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Abstract 

Salinity stress limits crop growth and productivity, including legumes in var-
ious regions worldwide. The impact of foliar-applied zinc nanoparticles (ZnNPs) 
and combined zinc nano-loaded with moringa extracts (ZnONPs) on salt to-
lerance in faba beans (cultivar, Giza-716) grown under saline soil (50 and 100 
mM NaCl) was investigated. Moringa oleifera extract has been used as a che-
lating agent to synthesize zinc oxide nanoparticles. The crystalline structure, 
morphology, and chemical composition of ZnO nanoparticles were studied 
using various characterization techniques, including UV-visible spectroscopy 
(UV), Fourier Transform Infrared Analysis (FTIR), scanning electron micro-
scopy (SEM), and X-ray diffraction (XRD). Morphological, chemical, and bi-
ochemical parameters of plants at 60 and 90 days after sowing were assessed. 
Salinity stress caused a remarkable reduction in growth traits, photosynthetic 
pigments and proline levels of the faba bean. Foliar spray with ZnNPs and 
ZnONPs on faba bean grown under saline soils promoted plant growth pa-
rameters (i.e., shoot length, numbers of leaves, relative water content, shoot 
and roots fresh and dry weights), photosynthetic pigments (Chl a, b, total 
chlorophyll, and carotenoids), proline and mineral elements (Na+, K+, Ca2+, 
and Zn2+) compared to control. However, at 100 mM NaCl, there were no 
significant variations in the mentioned parameters. This study suggested that 
there is potential for foliar spraying with ZnNPs and ZnONPs in improving 
growth parameters, photosynthesis efficiency and biochemical aspects of faba 
bean plants under saline conditions. 
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1. Introduction 

Faba bean, also known as the broad bean, field bean, or horse bean, is a signifi-
cant leguminous crop worldwide due to its nutrient-rich seeds or fresh green 
fruits used as human food or animal feed [1]. Faba beans are a source of protein, 
carbohydrate, folic acid, vitamin C, dietary fibre, macro, and microelements such 
as Ca, K, Mg, Na, P, S, Al, B, Ba, Fe, Co, Ga, Li, Mn, Ni, Cr, Pb, Sr, Cu, Zn, and 
antioxidants [2].  

Salinity is one of the most limiting abiotic stresses that impacts agricultural 
plant quality and quantity worldwide [3]. Salinity stress causes a combination of 
ionic and osmotic stresses in plants, leading to cellular, molecular, and physiolog-
ical deterioration, as well as reduced food uptake and photosynthetic perfor-
mance [4]. Salt stress produces plenty of reactive oxygen species (ROS), which 
degrades biomolecules, including proteins, lipids, and nucleic acids, as well as 
other enzymatic activities, and even causes the cell membrane system to deteri-
orate [5]. Salinity has become a critical environmental challenge affecting plant 
productivity in dry and semi-arid regions [6]. Salt significantly influences cell 
growth and expansion, plant membrane irregularity, ion toxicity, metabolic func-
tion change, germination mechanism, photosynthetic activity, leaf, shoot, and 
root lengths [7].  

Generally, high salinity limits water absorption from the soil, causing the ac-
cumulation of sodium (Na+) and chloride (Cl−), which induces physiological 
drought and oxidative stress in plants [8]. Salt tolerance is generally expressed by 
activating cellular pathways, including stress hormones, antioxidant enzymes, 
and osmoprotectant metabolites like amino acids and carbohydrates [9]. Faba 
bean is relatively sensitive to soil salinity, which significantly reduces yield in re-
gions with saline soils [10]. Application of exogenous plant growth regulators, 
fertilizers and osmoprotectants mitigate salt-induced losses [11]. 

Zinc is one of the most critical elements necessary for efficient crop growth. It 
activates over 300 enzymes; it also helps directly enhance photosynthesis by par-
taking in carbohydrate metabolism processes [12]. Zinc deficiency is among the 
most frequent abiotic stress indicators symptoms exhibited by grown plants in 
salt and calcareous soils [13]. Furthermore, Zn deficiency causes physiological 
stress in plants, mainly due to disturbances in various enzymatic systems, de-
creased plant growth and crop yield, photosynthetic inhibition, and increased 
ROS levels in several plants [14]. 

Moringa oleifera Lam. (MLE) is high in potassium, cytokinin, minerals, car-
bohydrates, vitamins, proteins, flavonoids, and antioxidant compounds [15]. 
MLE leaf extract has been utilized as a plant natural growth stimulant in various 
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crops, enhancing plant growth biomass production and inducing tolerance to 
salt stresses [16]. 

Nanotechnology can significantly affect global food production, food safety, 
and food security. Nanotechnology is also widely used in agriculture as a prom-
ising technique for improving plant growth and yields [17]. Nanotechnology has 
been widely utilized to produce fertilizers due to its ability to homogenize the 
distribution of nutrients [18]. It is also preferred as they are environmentally be-
nign [19]. Adsorbed nanoparticles gradually penetrate plant tissues and easily 
enter plant cells through the shoot and root, such as the cuticle, epidermis, sto-
mata, hydathodes, stigma, root tips, lateral cortex plants, root junctions, bark, 
and other plant surfaces [20]. ZnONPs improved shooting, plantlet regeneration, 
and somatic embryogenesis by enhancing proline synthesis, peroxidase, superox-
ide dismutase, catalase activity and improving abiotic and biotic stress tolerance 
[21]. Therefore, our research aims to study the effect of ZnONPs nanoparticles 
on vegetative growth, several physiological traits, photosynthetic pigments, pro-
line accumulation, and ion contents of faba bean cultivar under saline condi-
tions, based on employing natural chemicals transferred into plant tissues via 
nanoparticles which maybe reduce the effect of stress on plants grown under sa-
linity. 

