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Abstract 
The objective of this paper is to present a new method for designing absorbing 
or non-reflective boundary conditions (ABC) or (NRBC), illustrated by the 
case study of the modelling of a solid body in water, specifically the capillary 
gravity waves generated by its motion at the surface. The study analyses the 
flow of an inviscid, barotropic, and compressible fluid around the stationary 
solid body. The dynamic behaviour of the fluid is analysed using a two-dimen-
sional coupled Neumann-Kelvin model extended with capillarity and inertia 
terms. For computational purposes, it is necessary to truncate the unbounded 
spatial domain with artificial boundaries and then introduce appropriate ab-
sorbing boundary conditions. The propagation of short wavelength waves in 
a convective fluid medium with significant differences in properties between 
the interior and the surface of the fluid presents a number of difficulties in the 
design of these conditions. The results are illustrated numerically and com-
mented upon. 
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1. Introduction 

The propagation mechanisms of waves on a body of water have long been a topic 
of interest for researchers [1]-[7]. Surface water ripples are caused by a balance 
between gravity forces that maintain the horizontal free surface of the water, sur-
face tension that preserves the consistency of the air-water interface, water inertia, 
and the difference between air and water pressures. The waves can be classified 
into gravity waves, capillary waves, or pressure waves based on the force that 
causes their motion. This work focuses on capillary-gravity surface waves that are 
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generated by the movement of a solid body. These waves propagate around the 
body and interact with its rigid surface, resulting in a wake in its vicinity [8]. A 
common method for addressing scattering problems is to use a frequency domain 
approach for the entire unbounded structure, with analytical radiation boundary 
conditions applied at infinity [3]-[6] [8]. In addition to these analytical methods, 
numerical techniques such as the boundary element method [9] or the finite ele-
ment method with infinite elements have been developed to address the same 
problem [10]. Otherwise, the domain is truncated by artificial boundaries to use a 
classical finite element-based approach with High Order Absorbing Boundary 
Conditions [11]-[14] or the Perfectly Matched Layer method [15] [16]. The main 
concerns are avoiding, or at least significantly reducing, the spurious boundary 
reflection waves and ensuring an accurate approximation of the infinite domain 
solution within the bounded domain. These methods are generally efficient. How-
ever, they require a more complex problem formulation and a large number of 
variables and computations [17]. 

Furthermore, when dealing with small wavelength waves, such as our case, a 
fine mesh is required to reduce dispersion errors and obtain numerical solutions 
with acceptable accuracy, and this requirement quickly makes the numerical so-
lution process prohibitively expensive [18] [19]. Therefore, in the following, we 
aim to find an approximate low-order absorbing boundary condition to avoid in-
creasing the already existing costs. After formulating the problem and specifying 
the underlying hypotheses, a linearisation around a steady state is performed, and 
new boundary conditions are introduced. A time-domain approach is considered 
without any prior assumptions about the solution form. The variational formula-
tion of the problem is derived. A finite element approximation in space with a 
centred finite difference scheme in time is used to approximate the solution. The 
results obtained are presented and discussed in detail. 

2. Statement of the Problem 

The aim of this study is to investigate the dynamic behaviour of the water surface 
in the vicinity of a solid body that moves horizontally with a velocity U  and may 
also have an oscillatory displacement. To achieve this, we study the irrotational 
and inviscid flow of a compressible and barotropic fluid around the structure fixed 
for a given period T . The structure is immersed in water, and its shape is simpli-
fied to a cylinder due to the presence of singularities at the contact points between 
the solid surface and the water surface, as well as at underwater angular points. 
The rectangular open domain Ω with a hole of radius R  in its center is consid-
ered the computational domain. Its boundary 0 1 2s b∂Ω = Γ ∪Γ ∪Γ ∪Γ ∪Γ  has 
a unit outward normal vector ν . 0Γ  corresponds to the bottom of the system, 
Γs , to the free surface of the water, 1Γ  and 2Γ , to the sides through which the 
water flow enters and leaves Ω and Γb , to the rigid body surface (see Figure 1). 
Γs∂  denotes the edges of Γs . A steady flow passes through Ω with horizontal 

velocity 1Ue   and a small disturbance is introduced in the fluid as an initial 
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condition. 
 

 
Figure 1. Geometry and notations of the problem. 

