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Abstract 
Based on recent progress in quantum gravity and quantum cosmology, we are 
also presenting a way to estimate the temperature in the cosmos, the Hubble 
sphere, from a relation between the Planck temperature and the Hubble scale. 
Our analysis predicts the Hubble sphere temperature of 2.72 K with the one 
standard deviation confidence interval between 2.65 K and 2.80 K, which cor-
responds well with the measured temperature observed from the cosmic mi-
crowave background (CMB) of about 2.72 K. This adds evidence that there is 
a close connection between the Planck scale, gravity, and the cosmological 
scales as anticipated by Eddington already in 1918.1 
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1. The Hawking Temperature of the Hubble Sphere 

Quantum cosmology has garnered increased attention in recent years, for exam-
ple [2]-[9]. In this paper, we will demonstrate the existence of a link between the 
Planck temperature and the temperature within the Hubble sphere, which is fur-
ther corroborated by the measured temperature of the cosmic microwave back-
ground. 

In this section, we will first establish the mathematical relationship for the 
Hawking temperature across the entire Hubble sphere in the critical Friedmann 
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universe. Then, in the next section, we will establish the connection between the 
Hawking temperature and the Planck temperature. By employing the Stefan-
Boltzmann law [10] [11], we will predict the temperature of the Hubble sphere, 
which we demonstrate to closely align with the measured temperature of the cos-
mic microwave background (CMB). The CMB temperature is often associated 
with a black body temperature; Muller et al. [12], for example, states (see also 
[13]): 

“Observations with the COBE satellite have demonstrated that the CMB corre-
sponds to a nearly perfect black body characterized by a temperature 0T  at 0z = , 
which is measured with very high accuracy, 0 2.72548 0.00057 KT = ± .”  

It is well known that the Stefan-Boltzmann law can be used to investigate and 
predict black body temperatures; however, no formula has been derived to predict 
the CMB temperature now ( 0T ). The reason why the approach we will look at in 
this paper has been missed in the past is that one has to discover certain connec-
tions between the Planck temperature, the Hawking temperature (which is an-
other black body temperature), and the CMB temperature, and their connections 
throughout the Stefan-Boltzmann law. As we will soon see, this means that the 
CMB temperature can not only be measured but also predicted from quantum 
cosmology by utilizing the Stefan-Boltzmann law. We will limit ourselves in this 
paper to derive predictions for the CMB temperature close to 0z =  that means 
the present CMB temperature. In addition, comes the well-known adjustment of 

( )0 1tT T z= +  for z  considerably higher than zero, as we will shortly also men-
tion more about at the end of the paper. 

The Hawking [14] temperature of a black hole is given by: 
3

Hw 8b

cT
k GM

=
π
                           (1) 

where M  represents the mass of the black hole, bk  is the Boltzmann constant, 
and G  is Newton’s gravitational constant and   is the reduced Planck con-
stant, also known as the Dirac constant. The Friedmann [15] equation is given by: 

2
2
0

8 Λ ,
3

cH ρπ +
=                          (2) 

where 
34

3 H

M

R
ρ =

π
 (the critical density of the critical Friedmann universe), and 

the Hubble radius 
0

H
cR

H
= , where 0H  is the Hubble constant. In the special  

case where the cosmological constant, Λ, is set to zero, and we then solve the 
Friedmann equation for mass: 

2

.
2

H
c

c RM
G

=                             (3) 

This is well known as the mass (mass equivalent) of the critical Friedmann 
universe. Be aware that when we say “mass” here, it can be considered equivalent 
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to the mass in the Friedmann model, as it does not distinguish between effects 
from mass or energy. This means that energy is treated as mass equivalent since  

we naturally have 2
EM
c

= . We solve (Equation (3)) for HR , which gives: 

2

2 .c
H

GMR
c

=                            (4) 

This means the Hubble radius is mathematically identical to the Schwarzschild 
[16] radius of a black hole with a mass equal to the critical mass of the Hubble 
sphere. Patheria [17] and Stuckey [18] have even suggested that we possibly live 
inside a black hole, a controversial idea discussed even in recent literature [19]-
[21]. We will not delve into a discussion about whether we could live inside a black 
hole or not, but we will focus on the mathematics and demonstrate that starting 
from the critical Friedmann universe, we can surprisingly predict the correct tem-
perature of the cosmic microwave background, in full alignment with observa-
tions, we will later discuss also why this can be. 