2. Materials and Methods 
2.1. Plant Material and Experimental Design 

Field experiments were conducted in a greenhouse at Jomo Kenyatta University 
of Agriculture and Technology (JKUAT), Kenya. Faba beans were grown five 
months from December 2020 to May 2021. The faba bean cultivar “Giza-716” 
were obtained from Horticulture Research Institute, Agricultural Research Cen-
tre, Giza, Egypt. The seeds were selected according to the similarity in size and 
colour. The selected seeds were washed with distilled water, sterilized in 1% (v/v) 
sodium hypochlorite for approximately 2 min and after that, rinsed with distilled 
water (dH2O) and left to dry at room temperature overnight. The seeds were 
then placed on sterilized and moisturized filter paper in a petri dish and strati-
fied at 4˚C for 4 days. Finally, seeds were then sown in plastic pots (30 × 50 cm) 
containing 92.52% sand, 5.48% silt, and 3.0% clay, with a pH 7.8 and EC.1.2 
dS∙m−1. In the greenhouse with the mean day/night temperature and relative 
humidity of 29˚C ± 4˚C, 38% ± 5%, and 17˚C ± 2˚C, 50% ± 5%, respectively. 
The experiment was laid out in a Randomization Complete Blocks Design (RCBD) 
with three replicates. 

Experimental Treatments 
The experiment consisted of two salinity levels (50 and 100 mM NaCl) and a 0 
mM control. The salinity levels were obtained by adding appropriate amounts of 
dry NaCl (Merck, India) to dH2O. All plants were irrigated daily with tap water 
for one week. The treatments were applied 21 days after sowing when all seeds 
had germinated. Consequently, the salt treatments were re-applied to each pot in 
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14 days intervals for 120 days. Foliar application of zinc oxide nanoparticles 
(ZnONPs; 50 Mg∙L−1) and zinc nanoparticles (ZnNPs; 50 Mg∙L−1) were done 
twice a week from the 30th day after sowing. 

2.2. Preparation of Moringa oleifera Leaf Extract 

Fresh M. oleifera leaves were collected from the JKUAT garden. The leaves were 
separated from the stems, washed with distilled water, and air-dried to eliminate 
any residue detritus. Then, phytochemical components were extracted from the 
dried leaves using dH2O (500 g∙L−1 dry material). According to [22]. 

2.3. Synthesis of ZnO-NPs 

ZnONPs were synthesized using zinc nitrate, as described by [23]. During the 
preparation, 4.735 g zinc nitrate Zn [NO3]2∙6H2O (Loba-Chemie, India) was dis-
solved in 50 mL of dH2O and stirred for 45 min. Then, M. oleifera leaf extract 
solution (10 mL) was added dropwise into the zinc nitrate solution while vigor-
ous stirring at 80˚C for 3 h to allow the formation of ZnONPs. The solution 
eventually turned cloudy yellow. Finally, the solution was centrifuged at 12,000 
rpm for 10 minutes and washed with distilled water to clear any impurities or 
absorbed ions. Then the product was dried in an oven at 70˚C for 48 hours. 

2.3.1. Sample Characterizations 
The synthesized ZnO-NPs were characterized by UV-visible spectrophotometer 
(Jenway-6800, Shimadzu, Japan) in a wavelength range between 200 - 600 nm. 
The X-ray diffractometer (XRD) was used to study the surface morphology, size 
and crystalline nature of ZnO NPs It produced diffractions at a scanning rate of 
20/min in the 2 to 500 nm wavelength at room temperature with a CuKa radia-
tion set at 40 kV and 20 mA. The Fourier transform infrared (FT-IR) spectra 
were recorded on the JascoFT-IR5300 model spectrophotometer in KBr pellets. 
Additionally, the particle size and characterization of the samples were carried 
out by high-resolution scanning electron microscopy (SEM) (JCM-7000 Neo 
ScopeTM Benchtop SEM; JEOL, Japan). 

2.3.2. Data Collection 
Nine plants were randomly selected from each plot 60 and 90 days after sowing 
(DAS). Plant growth parameters such as height (cm), the number of leaves/plants 
(shoots, roots, fresh, and dry weight), photosynthetic activity, and biochemical 
parameters were assessed. 

2.4. Measurement of the Growth Parameters 

The growth of plants exposed to salt treatments was assessed “30 - 60 days” after 
treatment. Three replicates taken for each treatment were used to calculate the 
mean of each measurement. The measurements taken included length of the 
shoot (SFW), number of leaves, and root fresh weight (RFW). The freshly har-
vested samples were packed and preserved in an aerated oven for 2 days at 70˚C. 
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After that, the samples were wholly desiccated, and the root dry weight (RDW) 
and shoot dry weight (SDW) were assessed. 

