicates that the optimal transmission temperature and the minimum tempera-
ture for transmission estimated using the general compartmental model are 
higher than previous estimates. However, this study employs a compartmental 
model specifically designed for the transmission characteristics of Zika virus. 
Based on this model, the estimated basic reproduction number suggests that the 
optimal temperature for Zika virus transmission is 29.4˚C, with a transmission 
range of 23.34˚C-33.99˚C. Compared to the results of Van Wyk et al. [11], the 
temperatures are lower, particularly the optimal transmission temperature, which 
is closer to [9]’s estimate. The minimum transmission temperature is also lower 
than Tesla et al. [9]’s estimate, but still within the range estimated by Mordecai et 
al. [14]. This suggests that the basic reproduction number obtained from a general 
model may underestimate the risk of Zika virus transmission. 

By incorporating seasonality into the model, we divided ten Brazilian cities into 
five different climate zones based on seasonal variations. Using historical average 
temperatures from these regions, we compared and analyzed the timing of pre-
vention and control measures and the risk of Zika virus transmission in different 
areas. Additionally, we developed a risk prediction model using future tempera-
ture projections under different Shared Socioeconomic Pathways (SSP126, 
SSP245, SSP370, SSP585) to forecast the risk of Zika virus outbreaks in 2060-2070. 
Based on SSP126, we created a Zika virus risk map for Brazil, highlighting areas 
of concern for each month. The study indicates that Zika virus risk varies across 
regions at the same time and that, with rising future temperatures, the duration 
of control periods in the same region will extend. For tropical savanna cities, the 
future Zika virus risk period ( 0 1R > ) will increase by approximately 53 days com-
pared to the present. Subtropical climate cities will see their risk period increase 
by about 70 days. Tropical climate cities will experience an increase of about 85 
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days in Zika virus risk in the future. Tropical savanna and tropical monsoon cli-
mate cities face year-round risk, with future annual 0R  significantly increasing, 
indicating that much stronger prevention and control efforts will be needed for 
Zika virus in the future. 

It is important to note that the spread of Zika virus is not necessarily stronger 
at higher temperatures. For example, the increase in the basic reproduction num-
ber in savanna cities is not consistent with the temperature model (Figure 15). 
Specifically, during the period from November to March, when temperatures in-
crease, the basic reproduction number actually decreases. The fluctuation of the 
basic reproduction number at the highest temperatures in January shows a local 
minimum value. This suggests that when temperatures rise to a certain threshold, 
it does not lead to further spread of Zika virus and may even inhibit it. This could 
be due to the fact that extremely high temperatures are not conducive to mosquito 
growth, thus hindering the spread of Zika virus. 

Through a sensitivity analysis of control parameters under different tempera-
tures, we found that the human-to-mosquito infection rate, mosquito mortality 
rate, and mosquito population size exhibit high sensitivity to the basic reproduc-
tion number ( 0R ). As temperature changes, effective virus control requires con-
tinuous adjustment of these parameters. Notably, sensitivity analysis, particularly 
PRCC analysis, shows that Hβ  (human-to-mosquito transmission rate) is more 
sensitive than Mβ  (mosquito-to-human transmission rate), indicating that vac-
cination is more effective than physical protection. However, focusing solely on 
traditional control methods, it is clear that as global temperatures rise, achieving 
control over the Zika virus requires a higher mosquito mortality rate. Considering 
the limitations and unsustainability of chemical insecticides, we compared the ef-
fectiveness of SIT. The results show that reducing the mosquito population by 
80% using SIT can significantly reduce future Zika virus transmission, lowering 
the risk by approximately 55.2196%. 

It is important to note that the dengue virus and chikungunya virus, which co-
exist with the Zika virus, are also transmitted by Aedes mosquitoes. Although this 
paper focuses on the Zika virus, the same methods can be applied to further pre-
dict the transmission and risks of dengue and chikungunya viruses. Notably, the 
control methods for these viruses are similar, making SIT a promising long-term 
solution. However, determining the optimal level of mosquito population sup-
pression to ensure effective virus control without causing issues like population 
replacement remains an area that requires further study. 

