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Abstract 
In this work, some new oxadiazole derivatives have been prepared, by react-
ing phenyl hydrazine and acetic anhydride together, which furnished 2,4- 
dimethyl-4-phenyloxadiazole. This product was reacted with a series of aro-
matic aldehydes, to obtain a series of oxadiazole derivatives. These derivatives 
were characterized by TLC, melting points, infrared red, proton nuclear mag-
netic resonance, carbon thirteen nuclear magnetic resonance and mass spec-
troscopy. Finally, these synthetized derivatives were tested for antiproliferative 
activity by two different cell lines. MCF-7 (Breast cancer cell line) and HepG2 
(Liver cancer cell line) were used to assess the antiproliferative activity of the 
prepared compounds. 
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1. Introduction 

Cancer is one of the most challenging public health diseases that face human-
kind [1] [2]. It is characterized by the development of abnormal cells that divide 
uncontrollably and have the ability to infiltrate and destroy normal body tissues 
[1] [2]. The disease is characterized by high morbidity and mortality rates [3]. In 
many countries, it has become the second largest killer after cardiovascular dis-
eases [3]. In 2012, there were 14 million new cases and 8.2 million deaths [4]. 
Among men, lung cancer was the most predominant, while among women, it 
was breast cancer. It was reported that there were 24 million cancer cases an-
nually and 14.6 million annual deaths by the end of 2015 [4]. The previous data 
led the researchers globally to combat this disease, searching for new anticancer 
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agents having heterocyclic nucleus is having a worldwide attention at various 
laboratories [5] [6] [7] [8]. It was reported that heterocyclic compounds could 
have anti-antiproliferative activities, with different proposed mechanisms of ac-
tion [5] [9]. The anticancer activity of these compounds may be due to their in-
tercalating properties or covalent binding abilities to DNA [9] or cell membrane 
interaction [10]. Many of the drugs being used in chemotherapy have hetero-
cycles as their basic structure, for example, pyrrole, pyrrolidine, pyridine, im-
idazole, pyrimidines, pyrazole, indole, quinoline, oxadiazole, azole, benzimida-
zole, etc. as the key building blocks to develop active biological compounds [11]. 
This research is based on the reaction of phenyl hydrazine with acetic anhydride 
to obtain 2,4-dimethyl-4-phenyloxadiazole. This product was reacted with a se-
ries of aromatic aldehydes, to obtain a series of oxadiazole derivatives. The reac-
tion was performed at one site of the two active methylene groups and this is 
most likely because of the steric hindrance maintained by the phenyl group of 
the phenyl hydrazine [12]-[27]. 

2. Materials 
2.1. Reagents 

All solvents and reagents were obtained from commercial sources and were used 
without further purification except petroleum ether and ethyl acetate. phenyl 
Hydrazine was purchased from Sigma Aldrich (Cairo, Egypt). Series of aromatic 
aldehydes were acquired from Sigma Aldrich (Cairo, Egypt). Absolute ethanol, 
ethanol 95%, acetic anhydride, ethyl acetate and petroleum ether were purchased 
from Piochem (Cairo, Egypt). Distilled water was used for the experiments.  

2.2. Instruments 

Progress of chemical reactions was observed using TLC (Merck, silica gel plates 
60 F254) and visualized using a UV-Vis spectrometer at 254 nm. Melting points 
were determined by Mel-Temp apparatus. NMR spectra were performed in 
Chloroform (7.26 ppm), with trimethyl silane as an internal standard, using 
Bruker Avance 500 spectrometer at ambient temperature, at drug discovery unit, 
Faculty of Pharmacy, Ain Shams University (ASU, Cairo, Egypt). All chemical 
shifts were expressed in parts per million (δ), and coupling constants (J) in Hz. 
FTIR spectra were recorded using KBr pellets on a model 883 double beam 
infrared spectrophotometer Bruker in 200 - 4000 cm−1, at drug discovery unit, 
Faculty of Pharmacy, Ain Shams University (ASU, Cairo, Egypt). MS spectra 
were recorded using a Bruker Esquire 2000 by APC or ES ionization, at drug 
discovery unit, Faculty of Pharmacy, Ain Shams University (ASU, Cairo, Egypt).  