Now, let us input the critical mass of the Hubble sphere into the Hawking tem-
perature formula. This gives: 

3 3
300

, 3

0

1.38 10 K.
8 48

2

HW H
b c b

b

Hc cT
k GM kck G

GH

−= = = ≈ ×
π π

π

         (5) 

However, it’s important to note that this temperature has never been observed. 
Nevertheless, if we take this literally, this is the radiation emitted from the Hubble 
sphere. As energy flows out of the Hubble sphere, there should also be a possibility 
of predicting what this means for the interior of the Hubble sphere. This is what 
we aim to explore in the next section. 

2. The Hubble Sphere and Its Temperature Derived from the  
Planck Temperature 

Planck mass particles have been suggested by multiple authors to be the most fun-
damental particles in the universe possibly, for example, Motz [22] and Haug [23]. 
It is also assumed that the Planck scale somehow will play a central role in quan-
tum gravity. Einstein [24] already in 1916 suggested that the next step in gravity 
theory would be a unified quantum gravity theory, something he worked on much 
of the rest of his life, but unfortunately, without a big breakthrough. Eddington 
[25], in 1918, was likely the first to suggest that such a quantum gravity theory had 
to be somehow linked to the Planck scale through the Planck length. Most research-
ers working on quantum gravity today seem to be of the opinion that the Planck 
scale will play an important role in such a theory; see, for example, [26]-[28]. 

It is worth noting that as early as 1987, Cohen [29] pointed out that it would 
likely be impossible to find the Planck length independent of deriving it from G , 
c , and  . This view was held until at least 2016, as seen in the interesting paper 
by McCulloch [30]. However, in recent years, it has been demonstrated that we 
can find the Planck length independent of any knowledge of G  or  ; see [31] 
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[32]. It has also been shown that the Planck length can be derived from cosmological 
redshift without knowledge of G  or  ; see [33]. Haug [34] has additionally 
recently demonstrated that a series of cosmological phenomena and entities, such 
as the critical mass of the universe divided by the Hubble radius, is identical to 
the Planck mass divided by twice the Planck length. Furthermore, the Hubble  

constant can be expressed as 0 22
c

p

c
H

l
λ

= , where cλ  is the reduced Compton  

wavelength of the critical mass of the universe. The reduced Compton wavelength 
of the critical mass in the universe can also be found without knowledge of the 
kilogram of the critical mass or the Planck constant; see [33]. 

If there is indeed a link between the Planck scale and the cosmic scale, then one 
could expect, or at least hope, that other observed phenomena of the cosmos, such 
as the cosmic microwave background temperature, possibly also have a link to the 
Planck scale. In this section, we will demonstrate that we can indeed predict the 
CMB temperature of about 2.72 Kelvin from the Planck temperature when utiliz-
ing a combination of the Hawking temperature with the Stefan-Boltzmann law. 

The luminosity of the Hubble sphere, according to the Stefan-Boltzmann law, 
must be given by 

2 44H H HL R Tσ= π                          (6) 

where HT  is what we will call the Hubble Sphere Temperature. Next, we will utilize 
the idea that the most elementary of all particles are likely Planck mass particles.  

The Planck mass is normally considered to have a mass of p
cm

G
= ≈

  

82.17 10−×  kg. This is much higher than any known atom. However, Haug [23] 
has recently suggested that the Planck mass particle only lasts the Planck time and 
that the particle then has a mass of 511.17 10p pm t −≈ ×  if observed over a second, 
which corresponds well with a survey of existing and proposed classical and quan-
tum approaches to the photon mass, as seen in Spavieri et al. [35]. Only if observed 
inside the Planck time window is the mass the Planck mass; that is, this mass is 
special as it is observer window time-dependent, as discussed in [36]. This is con-
nected to a deeper quantum theory in which mass becomes time-dependent when 
approaching Compton time observational windows. However, understanding this 
is not essential for this paper. We mention it merely so that readers can refer to 
the cited papers for more information on possible interpretations of the Planck 
mass. Going into depth about the different views on the potential photon mass is 
outside the scope of this article; we mention this to avoid any automatic rejection 
of the idea that the Planck mass particle can be the most elementary particle in the 
universe. It could actually be linked to photons. Even if photons are assumed to 
be massless, it could be that photons acquire this mass during collisions with other 
photons. It is well known within the standard literature that photon-photon col-
lisions likely give rise to mass, as shown in, for example, Pike et al. [37]. For the 
moment, simply assume there is a Planck mass particle playing a central role in 
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the universe and possibly as the ultimate building block of all matter. 
The energy passing through a sphere with a radius equal to the Planck length is 

given by: 

