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Abstract 
In the course of organic synthesis, particularly for multi-step synthesis or natu-
ral product total synthesis, the selection of appropriate protective groups for 
the intended functionality is crucial in order to achieve chemoselective syn-
thetic goals. The development of many useful protective groups has been re-
ported based on the functionality of the anilino group. Herein, we discuss our 
study of various protective groups and the processes we used to establish com-
patibility with anilino functionality via the implementation of Oxone-mediated 
oxidative esterification in methanol. The results and the details of our expe-
riments are reported herein. 
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1. Introduction 

In the course of organic synthesis, particularly for multi-step synthesis or natural 
product total synthesis, selecting the appropriate protective groups for the in-
tended functionalities is crucial in order to achieve chemoselective synthetic goals. 
For syntheses that often require protection, the development of many protective 
groups has been based on compatibility with the functionality of the anilino group. 
Indeed, there are a number of protective units available for anilino groups, and 
many of the preparation methods have been introduced over the past decades 
[1]. Among them, the most common and versatile protective groups for anilino 
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functionality include alkyl groups, amides, carbamates, and sulfonamides.  
Today, there are a few methods for oxidative esterification that transform al-

dehydes to their corresponding carboxylic esters. Reactions using tert-butyl hy-
droperoxide (TBHP) as an oxidant and tris(pentafluoropheny)borane as a cata-
lyst have been reported, and para-aminobenzaldehyde could provide its methyl 
ester without any observable side reactions with the amino group [2]. Also, oxida-
tive esterification over anchored phosphotungstates has been introduced as a me-
thod to achieve conversion from para-aminobenzaldehyde to a methyl ester [3]. 
Visible light-assisted esterification employing a cobalt complex grafted to nano-
porous graphitic carbon nitride is used to transform meta-aminoben-zaldehyde 
into a methyl ester [4]. Other examples of ester production that begin with pa-
ra-aminobenzaldehyde derivatives utilize TBHP with Bu4NI as a catalyst [5] or 
TBHP with Cu(OAc)2 as a catalyst [6]. Photoinduced acylation in the presence 
of iridium and nickel bromide catalysts has been developed to furnish a variety 
of esters [7], and dehydrogenative coupling by a nickel hydride complex is used 
to simultaneously produce esters and alcohols [8]. However, in all these cases, 
the protective groups for anilino functionality are reportedly limited only to 
acetyl (Ac) and dialkyl groups.  

Meanwhile, we previously conducted research on indium metal and developed 
a mild methodology wherein deprotection of the trichloroethoxycarbonyl (Troc) 
moiety released free amine and aniline products [9], as well as alcohol and phe-
nol products [10]. Also, we recently reported practical methodologies for the 
oxidative esterification of aromatic aldehydes using Oxone® monopersulfate com-
pound (Oxone) as an oxidant and indium(III) triflate as a catalyst [11] [12] [13] 
[14]. Based on our continuous study, compatibility of protective groups with ani-
lino functionality was investigated via the implementation of Oxone-mediated 
oxidative esterification in methanol. To the best of our knowledge, no compre-
hensive study has dealt with oxidative esterification of aldehydes that possess 
anilino functionalities. The results and the details of our experiments are re-
ported herein. 

2. Results and Discussion  

2.1. Unstable Groups under the Reaction Conditions  

In our previous study, Oxone-mediated oxidative esterification in methanol was 
examined using meta-hydroxybenzaldehyde derivatives as the starting materials. 
Through these practical experiments, the stable protective groups and unstable 
protective groups for phenolic functionality under the reaction conditions were 
identified [14]. In a continuation of our study, we then subjected meta-amino- 
benzaldehyde derivatives to Oxone-mediated oxidative esterification to deter-
mine their compatibility with anilino functionality.  

First, we envisioned derivatives protected by tert-butoxycarbonyl (Boc) [15] 
and benzyl (Bn) [16] groups. These are the popular examples, because they are 
known as convenient and versatile protective groups. Both starting materials were 
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then subjected to Oxone-mediated oxidative esterification in methanol, but 
neither furnished the expected products. Removal of the Boc protection from 
the starting material resulted in a 13% yield of methyl ester with a free amino 
group (Table 1, Entry 1). The Bn-protected starting material showed no conver-
sion into its methyl ester. Instead, this starting material was merely recovered in 
a 23% yield (Table 1, Entry 2). We then extended our interest to the methyl 
protection, since the methyl group is known as a simple alkyl protective unit for 
the anilino moiety [17] [18]. However, despite our expectations, neither mono-
methyl nor dimethyl protection could not stabilize the Oxone-mediated 
 

Table 1. Esterification reactions using the starting materials with unstable groups. 

 

Entry Starting Material Product Temp. (˚C) Time (h) Yielda (%) 

1 

  

50 22 13 

2 

  

reflux 6 23 

3 

 

dec reflux 1 NA 

4 

 

dec reflux 2 NA 

5 

 

NR reflux 2 NA 

aIsolated yields.  
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esterification reactions, which ended in decompositions (dec) (Table 1, En-
tries 3 and 4). In another attempt we employed diallyl protection [19], but 
there was no reaction (NR) without the corresponding methyl ester (Table 1, 
Entry 5). 