3. Theoretical Modelling  

Several papers have addressed the issue of gravity capillary waves [20]-[23]. How-
ever, a relatively small number of studies have focused on the steady flow in the 
background [7]. For simplicity, it is generally assumed that the convective propa-
gation medium is homogeneous and unbounded along the surface, and that the 
flow is irrotational and incompressible. Then associate velocity potential Φ satis-
fies the classical Laplace equation, ( 0∆Φ = ), and the vertical displacement of the 
surface η  verifies:  
• The kinematic boundary conditions: 

 ] [0on 0, ,bU Tν
ν
∂Φ

= ⋅ Γ ∪Γ ×
∂

 (1) 

 ] [on 0, .s s s T
t
η η

ν
∂Φ ∂

= +∇ Φ ⋅∇ Γ ×
∂ ∂

 (2) 

• The dynamic boundary conditions: 

 ] [21 0 on 0, ,
2

s
s sg T

t
σ η

η
ρ
∆∂Φ

− − ∇ Φ − + = Γ ×
∂

 (3) 

the subscript s  stands for curvilinear abscissa along Γs  and indicates that the 
differential operator is considered locally. 
• The radiation boundary conditions based on the behavior of the solution in 

the neighborhood of infinity to ensure the uniqueness of the solution,  

 ] [1as , 0, .U x t T∇Φ→ →∞ ∈  (4) 

The dynamic boundary condition Equation (3) comes from the Young-Laplace 
hydrostatic balance equation introduced in Bernoulli’s equation for an inviscid 
and irrotational flow since the free surface of the water is a streamline. The surface 
tension is noted σ , the density of the fluid ρ  and the acceleration of gravity 
g . Under the small displacement theory, a plane harmonic waves analysis can be 
carried out, leading to the capillary-gravity wave dispersion relation: 

 ( ) ( )
3

2 tanhkgk kHσω
ρ

 
− ⋅ = + 

 
k U  (5) 
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where ω  is the angular frequency and k  the wave number. The well-known 
capillary-gravity wave dispersion relation in still water is transferred to the refer-
ence frame moving with relative velocity −U  by the Doppler shift in Equation 
(5) [7]. Consequently, the relative mean flow rate affects the dispersion of waves 
according to their direction of propagation by influencing their wavelengths, λ . 
The waves situated upstream of the current will exhibit a shorter wavelength than 
those located downstream. Consequently, these waves will predominantly mani-
fest as capillary waves ( cλ λ< ) to the left of the body case and as gravity waves 
( cλ λ> ) to its right, where c gλ σ ρ=  is the capillary constant [24]. 

Nevertheless, the relatively robust assumptions posited in the aforementioned 
formulation are designed for an analytical examination of the problem and may, 
therefore, be open to question. Firstly, the propagation medium is assumed to be 
homogeneous, even though there are different forces acting on the surface and 
within the fluid. This formulation assumes incompressibility of the flow, so the 
effects of pressure waves propagating in the internal fluid at the surface are not 
taken into account, as the flow velocities are much lower than the sound velocities 
in water. In the dynamic equilibrium of the free surface used to compute Equation 
(3), the inertia of the surface should be included for more physical accuracy. In 
our case, a time domain approach is more natural than a frequency domain ap-
proach, but the results are more difficult to interpret. In practice, the radiation 
boundary conditions are not satisfied at the boundaries of the domain. Therefore, 
the solutions obtained propagate to infinity without spatial or temporal decay [7]. 
Therefore, the propagating medium is then considered below as a stratified irro-
tational compressible fluid waveguide with a convective uniform mean flow, 
which is subject to a Gaussian pulse. Accordingly, the previous governing partial 
differential equations and the solution approach must be modified. 

3.1. Hypotheses and Formulation of the Global Model 

The propagating medium is considered to consist of two homogeneous layers of 
fluid with very different properties. The upper layer is free surface water, infini-
tesimally thick as skin and characterised by capillary-gravity wave propagation. 
The lower layer is the inner water with finite or semi-infinite thickness character-
ised by acoustic wave propagation. Therefore, two different models must be in-
troduced to account for these features: an internal fluid model and a surface model. 

3.1.1. Formulation of the Inner Fluid Model 
We assume that the flow is characterized by two variables modelling the mass 
density totρ  and the velocity potential Φ that satisfy: 
• The conservation of mass equation  

 ( ) ] [0 in 0, .tot
totdiv T

t
ρ ρ∂

+ ∇Φ = Ω×
∂

 (6) 

• The Bernoulli equation for unsteady compressible potential flow (neglecting 
gravity effect) 
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 ( ) ] [21 0 in 0,
2 totF T

t
ρ∂Φ

+ ∇Φ + = Ω×
∂

 (7) 

where ( ) ( )
0

0
1 d

tot

tot
pF F

ρ

ρ

ρ ρ ρ
ρ ρ

∂
= ⋅ +

∂∫  is the barotropic potential, p , the fluid 

pressure and T, the simulation time.  