In conclusion, although our current research has achieved some progress in 
understanding the transmission of Zika virus in the context of temperature, there 
is still a long way to go to fully elucidate its complex mechanisms and develop 
effective strategies to curb the spread of this pathogen. Meanwhile, it is rather 
rough that we rely on a simple cosine function to simulate the seasonal variation 
of temperature. In the future, I plan to incorporate stochastic fluctuations into the 
model to make it more realistic. We hope that this research will serve as a 
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foundation for further studies and encourage other researchers to address the re-
maining open problems. 

Acknowledgements 

The work is supported by Natural Science Foundation of Shaanxi Province(2023-
JC-YB-084). 

Author Contributions Statement 

Zongmin Yue: Writing, Review, Supervision, Formal analysis, Methodology, Con-
ceptualization. Xiangrui Ji: Writing original draft, Methodology, Investigation, and 
Formal analysis. Yingpan zhang: Editing, Formal analysis. 

Data Availability 

All data generated or analyzed during this study are included in this article, and 
the original data sources are cited through references and URLs. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this paper. 

References 
[1] Sadeghieh, T., Sargeant, J.M., Greer, A.L., Berke, O., Dueymes, G., Gachon, P., et al. 

(2021) Zika Virus Outbreak in Brazil under Current and Future Climate. Epidemics, 
37, Article 100491. https://doi.org/10.1016/j.epidem.2021.100491 

[2] WHO (2016) Who to Convene an International Health Regulations Emergency Com-
mittee on Zika Virus and Observed Increase in Neurological Disorders and Neonatal 
Malformations.  
https://www.who.int/news/item/28-01-2016-who-to-convene-an-international-
health-regulations-emergency-committee-on-zika-virus-and-observed-increase-in-
neurological-disorders-and-neonatal-malformations#:~:text=WHO%20Director-
General%2C%20Margaret%20Chan%2C%20will%20convene%20an%20Interna-
tional,observed%20increase%20in%20neurological%20disorders%20and%20neona-
tal%20malformations  

[3] Wang, L., Jia, Q., Zhu, G., Ou, G. and Tang, T. (2024) Transmission Dynamics of 
Zika Virus with Multiple Infection Routes and a Case Study in Brazil. Scientific Re-
ports, 14, Article No. 7424. https://doi.org/10.1038/s41598-024-58025-7 

[4] Fay, R.L., Cruz-Loya, M., Keyel, A.C., Price, D.C., Zink, S.D., Mordecai, E.A., et al. 
(2024) Population-Specific Thermal Responses Contribute to Regional Variability in 
Arbovirus Transmission with Changing Climates. iScience, 27, Article 109934.  
https://doi.org/10.1016/j.isci.2024.109934 

[5] Dahlin, K.J.‐M., O’Regan, S.M., Han, B.A., Schmidt, J.P. and Drake, J.M. (2024) Im-
pacts of Host Availability and Temperature on Mosquito‐Borne Parasite Transmis-
sion. Ecological Monographs, 94, e1603. https://doi.org/10.1002/ecm.1603 

[6] Shocket, M., Ryan, S. and Mordecai, E. (2018) Temperature Explains Broad Patterns 
of Ross River Virus Transmission. elife, 7, e37762.  
https://doi.org/10.7554/eLife.37762  