2.5. Leaf Relative Water Content 

Relative water content (RWC) was determined according to [24]. And calculated 
using the following formula:  

( ) ( )RWC FW DW TW DW 100= − − ×                  (1) 

where FW = fresh weight. TW = Turgid weight. DW = Oven dry weight. 

2.6. Determination of Photosynthetic Pigments  

The chlorophyll contents (Chl a, Chl b and carotenoids) in fresh leaves was 
measured using spectrophotometry [25]. Fresh leaves were taken from the mid-
dle of five primary leaves (60 and 90 days after sowing). 1 gm fresh tissue was 
ground in a mortar with 20 mL (80% v/v) acetone (Loba-Chemie, India) 0.5 g 
calcium carbonate (Loba-Chemie, India). Then the extract was collected in a 
conical flask after being filtered via No. 2 filter paper. The filtrate was contained 
in a standard flask with % acetone added to make volume up to 20 ml. The ex-
tract’s optical density (OD) was measured using a spectrophotometer at 645, 
663, and 470 nm wavelengths. Chlorophyll a, chlorophyll b and total chlorophyll 
were assessed based on the following equations:  

( ) ( ) ( )1Chl a mg g FW 12.21 A663 2.81 A645 1000V W−⋅ = × − × × ×      (2) 

( ) ( ) ( )1Chl b mg g FW 20.13 A645 5.03 A663 1000V W−⋅ = × − × × ×      (3) 

( ) ( )1Total Chl mg g FW (17.90 A645 8.08 A663) 1000V W−⋅ = × + × × ×    (4) 

( )
( ) ( )

1Carotenoids mg g FW

1000 A470 3.27 Chl a 104 Chl b 227 1000V W

−⋅

= × − × − × × ×  
    (5) 

where V is the volume of 80% (v/v) acetone (mL), and W is the fresh weight 
(FW) of the sample (g). 

2.7. Proline Content 

Proline content in leaves after the anthesis period (60 and 90 days after sowing) 
was estimated using the modified [26]. Briefly, 0.5 g of fresh leaf tissue was 
crushed and ground in a mortar with 10 ml of sulfosalicylic acid. The homoge-
nate was filtered through Whatman No 2-filter paper; 2 ml of the extract was 
mixed with 2 ml of ninhydrin acid, 2 ml of glacial acetic acid and incubated for 1 
h at 100˚C in a water bath until the emergence of red colour. Then the tube was 
let to cool at room temperature, and 4 mL of toluene was added to the solution; 
after that, 2 mL of the coloured red layer from the tube was used to measure the 
OD 520 nm with a spectrophotometer. Proline concentration is calculated using 
a standard curve and fresh weight mmol proline (g∙FW−1). The sulfosalicylic ac-
id, ninhydrin, and glacial acetic acid were purchased (Loba-Chemie, India). 
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2.8. Mineral Ion Content 

Fresh leaves were dried at 35˚C for 48 h. Approximately 0.3 g of leaves were 
grounded to powder form and burned at 500˚C using a muffle furnace. The ash 
was treated with 10 ml of an acid mixture containing HNO3: HClO4 (2:1 v/v) and 
digested for 1 to 2 h until the red NO2 fumes ceased. After the complete diges-
tion, the colourless digests (2 - 3 ml) volume was made up to 20 ml by distilled 
water then filtered through Whatman No.1 filter paper. The nitric acid and per-
chloric acid were purchased (Loba-Chemie, India). The solution’s aliquots were 
used to determine ions, viz., Na+, K+, Ca2+, and Zn2+ by inductively coupled 
plasma atomic absorption spectrometry (Optima 2000 DV, Perkin Elmer, USA). 
The content was determined following the earlier procedure [27].  

2.9. Statistical Analysis 

Data on plant growth and biochemical analysis were subjected to a two-way 
analysis of variance (ANOVA) to determine the treatment effects. The interac-
tion between the factors was selected, and data could not be pooled whenever 
there was a significant interaction. The means were separated using the least sig-
nificant difference test using SPSS 10 for Windows, 2001 (SPSS Inc., USA). The 
differences were considered significant at P < 0.05. 

3. Results 
3.1. Physical and Chemical Properties of Soil Mixture 
Soil Properties after Harvesting 
Irrigating faba beans plants with saline water (50 - 100 mM NaCl) significantly 
reduced K+, HCO3 and SO4 levels while increasing Na+, Cl−, pH, and EC concen-
trations in soil. After harvesting, no carbonate was detected in the soil solution. 
Salinity levels increased the Na+ concentration in the soil (Table 1). 

3.2. UV-Vis Absorption Spectroscopy Analysis 

The absorption spectrum of the green synthesized had an absorption peak at 370 
nm. While ZnNPs showed excitation absorption (371 nm). At 370 nm, sharp 
bands of zinc colloids were observed, indicating that the zinc ion is efficiently 
reduced by M. oleifera extract. The absorption peak at 370 nm indicates the  
 
Table 1. Physical and chemical properties of the soil before and after the field experi-
ments. 

Sample 
ID 

PH % 
E. C. 

mmohs/cm3 

Soil content of 
cations (meq/L.) 