3.1.2. Formulation of the Surface Model 
Applying Newton’s second law of motion to an infinitesimal small surface element 
of thickness 2ε  that vertically moves of a displacement totη , leads to the free 
surface equilibrium equation: 

 ] [
2

2
22 in 0,

2
tot tot

tot tot s s tot tot tot s
D g T
Dt t
η ρερ ρ σ η ρ η∂Φ

= − − ∇ Φ + ∆ − Γ ×
∂

 (8) 

where D Dt   stands for material derivative. In comparison with the dynamic 
boundary condition Equation (3) that Equation (8) replaces, the inertia of the sur-
face has been taken into account. The ε  value is chosen in our case so that the 
characteristic velocity of Equation (8), namely 2 totσ ρ ε , is equal to the velocity 

4 4r totc gσ ρ=  which corresponds to the special case of a non-dispersive capil-
lary-gravity wave with cλ λ=  in Equation (5) [20]. However, this value could be 
chosen arbitrarily to take account of the presence of particles on the surface. 

3.1.3. On the Interface 
The kinematic boundary condition Equation (2) becomes the continuity of nor-
mal velocity at the interface: 

 ] [in 0,tot
s s tot s T

t
η η

ν
∂ ∂Φ

+∇ Φ ⋅∇ = Γ ×
∂ ∂

 (9) 

taking account of the rotation of the normal to the surface. 

3.2. Linearization of the Governing Equations  

The global nonlinear dynamical model obtained is linearized around a main 
steady state. Therefore, the global solution is split into a steady state obtained and 
a transient one. The lateral boundary conditions are defined separately according 
to the nature of the state. For the steady flow, the most realistic condition is to fix 
the normal velocity. For transient flow, non-reflecting boundary conditions have 
to be prescribed for the inlet and the outlet of Ω in order to avoid any spurious 
reflections of the waves reaching the boundaries of the domain.  

3.2.1. Main Background Steady State Flow  
We introduce 0ϕ , the velocity potential corresponding to a steady quasi-uniform 
horizontal steady flow of an incompressible fluid that enters and leaves Ω at con-
stant unit horizontal velocity with normal surface displacement variation along 
Γs  regarded as negligible and non penetrability condition on 0Γ Γb∪  satisfied. 
This background flow is stationary with respect to the boat, which was chosen as 
the frame of reference. 0ϕ  is the solution to the following problem:  
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( )

0 0

0
0

0
1 1 2

0 in and 0,

0 on ,

in .

s

b s

e

ϕ ϕ

ϕ
ν
ϕ ν
ν

Γ
−∆ = Ω =

∂ = Γ ∪Γ ∪Γ ∂
∂ = ⋅ Γ ∪Γ ∂

∫

 (10) 

To obtain the related displacement on the surface 0η  of this flow for our model, 
the stationary balance of forces on free surface Equation (8) along with homoge-
neous Neumann boundary conditions are applied. According to the frame of ref-
erence, it leads in stationary case to:  

 
( ) 22 20

0 0 0 0 0 0 0 0

0

2 in ,
2

0 on

s s s s s s s

s
s

U g Uρερ ϕ ϕ η σ η ρ η ϕ

η
ν

 ∇ ⋅∇ ∇ ⋅∇ + ∆ − = − ∇ Γ
∂ = ∂Γ
∂

 (11) 

with 0ρ , the fluid density and g , the gravity acceleration. The solution of Equa-
tion (10) corresponds to a steady quasi-uniform horizontal flow with a digging 
effect due to the term 22

0 0 2sUρ ϕ− ∇ , as shown in Figure 2. The order of mag-
nitude of free surface strain is about 10−3 m and, therefore, negligible in compari-
son with initial computational domain Ω dimensions. 
 

 
Figure 2. Free surface vertical displacement 0η  (m) solution of Equation (11) versus 1x  
(m) with the “digging” effect. 