2.3. Cell Culture: HepG2, MCF-7 

Cell line was obtained from Nawah Scientific Inc., (Mokatam, Cairo, Egypt). 
Cells were maintained in DMEM media supplemented with 100 mg/mL of strep-
tomycin, 100 units/mL of penicillin and 10% of heat-inactivated fetal bovine se-
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rum in humidified, 5% (v/v) CO2 atmosphere at 37˚C [28] [29]. 

2.4. Cytotoxicity Assay: HepG2, MCF-7 

Cell viability was assessed by SRB assay. Aliquots of 100 μL cell suspension (5 × 103 
cells) were in 96-well plates and incubated in complete media for 24 h. Cells were 
treated with another aliquot of 100 μL media containing drugs at various concen-
trations. After 72 h of drug exposure, cells were fixed by replacing media with 150 
μL of 10% TCA and incubated at 4˚C for 1 h. The TCA solution was removed, and 
the cells were washed 5 times with distilled water. Aliquots of 70 μL SRB solution 
(0.4% w/v) were added and incubated in a dark place at room temperature for 10 
min. Plates were washed 3 times with 1% acetic acid and allowed to air-dry over-
night. Then, 150 μL of TRIS (10 mM) was added to dissolve protein-bound SRB 
stain; the absorbance was measured at 540 nm using a BMG LABTECH®-FLUOstar 
Omega microplate reader (Ortenberg, Germany) [28] [29]. 

3. Chemistry and Scheme 
3.1. Scheme 

General scheme for the synthesis of compound (2) and compounds (14-22), illu-
strated in Figure 1.  

3.2. Procedure and Synthesis of Compound (2):  
2,5-Dimethyl-3-Phenyl-1,3,4-Oxadiazolidine 

Mixture of phenyl hydrazine (20 ml, 22 gm, 0.202 mole) and acetic anhydride 
were stirred together for 24 hours under reflux conditions at 125˚C as described 
in (Figure 1). TLC was made by 3:2 Petroleum Ether: Ethyl Acetate system. Pre-
cipitate was obtained by the concentration of acetic anhydride layer. Then it was 
 

 

Figure 1. General scheme. Reagents and conditions: (i) acetic anhydride (reactant & solvent), refluxing at 125˚C, 
24 hrs. (ii) series of aromatic aldehydes, conc. sulfuric acid, refluxing absolute ethanol, 105˚C, 12 - 29 Hrs. 
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crystallized by using absolute ethanol. Yield 88%. m.p = 122˚C. 1HNMR (400 
MHz, CDCl3): δ 1.25 ppm (d, CH3), 1.79 ppm (d, CH3), 4.5 ppm (q, CH), 4.92 
ppm (q, CH), 6.87 - 7.29 ppm (m, aromatic protons) and 10.3 ppm (d, -NH-). 
13CNMR (100 MHz, CDCl3): δ C1 (154.4 ppm), C2 (130.2 ppm), C3 (114.2 ppm), 
C4 (123.8 ppm), C5 (114.2 ppm), C6 (130.2 ppm), C7 (104.6 ppm), C8 (95.7 
ppm), C9 (23.1 ppm) and C10 (27.4 ppm). 

3.3. Procedure and Synthesis of Compounds (14-22) 

Mixture of 2 (2 gm, 0.011 mole) and series of aromatic aldehydes were mixed 
together for 12 - 29 hours under refluxing absolute ethanol at 105˚C. With the 
presence of 0.5 ml H2SO4 as a catalyst as mentioned in (Figure 1). TLC was 
made by 1:2 Petroleum Ether: Ethyl Acetate system. Product was obtained from 
the organic layer, later on, water was added which retrieved more amounts of 
the product. Crystallization was performed by ethanol to obtain pure crystallized 
product. 

