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Abstract 
Predominant phenomenon of the migration in source locations and arrival 
orientations for infrasound excitation was clearly identified by using a com-
bination of two arrays deployed at the coast of the Lützow-Holm Bay (LHB), 
Antarctica during the period from January to April in 2017. A few tens of 
infrasound source locations were determined in several individual days dur-
ing four months in 2017. These identified source locations appeared to be 
migrated from the north-east direction to the north-west direction from 
January to April in 2017, the evidence assumed to be caused by time-offset 
effects between katabatic winds from continental ice sheet and the micro-
baroms from the LHB, based on comparison with oceanic wave heights 
around Antarctica and Southern Indian Ocean calculated by the wave mod-
el (WAM). The latter source locations in the north-west direction were also 
considered to be related with the sea-ice dynamics involving collapse and/or 
discharge from the LHB to the Ocean by comparison with MODIS satellite 
image. 
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1. Introduction 

In the polar regions including Antarctica, atmospheric pressure variations are 
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affected by mutual interaction between the atmosphere and surrounding envi-
ronment, such as oceans, cryosphere, and the surface of solid earth. Origin of the 
sources in mutual interaction appearing in atmospheric pressure can be meas-
ured by infrasound sensors deployed in the polar regions. Infrasound is catego-
rized as a sub-audible pressure wave with frequency content from the cut-off of a 
sound (3.21 mHz, for a 15˚C atmosphere) to the lowest of the human audible 
band (20 Hz) and propagate thousands of kilometers along the Earth’s surface by 
considerable excitation energy [1]. There have been many observations of the 
infrasound excitation by a few generating sources in the world; volcanic erup-
tions, oceanic swells, large earthquakes, aircrafts, thunder and sprites, fireballs, 
meteoroid, reentry of artificial vehicles and aurora activities, etc. [2] [3] [4] [5] 
[6]. 

In Antarctica, the infrasound measurements started in April 2008 using a sin-
gle sensor at Syowa Station (SYO; 69.0S, 39.6E) in the Lützow-Holm Bay (LHB) 
(Figure 1). In the austral summer of 2014, two infrasound arrays were newly 
deployed both on the outcrop site at SYO and continental ice sheet (S16 point)  
 

 

Figure 1. Locations of infrasound observation network in the Lützow-Holm Bay (LHB) region, Antarctica as of 2017. Array sta-
tions of infrasound (green triangles), single stations of infrasound (blue diamond) and broadband seismometers (orange squares) 
are shown. Abbreviation of the local names are as follows: SYO: Syowa Station, AKR: Akarui Misaki, LNG: Langhovde, SKL: Skal-
len, RND: Rundvagshetta. 
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near the eastern coast of the LHB, in addition to several outcrop stations 
(Langhovde, Skallen and Rundvagshetta) by using isolated single sensors (Figure 
1) [7]. From the data obtained by the SYO array, long-term variations for eleven 
years in 2008-2019 were already reported [8], treating their frequency contents 
and source orientations of the microbaroms from the Southern Indian Ocean. 
The long-term variability of the microbaroms could be new information on es-
timating ocean climate trends in the costal margin of the Antarctic.  

By using a combination of the two arrays at SYO and S16 deployed in LHB, 
three infrasound sources were identified during the 2015 winter season, provid-
ing the source locations along the coast, within the sea-ice area of the LHB and 
surrounding SYO, respectively [9]. In addition, a longer-term variability of the 
source locations of infrasound excitation for eight months in January-August 
2015 was investigated by utilizing the same two arrays [10]. Considerable source 
mechanisms of these detected events were estimated involving surface environ-
mental change, in particular cryosphere dynamics surrounding the LHB, asso-
ciated with discharge of the fast-sea-ice in April 2015. In April 2016, moreover, 
succeeding analyses by using the same two arrays revealed a relationship between 
the source locations in the LHB direction and the occurrence of sea-ice-discharge 
event at the month [11].  