[7] Ryan, S.J., Carlson, C.J., Mordecai, E.A. and Johnson, L.R. (2017) Global Expansion 

https://doi.org/10.4236/jamp.2024.1212260
https://doi.org/10.1016/j.epidem.2021.100491
https://www.who.int/news/item/28-01-2016-who-to-convene-an-international-health-regulations-emergency-committee-on-zika-virus-and-observed-increase-in-neurological-disorders-and-neonatal-malformations#:%7E:text=WHO%20Director-General%2C%20Margaret%20Chan%2C%20will%20convene%20an%20International,observed%20increase%20in%20neurological%20disorders%20and%20neonatal%20malformations
https://www.who.int/news/item/28-01-2016-who-to-convene-an-international-health-regulations-emergency-committee-on-zika-virus-and-observed-increase-in-neurological-disorders-and-neonatal-malformations#:%7E:text=WHO%20Director-General%2C%20Margaret%20Chan%2C%20will%20convene%20an%20International,observed%20increase%20in%20neurological%20disorders%20and%20neonatal%20malformations
https://www.who.int/news/item/28-01-2016-who-to-convene-an-international-health-regulations-emergency-committee-on-zika-virus-and-observed-increase-in-neurological-disorders-and-neonatal-malformations#:%7E:text=WHO%20Director-General%2C%20Margaret%20Chan%2C%20will%20convene%20an%20International,observed%20increase%20in%20neurological%20disorders%20and%20neonatal%20malformations
https://www.who.int/news/item/28-01-2016-who-to-convene-an-international-health-regulations-emergency-committee-on-zika-virus-and-observed-increase-in-neurological-disorders-and-neonatal-malformations#:%7E:text=WHO%20Director-General%2C%20Margaret%20Chan%2C%20will%20convene%20an%20International,observed%20increase%20in%20neurological%20disorders%20and%20neonatal%20malformations
https://www.who.int/news/item/28-01-2016-who-to-convene-an-international-health-regulations-emergency-committee-on-zika-virus-and-observed-increase-in-neurological-disorders-and-neonatal-malformations#:%7E:text=WHO%20Director-General%2C%20Margaret%20Chan%2C%20will%20convene%20an%20International,observed%20increase%20in%20neurological%20disorders%20and%20neonatal%20malformations
https://www.who.int/news/item/28-01-2016-who-to-convene-an-international-health-regulations-emergency-committee-on-zika-virus-and-observed-increase-in-neurological-disorders-and-neonatal-malformations#:%7E:text=WHO%20Director-General%2C%20Margaret%20Chan%2C%20will%20convene%20an%20International,observed%20increase%20in%20neurological%20disorders%20and%20neonatal%20malformations
https://doi.org/10.1038/s41598-024-58025-7
https://doi.org/10.1016/j.isci.2024.109934
https://doi.org/10.1002/ecm.1603
https://doi.org/10.7554/eLife.37762


Z. M. Yue et al. 
 

 

DOI: 10.4236/jamp.2024.1212260 4239 Journal of Applied Mathematics and Physics 
 

and Redistribution of Aedes-Borne Virus Transmission Risk with Climate Change. 
PLOS Neglected Tropical Diseases, 13, e0007213.  
https://doi.org/10.1371/journal.pntd.0007213  

[8] Carlson, C.J., Dougherty, E.R. and Getz, W. (2016) An Ecological Assessment of the 
Pandemic Threat of Zika Virus. PLOS Neglected Tropical Diseases, 10, e0004968.  
https://doi.org/10.1371/journal.pntd.0004968 

[9] Tesla, B., Demakovsky, L.R., Mordecai, E.A., Ryan, S.J., Bonds, M.H., Ngonghala, 
C.N., et al. (2018) Temperature Drives Zika Virus Transmission: Evidence from Em-
pirical and Mathematical Models. Proceedings of the Royal Society B: Biological Sci-
ences, 285, Article 20180795. https://doi.org/10.1098/rspb.2018.0795 

[10] Huber, J.H., Childs, M.L., Caldwell, J.M. and Mordecai, E.A. (2017) Seasonal Tem-
perature Variation Influences Climate Suitability for Dengue, Chikungunya, and Zika 
Transmission. PLOS Neglected Tropical Diseases, 12, e0006451.  
https://doi.org/10.1371/journal.pntd.0006451  