3.2.2. Transient State 
We study the evolution of a small disturbance around the steady state ( )0 0 0, ,ρ ϕ η . 
The unsteady waves in the fluid are represented by the perturbation functions 

, ,ρ ϕ η   of variables ( )1 2,x x x   and t. The problem is formulated with them 
wherein ( ) ( ) ( )0, ,tot x t x x tρ ρ ρ= + , ( ) ( ) ( )0Φ , ,x t U x x tϕ ϕ= + ,  
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( ) ( ) ( )0, ,tot x t x x tη η η= + . The solution is split into a main background steady-
state component and a transient one. The domain Ω is then cropped by 0Γ , Γb , 

0Γs η=  , 1Γ equi   and 2Γ equi  , as shown in Figure 3. The new lateral boundaries 

1Γ equi   and 2Γ equi   correspond to equipotential lines of 0ϕ   passing respectively 
through the left upper domain corner and right upper corner of Ω. As a result, the 
main steady flow crosses perpendicularly 1Γ equi   and 2Γ equi   and no reflected 
flow remains in the new domain Ω. The artificial boundaries are chosen far 
enough from the rigid body to consider that steady-state flow is uniform in this 
area, so the corners of the new domain are right-angled. The disturbance is so 
small that it is then reasonable to neglect the nonlinear terms in the governing 
equations Equation (6)-Equation (9) to obtain Equation (12)-Equation (15). Con-
vective derivatives with flow velocity 0U ϕ∇  are used to derive linearized equa-
tions Equation (13) and Equation (14). Hence, ( ), ,ρ ϕ η  are assured of satisfying 
the linearized enhanced Neumann-Kelvin’s model with capillarity: 
 

 
Figure 3. Calculated geometry of the new computational domain in the case of a solid body 
size large compared to the initial computational domain. The digging effect on Γs  and 
the inwards bowing of 1Γ equi  and 2Γ equi  are more pronounced than in our case. 

 
• The linearized continuity equation 

 ] [0 0 0 in 0, .U T
t
ρ ρ ϕ ρ ϕ∂
+ ∇ ⋅∇ + ∆ = Ω×

∂
 (12) 

• The linearized momentum equation for the inner fluid  

 ( ) ] [
2

2 2
0 0 02 2 0 in 0,fU U c T

t t
ϕ ϕϕ ϕ ϕ ϕ ϕ∂ ∂ + ∇ ⋅∇ + ∇ ⋅∇ ∇ ∇ − ∆ = Ω× 


⋅

∂ ∂
 (13) 

given that ( )2
0 0

1 0
2

Fϕ ρ∇ +∇ =  and 
( ) 2

0

0

f

tot

cF ρ
ρ ρ

∂
=

∂
. 

• The linearized momentum equation for the surface fluid  

 
( )

] [

2
2

0 0 0 02

0 0 0 0

2 2

in 0,

s s s s s s

s s s s

U U
t t

g U T
t

η ηερ ϕ ϕ ϕ η

ϕσ η ρ η ρ ρ ϕ ϕ

 ∂ ∂ + ∇ ⋅∇ + ∇ ⋅∇ ∇ ⋅∇  ∂ ∂  
∂

= ∆ − − − ∇ ⋅∇ Γ ×
∂

 (14) 
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where ⋅   denotes the scalar product. Since the domain of study was reshaped, 

0sη∇  and 0Δsη  are set to zero on Γs . 
• The continuity of normal velocity at the interface  

 ] [0 in 0, .s s sU T
t

ϕ η ϕ η
ν
∂ ∂

= + ∇ ⋅∇ Γ ×
∂ ∂

 (15) 

• The non-penetrability condition leads to a homogeneous Neumann boundary 
condition for ϕ  

 ] [00 in 0, .b Tϕ
ν
∂

= Γ ∪Γ ×
∂

 (16) 

• The initial condition corresponding to a disturbance taking place in the fluid: 
the functions ( ),0xϕ  and ( ),0t xϕ∂ ∂  are set as Gaussian pulse functions 
in Ω and the functions ( ),0xη  and ( ),0t xη∂ ∂  are fixed to zero on Γs . 

3.2.3. Lateral Artificial Boundary Conditions 
Non-reflecting boundary condition applied on inner fluid lateral edges is: 

 ] [0
1 20 in 0,f equi equia U c T

t
ϕϕ ϕ
ν ν

∂∂ ∂ + + = Γ ∪Γ × ∂ ∂ ∂ 
 (17) 

where a  is a parameter related to the angle of incidence waves with respect to 
the normal of the boundary surface. This relation is consistent with Sommerfeld-
like or zero-order non-reflecting boundary conditions for a wave that propagates 
at the phase velocity fc  corrected by the normal to the boundary component of 
velocity of the main background steady flow 0U ϕ ν∂ ∂ . In the following, the pa-
rameter a  is set to 1, this implies that the angles of incidence of impinging dis-
turbances are close to the normal of the boundary. For such an order of approxi-
mation of absorbing boundary conditions, it is not beneficial to set 1a ≠  [14]. 