In this paper, in addition to these previous studies at the target region of 
LHB, time-space variations of the source locations for the infrasound excita-
tion from January to April in 2017 was studied by using a combination of the 
same two arrays deployed along the coast of LHB, in term of relationship be-
tween surface environment such as cryosphere dynamics and ocean climate 
variability around the LHB and the Southern Indian Ocean. By using the ar-
rays, we can further investigate the characteristics of low frequency sounds in 
Antarctica, its sensitivity to the environment and weather forecast, as well as 
its potential application in the study of seismology and climate change in 
southern high latitudes.  

2. Array Analyses  

A total of nine infrasound sensors have been observed along the eastern coast of 
the LHB since January 2013 [7]. Two triangle array alignments with different 
diameters were established at SYO (with a 100 m spacing triangle), and a vicinity 
of the S16 point over the ice sheet (1 km space triangle) where 15 km eastward 
from the SYO array (Figure 2). The different configuration of the two arrays was 
adopted to localize the detected signals efficiently by recognizing identical wave-
lengths with corresponding frequencies for each array size. The Chaparral Phys-
ics micro barometer (Model 25, detectable frequency of 0.1 - 200 Hz) has been 
utilized in these stations. Moreover, the hose arrays were aligned to reduce wind 
noises by adopting the mechanical low-pass filtering [12] [13]. Multiply con-
nected porous hoses were also used at the SYO array; in contrast, a single array 
configuration was used at other stations to make simplify their logistical installa-
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tions. These porous hoses were buried beneath the mounds of stones or snow-ice 
collected from around the observation sites to reduce the vibration effect of the 
winds. Detail configuration of these observation systems was described in [7].  

To estimate the propagation directions and locations of the infrasound 
sources, a multiple step approach was utilized; the first step was to compile a 
catalog for each array using a progressive multi-channel correlation algorithm 
(PMCC) [14] [15]; the second step was by using the two bulletins of the arrays 
(SYO and S16). A systematic flow of the array analysis is as follows; 1) search the 
pairs of signals within ±80 s of detected time difference on the basis of the bulle-
tin dataset for both arrays on the basis of the distance of two arrays is about 20 
km; 2) calculate the cross point by using a spherical triangle method based on 
propagation direction and apparent velocities for each array; 3) set the candidate 
origin as grids around the cross point within ±5 deg range, followed by calculat-
ing averaged origin time and select the most probable grid; 4) evaluate calculated 
apparent velocities (V) within the range of (0.28 m/s ≤ V ≤ 0.36 m/s) for both 
the arrays, respectively. 
 

 

Figure 2. (left) Source locations of infrasound excitation estimated by using two arrays of SYO and S16 (shown by black solid 
diamonds in the panel) in the LHB on January 26, 2017. The source locations are colored according to the time from the begin-
ning of the day. (upper right) Distribution of oceanic wave heights around Antarctica and Southern Indian Ocean calculated by 
the WAM model [16] [17] [18] on the same day. (lower right) MODIS satellite images around the LHB on January 26, 2017. SYO 
is indicated by red triangle. 
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3. Results and Discussion 

Source locations and arrival orientations for the infrasound excitation were in-
vestigated by using a combination of the two arrays (SYO and S16) deployed at 
the coast of LHB during the period from January to April in 2017. A few tens of 
infrasound source locations were determined in several different days during the 
four months. A total of six examples of the detected source locations by the array 
analyses will be demonstrated in this section. The results from array analyses by 
the PMCC algorithm are shown in Figures 2-6. 