2 .
4

H

p

LE
l

=
π

                           (7) 

The radiant flux absorbed by the Planck sphere’s cross-section 2rπ  is thus ex-
pressed as: 

2 4
2 2 2 2 4

2 2

4 .
4 4

H H H
abs p p p H H

p p

L R Tl E l l R T
l l

σ
σ

π
Φ = π = π = π = π

π π
         (8) 

The Planck temperature, as given by Max Planck [38] [39], is  
251 p

p
b b p b

m cc cT
k G k l k

= = =
  . Furthermore, the Hawking temperature of a Planck  

mass is determined by Hawking radiation and is given by: 

, .
2Hw p

b

gT
ck

=
π
                          (9) 

The acceleration at the Planck mass at the Schwarzschild radius of the Planck  

mass is 
( )2 2
2

p p

s p

Gm Gm
g

r l
= = , which leads to: 

2

, .
2 2 8 8

p

ps
Hw p

b b p b

Gm
Trg cT

ck ck l k
= = = =

π π π π



                (10) 

This is also identical to: 
3

8 8
p

p b

Tc
Gm k

=
π π
 . The same result can be obtained from  

the Unruh [40] temperature when applied to a Planck mass particle: 
2

,

4
.

2 2 8 8
p p

Unn p
b b p b

c
l Ta cT

ck ck l k
= = = =

π π π π



                (11) 

Since the Stefan-Boltzmann law involves a fourth power, it has a stabilizing ef-
fect on the exchange, and the flux emitted by Planck particles (Planck spheres) 
should be approximately equal to the flux absorbed, especially close to the steady 
state, where we have: 

2 4
2 4 2 2 2 4

, 2

44 .
4

H H
p Hw p p p H H

p

R Tl T l E l R T
l
σ

σ σ
π

π = π = π = π
π

          (12) 

This gives: 
2

4 4
, 24

H
Hw p H

p

RT T
l

=  

, 2
H

Hw p H
p

RT T
l

=                        (13) 
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and 

,

2 p
H Hw p

H

l
T T

R
=  

2
2.72 K

8
p p

H
H

T l
T

R
= ≈

π
                    (14) 

and 

2 2
2

1 .
32H H p pT R T l=
π

                      (15) 

As there is considerable uncertainty in both the Hubble constant, considerable 
effort has been put into measuring it as accurately as possible, for example, [41]-
[47]. If we use the recent Hubble constant value given by Kelly et al. [48] of 

4.1
3.366.6+
−  km/s/Mpc (see also [49] [50]), we get a predicted Hubble temperature 

using (Equation (14)) to be 2.72 K with a one standard deviation confidence in-
terval of 2.65 K to 2.8 K. This is well in line with the measured cosmic microwave 
background temperature. For example, Fixsen [51] used the Wilkinson Micro-
wave Anisotropy Probe data to obtain a cosmic microwave background (CMB) 
temperature of 2.7260 K ± 0.0013 K. Similarly, in a recent 2023 study, Dahl et al. 
[52] found a CMB temperature of 2.725007 K ± 0.000024 K (see also [53]). 

Our findings should naturally be investigated to determine to what degree they 
could be consistent with the Λ-CDM model. Most importantly, it is essential that 
the predictions from this formula be consistent with observations. Even if it 
should not be consistent with the Λ-CDM model, there are multiple other types 
of cosmological models that should be investigated in relation to this. This seems 
to be fully consistent with at least some cosmological models known as hR ct= , 
which are actively discussed as an alternative to Λ-CDM. See [54]-[59] for more 
information. Additionally, there are black hole cosmology models, likely first in-
troduced in 1972 by [60], that continue to be actively discussed despite challenges. 
For example, see [18] [61]-[63]. To investigate a series of different cosmological 
models is outside the scope of this paper. The aim of this paper is to demonstrate 
for the first time that a formula to predict the CMB temperature now can be de-
rived from the Stefan-Boltzman law, this has never been shown before. It is prac-
tically compatible with the Planck collaboration 0H  measurements within the 
Λ-CDM model. 