Soil content of anion 
(meq/L.) 

K ppm Na ppm HCO3 CL CO3 SO4 

0 mM 5.6 0.133 TRAC TRAC 4.50 7.00 0.00 5.92 

50 mM 6.3 0.669 153 296 3.20 35.60 0.00 3.10 

100 mM 6.6 3.27 192 314 1.75 44.37 0.00 1.70 
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presence of blue-shifted absorption spectra in ZnONPs compared to the bulk 
value (377 nm), as shown in Figure 1. 

3.3. FTIR 

FTIR was used to determine the different functional groups contained in syn-
thesized nanoparticles. The peaks were used to identify the functional groups 
present in ZnO nanoparticles, as shown in Figure 2. Peaks were found at 3486, 
2405, 1651, 1459, 1160, 890, and 770 cm−1. The fingerprint area of zinc oxide 
nanoparticles is 1700 - 800 cm−1 bandwidth. The peak at 3486 cm−1 corresponds 
to N-H stretching of protein secondary amides, while the peak at 2405 cm−1 is 
due to C-H stretching of protein methyl groups. The peak at 1651 cm−1 is pro-
duced by -CO stretching the amide-I band of proteins, while at 1459 cm−1 is  
 

 
Figure 1. UV-Vis absorption spectra of ZnO nanoparticle. (ZnNPs, and ZnONPs). 

 

 

Figure 2. FTIR spectra of ZnNPs, and ZnONPs. 
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produced by C-N stretching vibrations of aromatic amines [28]. The presence of 
C-O stretching vibration of alcohol and C-H vibration of the CH=CH of the 
ethylene system is shown by the bands at 890 and 770 cm−1, respectively. These 
proteins can also bind zinc oxide nanoparticles and function as capping agents, 
increasing their stability. The C-OH group of phenols is responsible for the peak 
at 1160 cm−1, indicating the function of polyphenols such as terpenoids and fla-
vonoids, which may also operate as bio-reducing agents. As a result, proteins 
serve as both stabilizing and reducing agents. Zn-O nanoparticles are responsi-
ble for the peak at 770 cm−1. These functional groups have been observed on the 
surface of ZnNPs produced from leaf extracts of moringa plants; this result 
agrees with the results reported by [29]. 

3.4. XRD Analysis 

The structure and phase purity of the samples were identified from XRD pat-
terns, as shown in (Figure 3(A) and Figure 3(B)). The sharp diffraction peaks  
 

 
(A) 

 
(B) 

Figure 3. XRD patterns of ZnO nanoparticles. (A) ZnNPs, and (B) ZnONPs. 
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were observed at 2θ values 26.3˚, 29.1˚, 36.33˚, 39.29˚, 45.33˚, 51.52˚, 53.50˚, 
52.50˚, 56.23˚, 64.84˚, and 67.79˚ degrees. Diffraction peaks of XRD are very well 
matched with the hexagonal wurtzite structure by comparison with the data 
from JCPDS card No. 89 - 1397. All the reflection peaks obtained were corres-
ponding to (100), (002), (101), (102), (110), (103), (200), (112), (201), (202), and 
(533) diffraction lattice planes respectively which confirm the hexagonal wurt-
zite structure for the synthesized nanoparticles. This pattern follows the stan-
dard peaks displayed by the International Centre for Diffraction Data. 

3.5. SEM 

The size, shape and surface morphology of the ZnNPs and ZnONPs nanopar-
ticles were determined using SEM analysis, and SEM images were shown in 
(Figure 4(A) and Figure 4(B)). The synthesized products are spherical and crys-
talline in structure according to detailed structural characteristics, with diame-
ters around 198 - 213 nm, respectively. The SEM results revealed that the size 
and shape of the nanoparticles were affected by different precursors. 
 

 
 

 

Figure 4. SEM images of green synthesized ZnNPs (A), its zoomed image (B) and particle 
size distribution (E); SEM image of ZnONPs (C), its zoomed image (D) and particle size 
distribution (F). 
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3.6. Effects of Foliar Applications of ZnNPs, and ZnONPs on  
Growth Parameters of Faba Bean 