[11] Van Wyk, H., Eisenberg, J.N.S. and Brouwer, A.F. (2023) Long-Term Projections of 
the Impacts of Warming Temperatures on Zika and Dengue Risk in Four Brazilian 
Cities Using a Temperature-Dependent Basic Reproduction Number. PLOS Ne-
glected Tropical Diseases, 17, e0010839.  
https://doi.org/10.1371/journal.pntd.0010839 

[12] Pielnaa, P., Al-Saadawe, M., Saro, A., Dama, M.F., Zhou, M., Huang, Y., et al. (2020) 
Zika Virus-Spread, Epidemiology, Genome, Transmission Cycle, Clinical Manifesta-
tion, Associated Challenges, Vaccine and Antiviral Drug Development. Virology, 
543, 34-42. https://doi.org/10.1016/j.virol.2020.01.015 

[13] Du, S., Liu, Y., Liu, J., Zhao, J., Champagne, C., Tong, L., et al. (2019) Aedes Mosqui-
toes Acquire and Transmit Zika Virus by Breeding in Contaminated Aquatic Envi-
ronments. Nature Communications, 10, Article No. 1324.  
https://doi.org/10.1038/s41467-019-09256-0 

[14] Mordecai, E.A., Cohen, J.M., Evans, M.V., Gudapati, P., Johnson, L.R., Lippi, C.A., et 
al. (2017) Detecting the Impact of Temperature on Transmission of Zika, Dengue, 
and Chikungunya Using Mechanistic Models. PLOS Neglected Tropical Diseases, 11, 
e0005568. https://doi.org/10.1371/journal.pntd.0005568 

[15] van den Driessche, P. and Watmough, J. (2002) Reproduction Numbers and Sub-
Threshold Endemic Equilibria for Compartmental Models of Disease Transmission. 
Mathematical Biosciences, 180, 29-48.  
https://doi.org/10.1016/s0025-5564(02)00108-6 

[16] Manore, C.A., Hickmann, K.S., Xu, S., Wearing, H.J. and Hyman, J.M. (2014) Com-
paring Dengue and Chikungunya Emergence and Endemic Transmission in A. Ae-
gypti and A. Albopictus. Journal of Theoretical Biology, 356, 174-191.  
https://doi.org/10.1016/j.jtbi.2014.04.033 

[17] WHO (2022) Zika Virus.  
https://www.who.int/news-room/fact-sheets/detail/zika-virus 

[18] Curado, L.F.A., de Paulo, S.R., de Paulo, I.J.C., de Oliveira Maionchi, D., da Silva, 
H.J.A., de Oliveira Costa, R., et al. (2023) Trends and Patterns of Daily Maximum, 
Minimum and Mean Temperature in Brazil from 2000 to 2020. Climate, 11, Article 
168. https://doi.org/10.3390/cli11080168  

[19] Ferguson, N.M., Cucunubá, Z.M., Dorigatti, I., Nedjati-Gilani, G.L., Donnelly, C.A., 
Basáñez, M., et al. (2016) Countering the Zika Epidemic in Latin America. Science, 
353, 353-354. https://doi.org/10.1126/science.aag0219 

https://doi.org/10.4236/jamp.2024.1212260
https://doi.org/10.1371/journal.pntd.0007213
https://doi.org/10.1371/journal.pntd.0004968
https://doi.org/10.1098/rspb.2018.0795
https://doi.org/10.1371/journal.pntd.0006451
https://doi.org/10.1371/journal.pntd.0010839
https://doi.org/10.1016/j.virol.2020.01.015
https://doi.org/10.1038/s41467-019-09256-0
https://doi.org/10.1371/journal.pntd.0005568
https://doi.org/10.1016/s0025-5564(02)00108-6
https://doi.org/10.1016/j.jtbi.2014.04.033
https://www.who.int/news-room/fact-sheets/detail/zika-virus
https://doi.org/10.3390/cli11080168
https://doi.org/10.1126/science.aag0219


Z. M. Yue et al. 
 

 

DOI: 10.4236/jamp.2024.1212260 4240 Journal of Applied Mathematics and Physics 
 

[20] DataBank (2023) Brazil.  
https://data.worldbank.org.cn/indicator/SP.POP.TOTL?locations=BR  