On the surface bounds Γs∂ , a Sommerfeld-like non-reflecting boundary con-
dition is difficult to apply since the surface is a very dispersive propagating me-
dium, as can be stated from the dispersion relation Equation (5). Therefore, a 
value of velocity that approaches the apparent wave velocity value at boundaries 
can hardly be set. The more different this value is, the more spurious reflections 
you get. Furthermore, in the case of multi-layer models, numerical instabilities 
due to singularities appear at these points [25]. 

As the conditions are to be set for the points Γs∂  that belong to the surface 
Γs  and to the lateral boundaries 1Γ equi  or 2Γ equi , the equations Equation (14), 
Equation (15) and Equation (17) are considered to devise the new boundary con-
ditions. The guiding idea is to extend the non-reflective boundary condition ap-
plied on the lateral boundaries 1Γ equi  or 2Γ equi  to the surface Γs  intersecting 
points Γs∂  by means of the normal velocity continuity condition. Using the sim-
plifying assumptions 0 1xϕ = , 1s x=  and ( )1 1s eν ⋅ = ±  led by choosing 1Γ equi  
and 2Γ equi  away from rigid body, the following simplified equations must be sat-
isfied on Γs∂ : 

 ( )
2 2 2

2 2
2 2

1 1 1

12 0,
2 2r

gU U c U
t x t x t x
η η η ϕ ϕ η

ε ε
 ∂ ∂ ∂ ∂ ∂

+ + − + + + = ∂ ∂ ∂ ∂ ∂ ∂ 
 (18) 

https://doi.org/10.4236/jamp.2024.1210208


J. M. Orellana 
 

 

DOI: 10.4236/jamp.2024.1210208 3510 Journal of Applied Mathematics and Physics 
 

 
2 1

,U
x t x
ϕ η η∂ ∂ ∂
= +

∂ ∂ ∂
 (19) 

 ( ) 2
1

0 on ,f s equiU c
t x
ϕ ϕ∂ ∂
+ + = Γ ∩Γ

∂ ∂
 (20) 

 ( ) 1
1

0 on .f s equiU c
t x
ϕ ϕ∂ ∂
+ − = Γ ∩Γ

∂ ∂
 (21) 

For the right side (resp. the left side), the solution method consists in derivating 
first Equation (20) (resp. Equation (21)) with respect to 2x  and Equation (19) 
with respect to 1x  and t , in order to eliminate partial derivatives of ϕ . Intro-
ducing the resulting expression into Equation (18) leads, after integrating with 
respect to time, to the following new boundary condition in cartesian coordinates 
for each edge,  

 
1

0
d 0 on s

t
Z A B s C

t x
η η η ϕ± ± ± ± ±∂ ∂
+ + + = ∂Γ

∂ ∂ ∫  (22) 

with , , ,A B C Z± ± ± ±   depending on , , , ,f rU c c g  . The symbol  −   denotes that 
condition is on the left boundary of Γs  and  +  on the right one. The boundary 
conditions obtained are said non-local in time as they depend not only on the time 
t  but also on the entire history of η  on Γs∂ . 

4. Solution Method  

A classical approach to address wave propagation in layered media is hardly ap-
plicable due to the complexity of the coupled equations involved. A weak form of 
the problem and then a finite element formulation are directly considered to ob-
tain the solution. 

Variational Formulation and Numerical Approach 

Multiplying Equation (13) by ( )1 ΩHψ ∈   and Equation (14) by ( )1 Γsv H∈  , 
respectively, together with Green’s formula application leads to the following cou-
pled variational formulation: find functions  
( ) ( ) ( ) ] [( )1 1 2, 0,sH H L Tϕ η ∈ Ω × Γ ×  such that ( ) ( ) ( )1 1, sv H Hψ∀ ∈ Ω × Γ  

( )
( ) ( )

2
0

2 2 2 2
0 0 0

d d d d

d d d 0
s s

f f

f f f s s

U c c

U c c Uc

ϕψ τ ϕ ϕψ ϕ ψ τ ϕψ τ ϕ ψ τ

ϕ ϕ ϕ ψ τ ηψ τ ϕ ηψ τ
Ω Ω Γ Ω

Ω Γ Γ

+ ∇ ⋅ ∇ − ∇ + + ∇ ⋅∇

− ∇ ⋅∇ ∇ ⋅∇ − − ∇ ⋅∇ =

∫ ∫ ∫ ∫
∫ ∫ ∫

  





(23) 

and 

 