Figure 2 represents the source locations of the infrasound excitation esti-
mated by using two arrays in LHB for the day on January 26, 2017. The source 
locations are colored according to the time from the beginning of the day. Ma-
jority of the detected events were determined in the north-east direction from 
the SYO array. Distribution of the global oceanic wave heights around East An-
tarctic continent and the Southern Indian Ocean calculated by the WAM Cycle 4 
model [16] [17] [18] on the same day is also shown in the figure. The Ocean 
Wave Hindcast Database was provided by the Japan Weather Association  
 

 

Figure 3. (left) Source locations of infrasound excitation estimated by using two arrays of SYO and S16 (shown by black solid 
diamonds in the panel) in the LHB on February 13, 2017. The source locations are colored according to the time from the begin-
ning of the day. (upper right) Distribution of oceanic wave heights around Antarctica and Southern Indian Ocean calculated by 
the WAM model [16] [17] [18] on February 18, 2017. (lower right) MODIS satellite images around the LHB on February 13, 2017. 
SYO is indicated by red triangle. 
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Figure 4. (left) Source locations of infrasound excitation estimated by using two arrays of SYO and S16 (shown by black solid 
diamonds in the panel) in the LHB on March 9, 2017. The source locations are colored according to the time from the beginning 
of the day. (upper right) Distribution of oceanic wave heights around Antarctica and Southern Indian Ocean calculated by the 
WAM model [16] [17] [18] on the same day. (lower right) MODIS satellite images around the LHB on March 9, 2017. SYO is in-
dicated by red triangle. 

 
(https://www.jwa.or.jp/service/transport-support/waves-03/). As the input wind 
fields in the calculation, the the National Centers for Environmental Prediction - 
National Center for Atmospheric Research (NCEP–NCAR) reanalysis data was 
utilized. Besides, the MODIS satellite images (provided by NASA) which give 
cryosphere information at the target area around LHB in the same day on Janu-
ary 26, 2017, are also inserted in the figure. It cannot identify the existence of 
large storms in the Southern Indian Ocean at the day; therefore, the determined 
orientations for the most infrasound events on the day could probably be asso-
ciated with the katabatic winds from continental ice sheet in the north-east di-
rection to the LHB direction. As there were no events determined inside the 
LHB (i.e., the north-west direction from the SYO array), dynamics of the cryos-
phere in particular involving sea-ice movements did not generate the infrasound 
events at the day, in spite of the pre-existed sea-ice cracks and separated fast-sea-ice 
pieces are clearly recognized in the MODIS image.  

By the similar representation as in Figure 2, source locations of the infra-
sound excitation estimated by a combination of the two arrays at SYO and S16,  
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Figure 5. (left) Source locations of infrasound excitation estimated by using two arrays of SYO and S16 (shown by black solid 
diamonds in the panel) in the LHB on March 20, 2017. The source locations are colored according to the time from the beginning 
of the day. (upper right) Distribution of oceanic wave heights around Antarctica and Southern Indian Ocean calculated by the 
WAM model [16] [17] [18] on the same day. (lower right) MODIS satellite images around the LHB on March 20, 2017. SYO is 
indicated by red triangle. 

 
distribution of oceanic wave heights around Antarctica and Southern Indian 
Ocean calculated by the WAM model, the MODIS satellite images around the 
LHB are shown in Figures 3-6, for the different days on February 18, March 9, 
March 20, and April 16, 2017, respectively. Predominant migration phenome-
non in the source locations and arrival orientations for the infrasound excitation 
were clearly identified by the array analyses from January to April in 2017, as 
clearly recognized in these figures. The identified source locations of the infra-
sound events appeared to be migrated from the north-east direction to the 
north-west direction from January to April in 2017, which could be assumed to 
be caused by the time-offset effects between the katabatic winds from continen-
tal ice sheet and the microbaroms originated from the LHB, based on compari-
son with oceanic wave height around Antarctica and southern Indian Ocean 
calculated by the WAM model.  