The growth responses of the faba bean cultivar under salinity conditions were 
evaluated by measuring growth-related parameters to assess their salt-tolerant 
capacity. The bean leaf number, plant height, and total DW of cultivar decreased 
with the increasing salinity levels. Specifically, when increasing NaCl concentra-
tion from 50 and 100 mM NaCl levels, the growth-related parameters, such as 
plant height, leaf number, WC, shoot, root, FW, and DW, was reduced; the re-
sults are shown in (Figures 5(A)-(N)). In comparison with the control and sa-
linity levels (50 and 100 mM NaCl), was reduced plant height by (78.28%, 
80.85%, 75.24% and 73.03%) at 60 and 90 days, respectively (Figure 5(A) and 
Figure 5(B)). However, there was a significant increase in plant height com-
pared to salt-stressed plants when ZnNPs and ZnONPs treatments were applied 
(110.26%, 107.37%, 117.92%, 109.62%, 115.58%, 117.36%, 117.57% and 112.79%) 
at 60 and 90 days, respectively (Figure 5(A) and Figure 5(B)). Furthermore, the 
shoot FW decreased at salinity (50 and 100 mM NaCl) as compared to control 
plants by (80.32%, 76.34%, 82.21%, and 77.68%) at 60 and 90 days, respectively 
(Figure 5(C) and Figure 5(D)). Foliar spray of ZnNPs and ZnONPs cause a no-
ticeable increment in SFW compared to salt-stressed plants by (106.46%, 119.36%, 
113.89%, 115.74%, 140.65%, 149.50%, 144.19%, and 144.83%) at 60 and 90 days, 
respectively (Figure 5(C) and Figure 5(D)). On the other hand, the salt-stressed 
faba bean plants showed a considerable decrease in shoot dry (SDW) than the 
non-stressed plants (Figure 5(E) and Figure 5(F)). The treating faba beans with 
ZnNPs and ZnONPs increase the plant SDW compared to salt-stressed plants by 
(111.31%, 116.52%, 121.86%, 119.80%, 118.06%, 125.71%, 127.17%, and 126.32%) 
at 60 and 90 days, respectively (Figure 5(E) and Figure 5(F)). However, salt 
stress reduced the root FW, and the highest reduction was recorded at 100 mM 
NaCl than control plants (Figure 5(G) and Figure 5(H)). In contrast, the results 
showed the application of ZnNPs and ZnONPs caused a significant increase in 
root FW in plants grown under salt treatments compared to Salt-stressed plants 
by (110.75%, 104.75%, 109.67%, 124.39%, 109.70%, 113.33%, 134.95%, and 
124.44%) at 60 and 90 days, respectively (Figure 5(G) and Figure 5(H)). In 
comparison with the untreated control sample, there was decreased significantly 
root DW (RDW) in salt-stressed plants (50 and 100 mM NaCl) levels (Figure 
5(I) and Figure 5(J)). In contrast, the root DW significantly increased in plants 
treated with ZnNPs and ZnONPs compared to salt-stressed ones (104.68%, 
106.34%, 112.50%, 111.11%, 104.61%, 106.45%, 113.84%, and 120.96%) at 60 
and 90 days, respectively (Figure 5(I) and Figure 5(J)). Moreover, a significant 
decrease in leaf number was observed in 50 and 100 mM NaCl levels, respective-
ly, compared to untreated control plants (Figure 5(K) and Figure 5(L)). Foliar 
application of ZnNPs and ZnONPs led to a significant increase in the leaf num-
ber of faba beans compared to salt-stressed plants by (131.51%, 133.51%, 142.08%, 
139.70%, 125.11%, 120.79%, 141.44%, and 140.73%) at 60 and 90 days, respec-
tively (Figure 5(K) and Figure 5(L)). The water content (WC%) of faba bean  
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Figure 5. Effects of different levels of salinity stress (50 and 100 mM NaCl), single and 
combined treatment on growth characteristics of Faba bean, such as ((A) and (B)) plant 
height (cm); ((C) and (D)) shoot FW; ((E) and (F)) shoot DW; ((G) and H); root FW ((I) 
and (J)) root DW; ((K) and (L)) No. of leaves/plant; and ((M) and (N)) WC%, at 60 and 
90 days, respectively. The values are the means of three replicates ± standard error. 
 
significantly decreased in salt-stressed plants compared to control plants (Figure 
5(M) and Figure 5(N)). However, the foliar application of ZnNPs and ZnONPs 
in salt-stressed plants significantly increased the water content (WC%) in the 
leaf of faba beans compared to untreated salt-stressed plants by (111.66%, 119.06%, 
118.69%, 124.91%, 110.53%, 111.85%, 121.42%, and 122.36%) at 60 and 90 days, 
respectively (Figure 5(M) and Figure 5(N)). 

3.7. Exogenous Application of ZnNPs, and ZnONPs on Leaf  
Pigments in Faba Bean under Salt Stress 

To evaluate the roles of foliar application with ZnNPs and ZnONPs on the pho-
tosynthetic pigments under NaCl stress, the levels of photosynthetic pigments 
(chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids) in salt chal-
lenged faba bean leaves were determined In comparison with the control sample, 
there was a significant decrease in chl a content by (71.42%, 85.71%, 67.74% and 
51.61%), chl b content by (85.93%, 89.84%, 78.43% and 83.33%), total chl con-
tent by (85.17%, 91.83%, 65.07% and 73.01%), and carotenoids content by 
(78.78%, 86.36%, 10.32% and 134.42%) in the plants exposed to 50 and 100 mM 
NaCl stresses, at 60 and 90 days, respectively, the results are shown in (Figures 
6(A)-(H)). In contrast, spraying of ZnNPs and ZnONPs protection photosyn-
thetic pigments from salinity-induced harmful impacts, as evident by the ob-
served enhanced contents of chl a by (175.32%, 172.22%, 206.66%, 177.77%, 

https://doi.org/10.4236/jacen.2022.111004


S. M. Ragab et al. 
 

 

DOI: 10.4236/jacen.2022.111004 54 Journal of Agricultural Chemistry and Environment 
 

 