( ) ( )( )( )

( )( )

( )

2 2
0 0 0

2
2

0 0 0
0

2
2 2

0 0 0
0

0

2 d

2 d d

d d d

d 0.

s

s s

s s s

s

f s s s s s s s

f
f s s s s s s

f
f f s s s

t

c v U v v U v

c
c U Uv v v

c
gv c v c U v v

E F s G v

ε η ϕ η η ϕ η ϕ σ

ε ϕ ϕ η ϕ η σ σ η σ
ρ

ρ η σ ϕ σ ϕ ϕ ϕ ϕ σ
ρ

η η ϕ

Γ

Γ Γ

Γ Γ Γ

± ± ±

∂Γ

+ ∇ ∇ − ∇ − ∇ ⋅∇ ∇ ⋅∇

− ∆ ∇ ⋅∇ + ∆ + ∇ ⋅∇

+ + − ∇ ⋅∇ + ∆

 + + + =  

∫

∫ ∫

∫ ∫ ∫

∫

 









 (24) 
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with , ,E F G± ± ±  depending on , , , ,f rU c c g . 
For physical field approximation, a finite dimension subspace ( )1

hV H⊂ Ω  
made of piecewise linear functions on a fixed mesh, characterized by element 
length h , is considered. hV  is spanned by ( )1 1 1 2, , , , ,N Nϕ ϕ η η   with 1 1i i Nϕ ≤ ≤  
and 1 2i i Nη ≤ ≤  finite element shape functions on Ω and on Γs  respectively. X  
is the coordinate vector of ( ),ϕ η  relative to this basis. For the time domain 
approximation, a centered finite difference scheme for derivatives and a trapezoi-
dal rule for the integral over time term are applied. The problem becomes finding 

( )n NX R∈ , 1 2N N N= + , 1n > , such that 

 ( ) ( ) ( )1 1
1 2 3

n n nA X A X A X F+ −= + +  (25) 

where 1A , 2A  et 3A  are sparse matrices; F  a vector depending on F ±  and 
Δt  accounting for non-local condition term in time Equation (22) with non-zero 
component corresponding to the surface edges Γs∂ . ( ) ( )0 1,X X  are prescribed 
by initial conditions. 

The computing process is fully automated. All the geometry operations and 
meshes are generated and updated automatically according to intermediate results 
by a batch program using Numpy and Scipy Python routines and GMSH. Due to 
the complexity of weak formulation terms, low-level generic assembly procedures 
of GETFEM++ is employed to make the assembly of the involved sparse matrices. 
To compute the solution of the large sparse system Equation (25), a parallel sparse 
direct solver (MUMPS) is used. For the post-processing handling, Matplotlib Py-
thon libraries, PARAVIEW and GMSH are utilized. A mesh convergence study is 
performed by reducing the characteristic size of elements, h , from 210h −=  to 

46.25 10h −= × . As shown in Figure 4 and Figure 5, results converge upon the 
same solution as the mesh density increases. A satisfactory compromise between 
the accuracy of results and computing time can be achieved by choosing the value 
of 31.25 10h −= ×  . This result is consistent with the order of magnitude of the 
wavelength of gravity-capillary waves of interest ( 210λ −≈  m). Indeed, the solu-
tion is curvy or even oscillates over the wavelength; this means using sufficient 
fine meshes or high-order piecewise polynomials to get a reliable approximation 
by the finite element method. A classic rule to reduce interpolation errors is to set 
the resolution of the wave 10resn hλ= ≈  (here 8h λ = ) for a linear piecewise 
polynomial, but at a small wavelength, it appears to be insufficient due to numer-
ical pollution identified in Helmholtz problems [26]. For numerical computations, 
values of parameters of Table 1 are used. The value of H  is set to ensure that 
surface waves progress over deep water. The value of U  is chosen to be less than 

0.23rc ≈  m·s−1 so that the flow becomes a uniform stream with constant velocity 
U  at infinity [21]. The value of the half-thickness ε  of the water surface, cal-
culated accordingly rc , is equal to 7 × 10−4 m.  

 
Table 1. Numerical values of parameters of the problem. 

Parameters L (m) H (m) R (m) U (m·s−1) σ (N·m−1) 

Values 1 1 5 × 10−2 0.15 0.075 
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Figure 4. Inner fluid velocity potential ϕ  (m2·s−1) at point of coordinates ( )0.5,0.5  ver-

sus time (10−5 s) for different element sizes of the mesh. 
 