We have utilized the critical universe solution (The Friedmann equation when 
the cosmological constant is set equal to zero). The Λ-CDM model features a pos-
itive cosmological constant due to accelerating expansion that is assumed to be 
caused by dark energy, prompting us to inquire about how our model appears to 
predict the temperature of the cosmic microwave background so precisely. The 
reason for this may be that the temperature measured thus far for the cosmic mi-
crowave background (CMB) is more closely related to the early universe, as dis-
cussed by [64] [65]. Alternatively, it could indicate a shift toward a new cosmology. 
However, further investigation by multiple researchers over time will be required 
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to confirm this. 
Interestingly, we can apply a similar law between the Hawking temperature of 

the Hubble sphere and the Hubble temperature. We get: 

, 2.72 K.
2

H
H Hw H

p

RT T
l

= ≈                     (16) 

This means we also have: 

,

2
2.72 K.

2 8
p pH

H Hw H
p H

T lRT T
l R

= = ≈
π

               (17) 

Tatum et al. [66] have independently somewhat heuristically suggested that the 
Hawking temperature can be used to find the Hubble temperature by providing 
the formula: 

3

.
8H

b c p

cT
k G M m

=
π
                        (18) 

That is, they have altered the M  in the denominator to c pM m  in the 
Hawking temperature formula. From a deeper analysis, we can see that his for-
mula is identical to Equation (17), as we have: 

2

, , ,

2

3 3

2

22

.
8 8

c

cH
H Hw H Hw H Hw H

pp p

c

b c p b c p

GM
MR cT T T TGml m

c
Mc c

k GM m k G M m

= = =

= =
π π
 

            (19) 

However, it is important to notice also that there was no independent way to 
find the Planck mass independent off G  when they published this in 2015. This 
means they could not have used the result (for predictions) we soon will show 
(Equation (21)) that likely can be seen as the true depth of quantum cosmology in 
relation to the CMB temperature. It is first in recent years been demonstrated how 
to find the Planck units totally independent of knowledge off G  and  , see [31] 
[32]. 

This means that the formula initially somehow heuristically suggested by Ta-
tum et al. is fully consistent with our more formal analysis, where the formula is 
derived based on the Stefan-Boltzmann law. Many of the greatest ideas in physics 
began somewhat heuristically or speculatively before being fully formalized math-
ematically and rooted in physical “laws”. For example, FitzGerald [67] merely de-
scribed length contraction in words and stated it as a possible explanation for the 
null result in the Michelson and Morley experiment [68]. Later, Lorentz [69] for-
malized length contraction in his transformations, and naturally, Einstein [70] 
further naturally improved the theory of relativity. 

Haug [31] has demonstrated that the Schwarzschild radius, from a deeper  

perspective is always identical to 2 p
s p

c

l
r l

λ
= . Furthermore, since the Hubble 
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constant always equals 0 22
c

p

cH
l
λ

= , and the Hubble radius is equal to 
0

H
cR

H
= , 

we must also have 2 p
H p

c

l
R l

λ
= , where cλ  is the reduced Compton wavelength  

of the critical universe mass. This means we can also express the Hubble temper-
ature as: 

2
2.72 K.

8 8 2
p p p c

H
H p

T l T
T

R l
λ

= = ≈
π π

                 (20) 

Further since the Planck temperature is given as 1
p

p b

cT
l k

=  , we can also re-

write this as: 

2 1 2.72 K.
8 8 2

p p c
H

H b p p

T l cT
R k l l

λ
= = ≈

π π
               (21) 

Again, both the Planck length and the reduced Compton wavelength of the crit-
ical mass of the universe can be found independently of G  and c . Equation 
(21) can be seen as the deepest quantum form describing the CMB temperature, 
it is only dependent on the Planck constant, the Planck length and the reduced 
Compton wavelength, all related to the quantum scale of the world. 

That there is a link to the Planck scale even for cosmological observable phe-
nomena also seems to be in line with a recent but simple Planck quantization of 
Einstein’s field equation (see [71] [72]): 

281 Λ .
2

p
v v v v

l
R g R g T

cµ µ µ µ

π
− + =



                 (22) 

This rewritten field equation is simply the deeper level of Einstein’s field equa-
tion as it gives all the same predictions as Einstein’s original field equation, but 
delving into it further is outside the scope of this paper. This paper simply demon-
strates that there is also a connection between the Planck temperature and the 
temperature in the Hubble sphere, which again corresponds very well to the meas-
ured CMB temperature. 