[21] Aidoni, A., Kofidis, K., Cocianu, C.L. and Avram, L. (2023) Deep Learning Models 
for Natural Gas Demand Forecasting: A Comparative Study of MLP, CNN, and 
LSTM. Romanian Journal of Petroleum & Gas Technology, 4, 133-148.  
https://doi.org/10.51865/jpgt.2023.01.12 

[22] Arriola, L. and Hyman, J.M. (2009) Sensitivity Analysis for Uncertainty Quantifica-
tion in Mathematical Models. In: Chowell, G., Hyman, J.M., Bettencourt, L.M.A. and 
Castillo-Chavez, C., Eds., Mathematical and Statistical Estimation Approaches in Ep-
idemiology, Springer, 195-247. https://doi.org/10.1007/978-90-481-2313-1_10 

[23] Marino, S., Hogue, I.B., Ray, C.J. and Kirschner, D.E. (2008) A Methodology for Per-
forming Global Uncertainty and Sensitivity Analysis in Systems Biology. Journal of 
Theoretical Biology, 254, 178-196. https://doi.org/10.1016/j.jtbi.2008.04.011 

[24] Ltd Shanghai 2345 Network Technology Co. (n.d.) 2345 Weather Forecast Official 
Website. https://tianqi.2345.com  

[25] Zhou, T., Zou, L. and Chen, X. (2019) Commentary on the Coupled Model Intercom-
parison Project Phase 6. Climate Change Research, 15, 445-456.  
http://www.climatechange.cn/CN/10.12006/j.issn.1673-1719.2019.193  

[26] Kutner, M. (1974) Applied Linear Statistical Models. McGraw Hill.  

[27] Lakhani, K.H. and Service, M.W. (1974) Estimated Mortalities of the Immature 
Stages of Aedes cantans (Mg.) (Diptera, Culicidae) in a Natural Habitat. Bulletin of 
Entomological Research, 64, 265-276. https://doi.org/10.1017/s0007485300031151 

[28] Thériault, R., Ben-Shachar, M.S., Patil, I. Lüdecke, D., Wiernik, B.M. and Makowski, 
D. (2023) Check Your Outliers! An Introduction to Identifying Statistical Outliers in 
R with easystats. Behavior Research Methods, 56, 4162-4172.  
https://doi.org/10.3758/s13428-024-02356-w  

[29] Beck, H.E., Zimmermann, N.E., McVicar, T.R., Vergopolan, N., Berg, A. and Wood, 
E.F. (2018) Present and Future Köppen-Geiger Climate Classification Maps at 1-km 
Resolution. Scientific Data, 5, Article No. 180214.  
https://doi.org/10.1038/sdata.2018.214 

[30] Zhang, D., Maiga, H., Li, Y., Bakhoum, M.T., Wang, G., Sun, Y., et al. (1980) Mating 
Harassment May Boost the Effectiveness of the Sterile Insect Technique for Aedes 
Mosquitoes. Nature Communications, 15, Article No. 1980.  
https://doi.org/10.1038/s41467-024-46268-x  

[31] Ferrater, J.B., Gómez-Marco, F., Yoshimoto, A.K., Greene, T.D., Simmons, G.S., 
Daugherty, M.P., et al. (2024) Development of a Sterile Insect Technique as a Control 
Strategy for the Asian Citrus Psyllid: Establishing the Effect of Sterilizing X-Rays on 
Fecundity, Fertility, and Survival. Journal of Economic Entomology, 117, 1356-1366.  
https://doi.org/10.1093/jee/toae098 

[32] Kandul, N.P., Liu, J., Buchman, A., Shriner, I.C., Corder, R.M., Warsinger-Pepe, N., 
et al. (2022) Precision Guided Sterile Males Suppress Populations of an Invasive Crop 
Pest. GEN Biotechnology, 1, 372-385. https://doi.org/10.1089/genbio.2022.0019 