 
Figure 5. Inner fluid velocity potential ϕ  (m2·s−1) for different mesh densities along a 
part of the middle line of the computational domain (m) at 100Δ vt t= . 

5. Main Results and Comments  

Wave propagation phenomenon is monitored by the variation of ϕ  in the inner 
fluid and the variation of η  on the surface respectively. The value of the time 
step chosen is 5Δ 10vt

−=  s in order to properly see wave propagation with a ve-
locity of fc  across the extend of the computational domain Ω. As can be seen in 
Figure 6, reflecting waves appear on the bottom of the domain as on the surface 
of the immersed solid body, where homogeneous Neumann conditions are im-
posed to model non-penetrability of the fluid through them. In addition, no 
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spurious reflecting wave appears to be present on either lateral side of the compu-
tational domain. Thanks to the hyperbolicity of the problem, in order to verify 
whether non-reflecting boundary conditions are satisfactory on inner fluid lateral 
edges Equation (17), a similar study is carried out according to the same previous 
calculation criteria on a larger computational domain in 1x  direction, sized so as 
to avoid lateral side spurious reflecting waves during the all simulation time [14]. 
The new solution obtained is regarded as a reference solution. Both resulting 
waves are in phase, but a variable amplitude difference can be noticed. The wave 
is slightly reflected especially on its peak of amplitude for times when there is not 
many interference. Indeed, the chosen absorbing boundary conditions are not in-
tended to handle such interfering situations (see Figure 7). 
 

 
Figure 6. Propagation of velocity potential disturbance ϕ  at times: 80Δ vt t= , 100Δ vt t= , 120Δ vt t= , 140Δ vt t=  (left to right, 
top to bottom). The order of magnitude of initial perturbation is 10−2. 

 

 
Figure 7. Comparison of inner fluid velocity potentials ϕ  (10−3 m2·s−1) versus time (10−5 
s) between extended and main computational domain on the middle of the right artificial 
lateral edge. 
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Figure 8. Propagation of disturbance ϕ  in Ω and related normal surface displacement η  (10−5 m) on Γs  versus 1x  coordi-
nate (m) at time 20Δ vt t= . The initial order of magnitude of ϕ  is 10−2 m2·s−1. Its propagating order of magnitude is 10−3 m2·s−1 
and the order of magnitude of the normal displacement is 10−6 m. 
 

 
Figure 9. Propagation of disturbance ϕ  in Ω and related normal surface displacement η  (10−5 m) on Γs  versus 1x  (m) co-
ordinate at time 100Δ vt t= . Its order of magnitude is 10−3 m2·s−1, and the corresponding normal displacement η  order of magni-
tude is 10−6m. 
 

Waves propagation in inner fluid results in deformation of the surface, as 
shown in Figure 8 and Figure 9. The corresponding normal displacement η  
propagates along the surface Γs . On each side of the surface, Γs∂ , no spurious 
reflective wave is noticed. In the inner fluid layer, no wave related to any reflective 
surface on the surface is neither observed (see Figure 9). Then, the lateral 
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boundary conditions introduced by Equation (22) also seem to be adequate for 
successfully modelling the propagating phenomenon on the surface. Nevertheless, 
the velocity of the phenomenon is the same as that of the inner fluid layer, which 
is not in complete agreement with surface layer material properties and wave 
propagation in stratified media theories. The expected value should be close to the 
order of the riddle velocity rc . Therefore, no surface propagation phenomenon 
should be observed with time step Δ vt . That’s actually what happens when the 
initial disturbance is located just below or on the surface, as shown in Figure 10. 
The observed normal displacements η  in Figure 8 and Figure 9 are not related 
directly to surface wave propagation, but rather primarily to the velocity potential 
acoustic wave propagation in the inner fluid layer and to the interface coupling 
between the potential ϕ   and the normal displacement η   on Γs   given by 
Equation (15). The energy transmitted to the surface layer by the inner layer re-
mains stationary over the time range considered. Therefore, the application of lat-
eral boundary conditions Equation (22) does not significantly affect the propaga-
tion phenomenon, and its accuracy can not be estimated with an initial perturba-
tion in the inner fluid layer. Numerical simulations are then carried out in the case 
of an initial disturbance of the surface with time step 2Δ 10st

−=  s. The functions 
( ),0xϕ   and ( ),0t xϕ∂ ∂   are set to zero in Ω and ( ),0xη   and ( ),0t xη∂ ∂  

are introduced as Gaussian pulse functions on Γs . 
 