Figure 6. Effects of different levels of salinity stress (50 and 100 mM NaCl), single and 
combined Treatment on Pigments contents of faba bean. Chl a ((A) and (B)), Chl b ((C) 
and (D)), total Chl ((E) and (F)) and total Carotenoids ((G) and (H)) at 60 and 90 days, 
respectively. The values are the means of three replicates ± standard error. 
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128.57%, 162.50%, 157.14% and 168.75%) at 60 and 90 days, respectively (Figure 
6(A) and Figure 6(B)), chl b by (145.45%, 156.52%, 149.94%, 160.86%, 141.66%, 
146.82%, 154.16% and 162.69%) at 60 and 90 days, respectively (Figure 6(C) 
and Figure 6(D)), total chl by (173.80%, 164.44%, 183.33%, 186.66%, 148.78%, 
147.82%, 160.97% and 158.69%) at 60 and 90 days, respectively (Figure 6(E) and 
Figure 6(F)), and carotenoids by (232.69%, 224.56%, 244.23%, 294.73%, 245.90%, 
187.80%, 218.03% and 202.43%) at 60 and 90 days, respectively, in salt-treated 
plants (50 and 100 mM NaCl) when compared with only salt-stressed plants 
(Figure 6(G) and Figure 6(H)).  

3.8. Effects of ZnNPs, and ZnONPs on Proline Content of Faba Bean  
under Salt Stress 

NaCl treatment significantly increased free proline contents, whereas 100 mM 
Treatment significantly decreased. Intervening the salt stress with ZnNPs and 
ZnONPs treatment greatly enhanced the proline accumulation at 60 and 90 
days, respectively, are shown in (Figure 7(A) and Figure 7(B)). The proline 
concentration increased at the salinity level of 100 mM NaCl, then decreased at 
50 mM NaCl compared to control plants. When plants were under salt stress, 
the proline level increased in NP untreated plants at 100 mM NaCl compared to 
control plants. However, plants that were under salt stress; a 50 mM treatment 
increased proline accumulation) compared to control plants. However, the ZnNPs 
and ZnONPs, when applied to plants, significantly increased proline accumula-
tion content than the salt-stressed plants at 60 and 90 days, respectively (Figure 
7(A) and Figure 7(B)). 

3.9. Effects of ZnNPs, and ZnONPs Application on Mineral Ion  
Contents in Faba under Salt Stress 

Among the mineral ions, Na+ contents of shoot gradually increased with in-
creasing salinity in salinity-treated plants. The Na+ contents of the shoot were  
 

 

Figure 7. Effects of different levels of salinity stress (50 and 100 mM NaCl), single and 
combined Treatment on Proline of Faba bean. (A) at 60, (B) 90 days. The values are the 
means of three replicates ± standard error. 
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also higher than control plants in the combined treatment of ZnNPs + NaCl and 
ZnONPs + NaCl compared to salt-stressed plants at 60 and 90 days, respectively, 
are shown in (Figure 8(A) and Figure 8(B)). Plants treated with 50 mM NaCl 
had higher Na+ concentrations in their shoots than control plants (245.45% and 
337.50%) at 60 and 90 days, respectively. In addition, compared to the control, 
plants treated with 100 mM showed higher Na+ concentrations in their shoots 
(336.36% and 309.52%) at 60 and 90 days, respectively. The concentration of Na+ 
was reduced in the shoot of plants treated with ZnNPs + 50 mM NaCl and 
ZnONPs + 50 mM NaCl compared to 50 mM NaCl plants by (66.66%, 62.96%, 
67.76% and 74.07%) at 60 and 90 days, respectively. Moreover the amount of 
Na+ was increased significantly in the shoot of plants treated with ZnNPs + 100 
mM NaCl and ZnONPs + 100 mM NaCl compared to the content in 100 mM 
NaCl plants (64.86%, 62.16%, 119.23% and 138.46%) at 60 and 90 days, respec-
tively. On the other hand, salinity levels ( 50 and 100 mM NaCl ) significantly 
decreased K+ contents in the shoot of faba bean plants versus non-stress plants 
by (75.83%, 63.88%, 81.55% and 71.11%) at 60 and 90 days, respectively, are 
shown in (Figure 8(C) and Figure 8(D)). Intervening by foliar application of 
ZnNPs and ZnONPs for plants in both salinity levels, the accumulation of 
K+contents in the shoot compared to only salt-stressed plants significantly im-
proved (196.29%, 200.43%, 207.40%, 143.47%, 130.55%, 131.25%, 163.88% and 
137.50%) at 60 and 90 days, respectively. In comparison with the untreated con-
trol plants and salt-stressed plants grown under (50 and 100 mM NaCl) levels 
showed a decrease of Ca2+ contents by (73.75%, 67.50%, 66.66% and 53.33%) at 
60 and 90 days, respectively, are shown in (Figure 8(E) and Figure 8(F)). Fur-
ther, foliar application of ZnNPs and ZnONPs to the plants significantly im-
proved the accumulation of Ca2+ contents in the shoot, compared to only salt- 
stressed faba bean plants (114.28%, 140%, 128.57%, 160%, 120%, 137.50%, 130% 
and 150%) at 60 and 90 days, respectively. Furthermore, salinity significantly in-
creased the Zn2+ content in the shoot of faba bean plant treated with salt (50 and 
100 mM NaCl) compared to the non-stress plants by (336.36%, 309.09%, 412.50%, 
and 402.50%) at 60 and 90 days, respectively, are shown in (Figure 8(G) and 
Figure 8(H)). Besides, plants sprayed with ZnNPs and ZnONPs also significantly 
increased Zn2+ contents in the shoot compared to only salt-stressed plants (116.21%, 
120.58%, 113.51%, 123.52%, 121.21%, 115.62%, 130.30% and 128.12%) at 60 and 
90 days, respectively. 