2.2. Stable Groups under the Reaction Conditions  

The Boc group is often removed due to its sensitivity to acid. Therefore, acid-re- 
sistant carbamates such as Troc [20] [21] and allyloxycarbonyl (Alloc)-protected 
starting materials [22] were prepared and subjected to Oxone-mediated oxida-
tive esterification. In both cases, the reactions proceeded smoothly. According to 
our previous study, the electron withdrawing groups should display more posi-
tive effects than the electron donating groups [13]. We suggest that the strong 
electron withdrawing properties of the Troc group resulted in more of an excel-
lent quantitative yield compared with that of the Alloc groups (Table 2, Entries 
1 and 2). Amides also possess electron withdrawing characteristics. Consequent-
ly, we performed reactions with starting materials that possess typical amides 
such as benzyl (Bz) and Ac [23]. Again, in both cases, the reactions proceeded 
smoothly and gave both a quantitative yield and a 69% yield, respectively (Table 
2, Entries 3 and 4) [24]. The aromatic Bz group, due to its aromaticity, seemed to 
stabilize the reaction process very well. Substituting a trichloroacetyl group [23] 
[25] for an Ac group slightly improved the yield (Table 2, Entry 5). Finally, we 
also explored a couple of sulfonamide derivatives [26], which are known to pos-
sess powerful electron withdrawing effects. The nosyl (Ns) group has an electron 
withdrawing nitro structure at the 2-positon on the benzene ring, and the presence  
 

Table 2. Esterification reactions using the starting materials with stable groups. 

 

Entry Starting Material Product Temp. (oC) Time (h) Yielda (%) 

1 

  

reflux 8 quant 

2 

  

reflux 2 77 
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Continued  

3 

  

reflux 2 quant 

4 

  

50 6 69 

5 

  

reflux 2 71 

6 

 
 

reflux 6 77 

7 

  

reflux 16 84 

8 

  

reflux 2 83 

9 

  

reflux 6 56 

aIsolated yields.  
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of two Ns groups was found to be more productive than one Ns group (Table 2, 
Entries 6 and 7). Furthermore, the phenylsulfonyl group has no substituents, 
whereas the tosyl (Ts) group has an electron donating methyl structure at the 
4-positon on the benzene ring. When Ns (Table 2, Entry 7), phenylsulfonyl 
(Table 2, Entry 8), and Ts structures (Table 2, Entry 9) are compared, their 
yields could be explained as the result of electronic influence when they all are 
doubly substituted. The yield was the highest with the two Ns groups, and it was 
lowest with the two Ts groups.  

3. Conclusion  

Protective groups were investigated for compatibility with anilino functionality by 
utilizing the results of our previous study. Oxone-mediated oxidative esterifica-
tion in methanol was carried out to determine the compatibility of groups used 
to protect anilino functionality. Under the reaction conditions, alkyl protective 
groups were totally unstable and their use resulted in no products. The Boc 
group did not hold under the reaction conditions and thus was cleaved from the 
anilino moiety. On the other hand, starting compounds with other carbamates, 
as well as amides and sulfonamides, as the protective groups for the anilino 
functionality, successfully furnished the corresponding methyl esters in good to 
excellent yields with the protective moieties intact. The results of this study in-
dicate that the electron withdrawing properties of the protective parts have a 
positive effect on reaction productivity.  

4. Experimental  
4.1. Materials and Instruments  

All reagents were of analytical grade, were purchased commercially, and were 
used without further purification. All reactions were performed under argon us-
ing magnetic stirring unless otherwise stated. 1H NMR and 13C NMR spectral 
data were recorded on a JEOL JMTC-500 spectrometer (500 MHz for 1H NMR 
and 125 MHz for 13C NMR) using tetramethylsilane (TMS) as the internal stan-
dard. 

4.2. General Experimental Procedure 

When used as the starting materials, benzaldehyde derivatives such as meta-tert- 
butoxycarbonylamino benzaldehyde (111 mg, 0.5 mmol) were combined with 
Oxone (308 mg, 0.5 mmol) and indium (III) triflate (28 mg, 10 mol%) in me-
thanol (25 mL). The reaction mixtures were heated to 50˚C and monitored for 
completion via TLC. The reaction mixtures were filtered, and the filtrate was 
condensed via rotary evaporation. The resultant residue was purified by silica gel 
flash column chromatography to obtain the methyl ester products, which were 
concentrated via rotary evaporation and dried using a vacuum pump overnight. 
The yields reported are the isolated yields. All products were confirmed by spec-
troscopy.  
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Methyl 3-(2,2,2-Trichloroethoxycarbonylamino)benzoate (Table 2, Entry 
1): 1H NMR (500 MHz, Chloroform-d) δ 8.05 (t, 1H, J = 1.8 Hz), 7.80 - 7.77 (m, 
2H), 7.43 (t, 1H, J = 7.5 Hz), 7.17 (br s, 1H), 4.84 (s, 2H), 3.93 (s, 3H); 13C NMR 
(125 MHz, Chloroform-d) δ 166.6, 151.5, 137.4, 131.1, 129.3, 125.2, 123.2, 119.9, 
95.1, 74.6, 52.3.  