[33] Tur, C., Almenar, D., Zacarés, M., Benlloch-Navarro, S., Pla, I. and Dalmau, V. (2023) 
Suppression Trial through an Integrated Vector Management of Aedes albopictus 
(Skuse) Based on the Sterile Insect Technique in a Non-Isolated Area in Spain. In-
sects, 14, Article 688. https://doi.org/10.3390/insects14080688 

[34] Ranathunge, T., Harishchandra, J., Maiga, H., Bouyer, J., Gunawardena, Y.I.N.S. and 
Hapugoda, M. (2022) Development of the Sterile Insect Technique to Control the 
Dengue Vector Aedes aegypti (Linnaeus) in Sri Lanka. PLOS ONE, 17, e0265244.  
https://doi.org/10.1371/journal.pone.0265244 

https://doi.org/10.4236/jamp.2024.1212260
https://data.worldbank.org.cn/indicator/SP.POP.TOTL?locations=BR
https://doi.org/10.51865/jpgt.2023.01.12
https://doi.org/10.1007/978-90-481-2313-1_10
https://doi.org/10.1016/j.jtbi.2008.04.011
https://tianqi.2345.com/
http://www.climatechange.cn/CN/10.12006/j.issn.1673-1719.2019.193
https://doi.org/10.1017/s0007485300031151
https://doi.org/10.3758/s13428-024-02356-w
https://doi.org/10.1038/sdata.2018.214
https://doi.org/10.1038/s41467-024-46268-x
https://doi.org/10.1093/jee/toae098
https://doi.org/10.1089/genbio.2022.0019
https://doi.org/10.3390/insects14080688
https://doi.org/10.1371/journal.pone.0265244


Z. M. Yue et al. 
 

 

DOI: 10.4236/jamp.2024.1212260 4241 Journal of Applied Mathematics and Physics 
 

[35] Malinga, L. (2024) A Novel Approach to the Sterile Insect Technique (SIT) for Eldana 
Saccharina Management in South Africa. Sugar Tech, 26, 629-634.  
https://doi.org/10.1007/s12355-024-01378-0 

[36] Bliman, P.-A., Nguyen, N. and Vauchelet, N. (2024) Efficacy of the Sterile Insect 
Technique in the Presence of Inaccessible Areas: A Study Using Two-Patch Models. 
arXiv: 2403.20069. https://doi.org/10.48550/arXiv.2403.20069  

[37] Dietz, K. (1993) The Estimation of the Basic Reproduction Number for Infectious 
Diseases. Statistical Methods in Medical Research, 2, 23-41.  
https://doi.org/10.1177/096228029300200103 

 
 

https://doi.org/10.4236/jamp.2024.1212260
https://doi.org/10.1007/s12355-024-01378-0
https://doi.org/10.48550/arXiv.2403.20069
https://doi.org/10.1177/096228029300200103

	Temperature-Driven Zika Virus Risk Prediction Model and Control Strategies: A Case Study of Brazil
	Abstract
	Keywords
	1. Introduction
	2. Methods
	2.1. Model
	2.2. The Basic Reproduction Number
	2.3. Temperature-Dependent Parameters
	2.4. Estimation of Parameter Values in the Model
	2.5. Seasonal Forcing
	2.6. Removal of Data Outliers
	2.7. Sensitivity Analysis

	3. Data
	3.1. Historical Weather Data
	3.2. Future weather data

	4. Results
	4.1. Data Fitting
	4.2. Effect of Temperature on Zika Virus Spreading
	4.3. Impact of Seasonal Variations on Zika Virus Transmission in the Brazilian Region
	4.3.1. Analysis of Basic Reproduction Numbers in Different Regions Based on Historical Temperatures
	4.3.2. Risk Prediction for Zika Virus Based on Future Temperature Data

	4.4. Control Strategies of Zika Virus under the Influence of Temperature

	5. Discussion
	Acknowledgements
	Author Contributions Statement
	Data Availability
	Conflicts of Interest
	References