4. Discussion 

In the present study, the green synthesis methods of nanoparticle biosynthesis 
represent an easy, eco-friendly, and cost-effective process to prepare nanopar-
ticles by zinc nitrate solution with moringa extract. M. oleifera leaf extracts 
demonstrated potential for NPs synthesis in structural and optical investigations 
due to the quantum confinement effect, which confirmed the synthesis of effi-
cient ZnONPs using UV, FTIR, XRD, and SEM analysis; also, the wavelength 

https://doi.org/10.4236/jacen.2022.111004


S. M. Ragab et al. 
 

 

DOI: 10.4236/jacen.2022.111004 57 Journal of Agricultural Chemistry and Environment 
 

 

Figure 8. Effects of different levels of salinity stress (50 and 100 mM NaCl), single and 
combined treatment on primary mineral ion contents in shoot tissues of Faba bean. ((A) 
and (B)) shoot Na+; ((C) and (D)) shoot K+; ((E) and (F)) shoot Ca2+; and ((G) and (H)) 
Zn2+ shoot at 60 and 90 days, respectively. The values are the means of three replicates ± 
standard error. 
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of the 370 nm absorption peak confirms the presence of ZnONPs which is in 
agreement with the earlier study [30]. In addition to the biomolecule absorption 
bands utilized as reduction and stabilization (capping agents) in M. oleifera leaf 
extract, FTIR absorption confirms the existence of ZnONPs [31]. The wide 
peaks in the XRD data indicate the crystallinity and purity of the nanoparticles 
in the samples [32]. The SEM pictures highlight the size, shape, and surface 
morphology of the ZnONPs, as shown in Figure 4. Structural characterizations 
show that the produced products are spherical and crystalline in structure. SEM 
pictures indicated that plant-derived NPs are entirely pure, implying that the 
plant has a significant ability to synthesize ZnONPs [33]. 

Salinity affects physiological, morphological and biochemical plant operations 
involving seed germination, plant growth, water and nutrient intake [34]. In this 
study, high salinity levels negatively influenced faba bean plants, as demonstrat-
ed by substantial reductions in growth parameters such as shoot height, root 
length, number of leaves, FW, DW of shoot and root of salt-stressed plants com-
pared to the control group. These findings corroborate [35], which found that 
faba bean morphological and growth indices significantly reduced under salt 
stress. The reduction in plant height and number of flowers could be due to the 
detrimental impact of salinity stress. Salinity is a critical abiotic factor limiting 
growth and crop production [36]. Increasing salinity in irrigation water may 
have caused a reduction in faba bean biomass and growth parameters (plant 
height, number of leaves plants, shoots, roots, fresh and dry weight). [37] reported 
that the effect of salinity on faba bean plant development might be attributable 
to various reasons, including severe osmotic stress and ion toxicity.  

The current study investigates the effect of foliar application of nanoparticles 
with ZnNPs and ZnONPs on the growth parameter attributes of faba bean plants 
grown under salt stress (Figure 5). In agreement with our results, [38] demon-
strated that the zinc treatment boosted jojoba and maize plants’ growth and 
yield indices. Application of ZnO nanoparticles was used to restore most of the 
growth parameters in winter wheat, resulting in enhanced chlorophyll content, 
shoot height, and grain production with unchanged plant biomass [39]. More- 
over, [40] observed that reducing salt stress in sunflower plants treated with 
ZnONPs was more significant than in plants treated with dissolved ZnO alone. 
Additionally, foliar application of nanoparticles may reduce salt stress on the 
cells, enhancing plant growth, photosynthetic pigments, proline content, and 
grain yield of wheat and corn plants [41]. 

The influence of salt stress on chlorophyllase activity, which lowers chloro-
phyll synthesis or negatively affects the quantity and structure of chloroplasts, 
might explain the decrease in chlorophyll concentrations [42]. Exposing faba 
beans to salinity caused a significant reduction in the content of chlorophyll a, b, 
total chlorophyll, and carotenoids in stressed plants compared to the control 
(Figure 6). This finding was in line with the results of [43], who showed that sa-
linity stress reduced the photosynthesis pigment, growth and yield of faba bean 
plants. The decrease in chlorophyll could be due to reactive oxygen species (ROS) 
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causing damage to chlorophyll, which means the plant didn’t collect enough 
light and photosynthesis decreased or stopped [44]. This decrease might also be 
due to chlorophyll deterioration, reduced chlorophyll biosynthesis, and thylako-
id membrane stability [45].  