The latter sources of infrasound exciton from the north-west direction were 
also considered to be related with the sea-ice dynamics involving its collapse 
and/or discharge from the LHB to the Sothern Indian Ocean by comparison 
with the MODIS satellite images. The infrasound excitation could be generated  
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Figure 6. (left) Source locations of infrasound excitation estimated by using two arrays of SYO and S16 (shown by black solid 
diamonds in the panel) in the LHB on April 16, 2017. The source locations are colored according to the time from the beginning 
of the day. (upper right) Distribution of oceanic wave heights around Antarctica and Southern Indian Ocean calculated by the 
WAM model [16] [17] [18] on the same day. (lower right) MODIS satellite images around the LHB on April 16, 2017. SYO is in-
dicated by red triangle. 

 
when the energy of microbaroms were significant such as the period for the vis-
its of large storms near the offshore of LHB. This interpretation could also be 
confirmed by the oceanic wave heights by the WAM model at the days on March 
20, and April 16. The source orientations determined in the north-west direction 
were the similar pattern to the same two array results of the LHB in April 2015 
[10] and in April 2016 [11], respectively. This evidence can be supported by the 
occurrence of cryosphere dynamics such as the discharge of a large volume of 
sea-ice at the months in the LHB.  

Regarding the source locations on March 9, two directions (i.e., the north-east 
and the north-west) of the infrasound excitation were determined, when it was 
the boundary season from the katabatic dominated periods to the microba-
roms/sea-ice related events dominated ones. When checking the day in more 
detail, infrasound events from the north-east directions were found to be con-
centrated in the morning in a day, when it was the dominant time zone for the 
katabatic winds in the LHB area. In contrast, the infrasound events in the 
north-west directions had assumed to be occurred in the afternoon and later 
time zones, when the katabatic winds generally became small energy and ampli-
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tudes. It is also mentioned that the katabatic winds were generally recognized 
that their energy/appearance are large at the austral fall seasons in the Antarctic, 
which is consistent with this result by infrasound array analyses.  

Involving the effects of the oceanic swells from the Bay, moreover, the micro-
baroms could be varied significantly both in the amplitude and frequency con-
tents. These characteristic variations were affected by the local atmospheric con-
ditions in the vicinity of the studied area [19]. Infrasound signals under 3 Hz 
frequency content were supposed to contain in some extent the microbaroms 
which can be excited by the storms during whole seasons particular in austral 
winter. By conducting this study, configuration for the infrasound arrays dep-
loyed in the LHB had efficiently been operating, and the arrays provided useful 
information on the arrival directions of infrasound excitation sources associated 
with surface environmental variations. Moreover, the influence of the downslope 
wind of the continental ice sheet and the time difference between the microbaroms 
and the sound source migration of the LHB on the results, as well as the possible 
physical mechanism, can be further explored more detail. 

Finally, precise locations of the infrasound sources might be compared with 
information obtained by other geophysical investigations. For example, recently 
[20] conducted simultaneous observations by both the seismic and infrasound 
sensors at the Bowdoin Glacier in Greenland. They found ground validate 
infrasound sources very precisely by using time-lapse cameras and better-localized 
sources due to their small size. In terms of the importance of this study for 
monitoring climate change and environment in Antarctica, we suggest the 
directions for further research in the future, such as comparative analysis with 
other observational data, as well as the longer time span observations in the 
surrounding Antarctic regions. The oceanic-atmospheric coupling effects on the 
infrasound excitation were well explained by the relationship within the complex 
Earth system in the polar environment. In this aspect, long-term monitoring of 
the infrasound excitation in the Antarctic could be a useful tool for detecting the 
environmental variations within the climate change which is now going on over 
the Earth. 

4. Summary 

This paper reported a predominant migration phenomenon in the source loca-
tions for the infrasound excitation identified by using two arrays deployed in the 
LHB of Antarctica during four months from January to April in 2017. A few tens 
of infrasound sources were determined at five individual days, and the source 
locations had shifted from the north-east direction to the north-west direction, 
which could be caused by the time-offset effects between the katabatic winds and 
the microbaroms from the LHB, based on oceanic wave heights around Antarc-
tica by the WAM model. In addition, the latter sources from the north-west di-
rection could be involved in the sea-ice relating dynamics in the Bay based on a 
comparison with the MODIS satellite images. 
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