Methyl 3-(Allyloxycarbonylamino)benzoate (Table 2, Entry 2): 1H NMR 
(500 MHz, Chloroform-d) δ 8.03 (s, 1H), 7.80 (d, 1H, J = 5.7 Hz), 7.72 (d, 1H, J 
= 8.0 Hz), 7.36 (t, 1H, J = 8.0 Hz), 7.34 (br s, 1H), 5.98 - 5.90 (m, 1H), 5.34 (dd, 
1H, J = 17.2, 1.7 Hz), 5.24 (dd, 1H, J = 10.3, 1.2 Hz), 4.66 (d, 2H, J = 5.7 Hz), 3.89 
(s, 3H); 13C NMR (125 MHz, Chloroform-d) δ 166.9, 153.3, 138.3, 132.2, 130.7, 
129.1, 124.3, 123.0, 119.6, 118.3, 65.9, 52.3.  

Methyl 3-(2,2,2-Trichloroacetamido)benzoate (Table 2, Entry 5): 1H NMR 
(500 MHz, Chloroform-d) δ 8.59 (br s, 1H), 8.14 (t, 1H, J = 1.7 Hz), 7.90 (dd, 
1H, J = 8.0, 2.3 Hz), 7.87 (d, 1H, J = 8.0 Hz), 7.46 (t, 1H, J = 8.0 Hz), 3.91 (s, 3H); 
13C NMR (125 MHz, Chloroform-d) δ 166.2, 159.5, 136.2, 131.1, 129.4, 127.0, 
124.8, 121.5, 92.5, 52.4.  

Methyl 3-(ortho-Nitrobenzenesulfonamide)benzoate (Table 2, Entry 6): 1H 
NMR (500 MHz, Acetone-d6) δ 7.99(dd, 1H, J = 8.0, 1.2 Hz), 7.98 - 7.96 (m, 2H), 
7.89 (dt, 1H, J = 8.0, 1.2 Hz), 7.81 - 7.78 (m, 2H), 7.58 (ddd, 1H, J = 8.0, 2.3, 1.2 
Hz), 7.47 (t, 1H, J = 8.0 Hz), 3.87 (s, 3H); 13C NMR (125 MHz, Acetone-d6) δ 
166.6, 149.4, 138.0, 135.7, 133.4, 132.6, 132.4, 132.1, 130.6, 127.15, 127.08, 126.0, 
123.4, 52.6.  

Methyl 3-bis(ortho-Nitrobenzenesulfonamide)benzoate (Table 2, Entry 7): 
1H NMR (500 MHz, Acetone-d6) δ 8.38 (dd, 2H, J = 8.0, 1.7 Hz), 8.17(dt, 1H, J = 
7.5, 1.7 Hz), 8.11 (dt, 2H, J = 8.1, 1.8 Hz), 8.03 (dt, 2H, J = 8.0, 1.2 Hz), 7.95 (dd, 
2H, J = 8.0, 1.2 Hz), 7.92 (t, 1H, J = 1.7 Hz), 7.62 (t, 1H, J = 8.0 Hz), 7.59 (dt, 1H, 
J = 8.0, 1.7 Hz), 3.88 (s, 3H); 13C NMR (125 MHz, Acetone-d6) δ 166.0, 149.4, 
137.9, 137.7, 134.1, 133.6, 133.44, 133.37, 132.7, 132.5, 130.8, 130.7, 125.6, 52.8.  

Methyl 3-bis(Benzenesulfonamide)benzoate (Table 2, Entry 8): 1H NMR 
(500 MHz, Chloroform-d) δ 8.13 (dt, 1H, J = 8.1, 1.2 Hz), 7.94 - 7.92 (m, 4H), 
7.71 - 7.68 (m, 3H), 7.58 - 7.55 (m, 4H), 7.44 (t, 1H, J = 8.0 Hz), 7.21 (ddd, 1H, J 
= 8.0, 2.3, 1.2 Hz), 3.89 (s, 3H); 13C NMR (125 MHz, Chloroform-d) δ 165.6, 
139.2, 135.8, 134.5, 134.2, 132.6, 131.6, 131.3, 129.3, 129.1, 128.6, 52.4.  

Methyl 3-bis(para-Toluenesulfonamide)benzoate (Table 2, Entry 9): 1H 
NMR (500 MHz, Chloroform-d) δ 8.12 (dt, 1H, J = 8.1, 1.2 Hz), 7.80 (d, 4H, J = 
8.6 Hz), 7.73 (t, 1H, J = 1.7 Hz), 7.43 (t, 1H, J = 8.0 Hz), 7.34 (d, 4H, J = 8.1 Hz), 
7.20 (ddd, 1H, J = 8.1, 2.3, 1.2 Hz), 3.90 (s, 3H), 2.48 (s, 6H); 13C NMR (125 
MHz, Chloroform-d) δ 165.7, 145.2, 136.4, 135.9, 134.8, 132.7, 131.5, 131.2, 
129.7, 129.2, 128.6, 52.4, 21.7. 
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