The content of chlorophyll a, b, total chlorophyll, and carotenoids in salt- 
stressed faba beans were significantly improved with ZnONPs as a foliar applica-
tion compared with the control. Similarly, [46] found that salt-tolerant pistachio 
plants had increasing or constant chlorophyll levels under salinity conditions, 
whereas salt-sensitive plants had decreased chlorophyll contents. Furthermore, 
[47] reported that the plant biomass, root and shoot lengths, chlorophyll and 
protein contents, and phosphatase enzyme activity were significantly increased 
when ZnONPs was applied to Gossypium hirsutum, cluster bean, Cucumis sati-
vus, Cicer arietinum, Brassica napus, Raphanus sativus, and Vigna radiata. There-
fore, it’s probable that the decrease in chlorophyll contents under salt stress is 
attributable to increased pigment degradation or reduced pigment synthesis, as 
well as disruption of enzyme activity involved in pigment production [48]. [49] 
suggested that foliar application of ZnONPs exposure in cotton plants signifi-
cantly increased growth rate, biomass, photosynthetic pigment levels, protein 
content, antioxidant enzyme activity, and increased the expression level of SOD 
and POX isoenzymes, while MDA production reduced. 

Proline accumulation is a sensitive physiological marker of a plant’s reaction 
to different abiotic stress, including salinity, and it contributes to membrane sta-
bility in many crops’ salt tolerance mechanisms [50]. Proline is also an antioxi-
dant and a stress-related signalling molecule in plants under salinity stress [51]. 
Our findings also suggest that salinity caused a significant increase in proline 
accumulation in faba bean plants compared to non-stressed plants and results 
are consistent with previous research on several crops (tomato, faba bean, and 
chickpea) [52] [53]. In addition, results might have been a significant effect of 
foliar spray of ZnNPs and ZnONPs to stressed plants caused a further increase 
in proline content compared with the untreated stressed plants. These findings 
supported by [54] stated that ZnONPs promoted proline synthesis and enhanced 
abiotic stress tolerance of bananas. Also, [55] found that ZnONPs on tomato 
plants improved antioxidant systems and accelerated proline accumulation, which 
might provide plants more stability and improve photosynthetic efficiency.  

Our findings showed that compared to non-stressed plants, salinity signifi-
cantly increased Na+ concentration while decreasing K+, Ca2+, and Zn2+ levels in 
faba bean leaves. In the shoot of the faba bean, Na+ concentration was signifi-
cantly increased with increasing salt concentration in single and combined treat-
ments compared to their salt-stressed plants. The gradual increase in the Na+ 
content has also been documented under saline conditions [56]. [57] reported 
that the poor growth performance of salinized plants was closely correlated with 
ionic toxicity due to an overabundance of toxic Na+ in the cells and a significant 
decrease in beneficial ions, namely K+, Ca2+, and Mg2+ contents in faba bean, 
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which could have occurred due to cell membrane damage, ion leakage, and dis-
ruption in essential ion uptakes. 

In plants exposed to water and salt stress, K+ is related to the accumulation of 
osmolytes and increased antioxidant components [58]. One of the most critical 
functions of K+ as a crucial nutrient in terrestrial ecosystems is as a significant 
contributor to water and solute transport K+ is an essential cation in vacuolar 
and cellular growth because of its high mobility [59]. The reduction in K+ con-
centration in plant tissue might be explained by interactions between Na+ and K+ 
at uptake sites in the roots, the impact of Na+ on K+ transport into the xylem, or 
uptake process inhibition. [60]. Ca2+ content declines under salinity stress condi-
tions. Ca2+ is one of the most critical ions that stabilize the membrane structure 
and function, whereas K+ is an important cationic osmolyte [61]. In this study, 
the decrease in Ca2+ contents of shoot under salinity and combined treatments of 
NaCl in Faba bean might be attributable to the reduction in Ca2+ availability and 
a limitation of Ca2+ absorption and transport to growth tissue under salinity 
[62]. Zinc plays a significant role in chlorophyll synthesis, pollen function, and 
fertilization and stabilizes proteins, membranes, and DNA-binding proteins such 
as Zn fingers [63]. Moreover, the foliar application of ZnONPs treatments con-
siderably enhanced the nutritional content of Sweet Basil Plant leaves, including 
N, P, K, Fe, Zn, and Cu, compared to control leaves [64]. These improvements in 
plant growth, physiological traits, and quality with foliar application of ZnONPs 
might be attributable to 1) enhancing nutrient usage efficiency. 2) reducing soil 
toxicity caused by fertilizer overdosage. 3) increasing antioxidant enzyme activi-
ty, shielding plants from the harmful effects of reactive oxygen species [65]. 

5. Conclusion 

Nanotechnology is one of the most recent technical developments in agriculture, 
and it is one of the most promising since it is both environmentally friendly and 
low-cost. Zinc oxide nanoparticles with varied particle sizes have been success-
fully synthesized utilizing Moringa oleifera extract and confirmed using various 
techniques (i.e. XRD, SEM, FTIR and UV-Vis spectroscopy). The foliar applica-
tion of zinc oxide nanoparticles (ZnONPs) mitigated the adverse effects of salin-
ity conditions that might be employed in faba bean plant irrigation. Also, ZnONPs 
enhanced faba bean growth parameters and chemical properties such as (Chl a, 
b, Total Chl), Carotenoids, Proline, and mineral contents.  
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