 
Figure 10. Propagation of normal surface displacement η  on Γs  versus 1x  coordinate and related disturbance ϕ  in Ω at time 

1000Δ Δv st t t= = . Initial perturbation is located on the surface of the fluid. The order of magnitude of η  is 10−6 m. The order of 
magnitude of the potential ϕ  transmitted to the surface of the inner fluid is 10−6 m2·s−1. 
 

Waves propagate and get out of the computational domain without generating 
significant spurious reflections (see Figure 11). Similarly to the previous case to 
verify non-reflecting boundary conditions on surface edges Equation (22), a larger 
computational domain in 1x  direction is chosen to compute a reference solution. 
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Both resulting waves are in phase, but a varying amplitude difference can be noticed 
due to existing spurious reflections (see Figure 12), which fade away over time (see 
Figure 11). According to the ratio between the orders of magnitude of the inner 
fluid potential and the surface displacement noticed in each calculated case, it comes 
out that the inner fluid wave propagation effect is not significant in the case of 
initial disturbance near the surface or on the surface itself. Indeed, a velocity 
potential of the order of magnitude of 10−3 m2·s−1 on the surface leads to a normal 
displacement response of the order of magnitude of 10−6 m in the inner fluid initial 
perturbation case. But in the surface initial disturbance case where the order of 
magnitude of normal displacement is 10−6 m, the velocity potential barely reaches 
10−6 m2·s−1 on the surface, and the linearity of the model leads to a normal displace-
ment response of 10−9 m, therefore negligible compared to 10−6 m (see Figures 8-
10, Figure 13). Thus, the waves propagate mainly in the surface layer guided in the 
medium of smaller velocity in totally agreement with wave propagation theories  
 

 
Figure 11. Displacement η  (10−5 m) of the surface Γs  versus 1x  coordinate (m) at: 100Δ st t= , 250Δ st t= , 500Δ st t=  and 

2000Δ st t= . The initial disturbance is located on the surface Γs . The waves propagate without any instabilities on surface edges, 
but spurious reflections on the surface are still present. 
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Figure 12. Comparison between normal displacements η  (10−6 m) of surface Γs  in the 
initial domain (red) and extended domain (blue) cases versus 1x  (m) at 100Δ st t= . 

 

 
Figure 13. Propagation of normal surface displacement η  on Γs  versus 1x  coordinate and related disturbance ϕ  in Ω at time 

30Δ st t= . The initial disturbance is located on the surface of the fluid. The order of magnitude of propagating η  is 10−6 m. The 
order of magnitude of the potential ϕ  transmitted to the surface of the inner fluid is 10−6 m2·s−1. 

 

in stratified media. Actually, during surface wave propagation, a small amount of 
energy is steadily transferred from the surface to the inner fluid, which is imme-
diately removed from the computational domain, as in an incompressible fluid. 
The velocity potential ϕ  rendering (see Figure 13) comes from the superposi-
tion of all velocity potential waves generated by the propagating surface wave at 
all times [27] [28]. Therefore, these results can hardly be analyzed and used to 
clearly draw any possible conclusions on the compliance of the non-reflecting 
boundary condition chosen Equation (17) in the inner fluid layer. 

6. Conclusion and Suggestion 

For the modelling of the wake of a solid body moving through a body of water, a 
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wave propagation problem in a convective stratified media has been considered. 
To numerically solve the problem, the finite elements method is applied due to its 
versatility and the accuracy of its results in dealing with complex configurations. 
Nevertheless, since it is an acoustic scattering problem with large wavenumber 
waves, which is of interest, a fine mesh in the artificially bounded domain has to 
be used, and appropriate non-reflecting boundary conditions are to be sought 
while keeping computational costs low. In addition, the significant differences be-
tween layer properties make it difficult to address the entire problem with tradi-
tional schemes, a non-local in-time boundary condition has been devised by tak-
ing into account all the conditions that must be met on the artificial lateral edges 
of the computational domain. This work has highlighted some of the complex 
phenomena that involve the coupled propagation of surface and volume waves at 
different time scales and with very different orders of magnitude, features that 
cannot be observed under the assumption of fluid incompressibility. To go further 
with the same model, it is necessary to reduce the size of the linear system by using 
suitable enriched basis functions in order to decrease the number of elements per 
wavelength and to be able to increase the order of the absorbing boundary condi-
tion to eliminate spurious reflections [29] [30]. Due to the differences in scale be-
tween the phenomena occurring in each layer and the weak feedback from the 
inner fluid to the surface, a more simple one-dimensional model could also be 
considered by adding a damping term to model the energy dissipation of the sur-
face propagating wave into the fluid. 
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