3. Interesting Relations 

There are multiple interesting relations following this. We get: 

, , 2Hw H H Hw p pT R T l=  

3 3

2
8 8H p

b c b p

c cR l
k GM k Gm

=
π π
                    (23) 

where ,Hw HT  is the Hawking temperature of the Hubble sphere in the critical 
Friedmann universe, and ,Hw pT  is the Hawking temperature of a Planck mass 
black hole (Planck mass particle). This is fully consistent with Equation (14) and 
is also fully consistent with a result derived for the critical Friedmann universe. 
Haug [34] has derived from the critical Friedmann universe the following: 
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2
pc

H p

mM
R l

=                           (24) 

That one can easily get from Equation (25) and can also naturally easily be 
checked by numerical input. Haug proves that this is not just an approximation, 
but only in the critical Friedmann universe. 

We also have 

,2 2H p H Hw p pT l R T l=                      (25) 

where 2.72 KH CMBT T= ≈ . This means that the Hubble temperature is now equal 
to the CMB temperature. Naturally, if we look at the CMB temperature from far 
away, we are looking back into what the Hubble and CMB temperatures were in 
the past. It is well known that it follows the rule ( )0 1tT T z= + , which has been 
well tested up to a cosmological redshift of approximately 6z = . However, the 
uncertainty in the value is very large. Riechers et al. [73] report a CMB tempera-
ture from back in the cosmic epoch at 6.34z = . However, the one standard de-
viation reported was 16.4 - 30.2 K, so the uncertainty in observations so far back 
in time is within one standard deviation uncertainty. So, there is clearly more ex-
perimental and theoretical work to do here. However, it is already clear that the 
CMB temperature derived from the Stefan-Boltzman law is very accurate for pre-
dicting the CMB temperature now, that is, for low z  values. 

4. Practical and Theoretical Implications 

The findings have several important implications. The formula initially suggested 
by Tatum et al. now has a solid theoretical foundation in the Stefan-Boltzmann 
law. Since we first released a pre-print of this paper, significant further progress 
has been made. Tatum, Haug, and Wojnow [74] have taken advantage of that the 
CMB temperature now 0T  is measured with much greater precision than the 
Hubble constant and used the relationship between the 0T  and 0H  to dramat-
ically reduce the uncertainty in the Hubble constant. 

The Hubble tension is an unsolved problem in Λ-CDM cosmology, see Valen-
tino et al. [75]. Krishnan et al. [76] have even indicated that the Hubble tension 
could signal a breakdown in FLRW cosmology. Haug and Tatum [77] have further 
connected the CMB 0H  relation discussed in this paper with a new cosmological 
redshift and proposed a potential solution to the Hubble tension within hR ct=  
cosmology and tested it out on the full distance ladder of supernovas SN Ia, which 
can even be proven with a closed-form mathematical solution as recently done by 
Haug [78]. Additionally, Haug and Wojnow [79] have recently demonstrated a 
possible but somewhat speculative relationship between the Casimir effect and the 
CMB temperature. 

The solid foundation of the relationship between the CMB and the Hubble con-
stant provided by the Stefan-Boltzmann law in this paper suggests promising av-
enues for further exploration. It seems like the Λ-CDM model now has a strong 
competitor. The Λ-CDM model cannot predict 0T , as pointed out, for example, 
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by Narlikar and Padmanabhan [80] and it is considered a free parameter related 
to RΩ , they also point out that: 

“Although 0T  is probably the best-determined cosmological parameter today, 
an interpretation relating the present background temperature to other physical 
processes in the universe, when available, would clearly mark an improvement 
over the standard interpretation.”  

With the relationship between the CMB temperature and the Hubble constant 
now derived from the Stefan-Boltzmann law in addition to the ongoing research 
development along these lines, one can achieve in hR ct=  cosmology what has 
not yet been achieved in the Λ-CDM model on this point. Further investigation is 
naturally required for both models. 

5. Conclusions 

We have demonstrated a close connection between the Planck temperature and 
the Hubble sphere temperature. By combining the Planck temperature with the 
Stefan-Boltzmann law and insights from the Hawking or Unruh temperature, we 
can predict the temperature within the Hubble sphere to fall between 2.65 K and 
2.8 K with a 68.3% confidence interval. This prediction is based on the Hubble 
constant, which is reported as 4.1

3.366.6+
−  km/s/Mpc in a recent study by Kelly et al. 

[48]. 
Our finding, which suggests that the Hubble sphere temperature can be pre-

dicted from the Planck temperature, aligns with recent advancements in quantum 
gravity and quantum cosmology. These developments provide additional evi-
dence that gravity, at a deeper level, is intricately linked to the Planck scale, as 
foreseen by Eddington already in 1918. 
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