3.3.1. Compound 14:  
(Z)-2-Methyl-3-Phenyl-5-Styryl-2,3-Dihydro-1,3,4-Oxadiazole 

Yield: 85%. m.p = 200˚C - 202˚C. 1HNMR (400 MHz, CDCl3): δ 3.1 ppm (d, 
CH3), 4.9 ppm (d, -CH-), 5.3 ppm (d, -CH-), 6.8 ppm (q, -CH-O) and 6.95 - 7.7 
ppm (m, aromatic). 13CNMR (100 MHz, CDCl3): δ C1 (131.5 ppm), C2 (129.5 
ppm), C3 (127.8 ppm), C4 (137 ppm), C5 (127.8 ppm), C6 (129.5 ppm), C7 
(142.5 ppm), C8 (121.3 ppm), C9 (149.2 ppm), C10 (90.9 ppm), C11 (38.6 ppm), 
C1 (147.5 ppm), C2 (115 ppm), C3 (130 ppm), C4 (125 ppm), C5 (130 ppm) and 
C6 (115 ppm). 

3.3.2. Compound 15:  
2-Methyl-3-Phenyl-5-((1Z,3E)-4-Phenylbuta-1,3-Dien-1-Yl)-2,3- 
Dihydro-1,3,4-Oxadiazole 

Yield: 82.9%. m.p = 210˚C - 212˚C. IR: 672 cm−1 (C-H, bending), 699.52 cm−1 
(aromatic, bending), 1002 cm−1 (C-O, stretching), 1067.33 cm−1 (C-N, stret-
ching), 1397 cm−1 (C-H, bending), 1547 cm−1 (C=C, aromatic), 1630 cm−1 (C=C, 
stretching), 1689 cm−1 (C=N, stretching), 2432 cm−1 (aromatic, overtone), 2878 
cm−1 (C-H, stretching), 3048 cm−1 (C-H, aromatic) and 3085 cm−1 (C-H, stret-
ching). 1HNMR (400 MHz, CDCl3): δ 2.8 ppm (d, CH3), 5.1 (q, -CH-O-), 5.4 
ppm (d, -CH-), 5.9 ppm (t, -CH-), 6.5 ppm (t, -CH-), 6.6 ppm (d, -CH-) and 6.8 
- 7.6 ppm (m, aromatic). 13CNMR (100 MHz, CDCl3): δ C1 (132.5 ppm), C2 
(129.5 ppm), C3 (128 ppm), C4 (136.8 ppm), C5 (128 ppm), C6 (129.5 ppm), C7 
(143.5 ppm), C8 (123.3 ppm), C9 (146.2 ppm), C10 (119.8 ppm), C11 (149.5 
ppm), C12 (90.2 ppm), C13 (22.4), C1 (146.5 ppm), C2 (116.7 ppm), C3 (129.4 
ppm), C4 (125 ppm), C5 (129.4 ppm) and C6 (116.7 ppm). 

3.3.3. Compound 16:  
(E)-5-(4-Methoxystyryl)-2-Methyl-3-Phenyl-2,3-Dihydro-1,3,4- 
Oxadiazole 

Yield 86%. m.p = 223˚C. 1HNMR (400 MHz, CDCl3): δ 2.1 ppm (d, CH3), 3.8 
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ppm (s, CH3), 4.9 (q, -CH-O-), 5.9 ppm (d, -CH-), 6.5 ppm (d, -CH-), and 6.7 - 
7.9 ppm (m, aromatic). 13CNMR (100 MHz, CDCl3): δ C1 (55.8) ppm), C2 (156.5 
ppm), C3 (120.1 ppm), C4 (128.7 ppm), C5 (126.8 ppm), C6 (128.7 ppm), C7 
(120.1 ppm), C7 (143.5 ppm), C8 (142.1 ppm), C9 (119.6 ppm), C10 (149.5 
ppm), C11 (84.6 ppm), C12 (29.4), C1 (146.1 ppm), C2 (118.7 ppm), C3 (126.4 
ppm), C4 (121 ppm), C5 (126.4 ppm) and C6 (118.7 ppm). 

3.3.4. Compound 17:  
(E)-5-(2-Chlorostyryl)-2-Methyl-3-Phenyl-2,3-Dihydro-1,3,4- 
Oxadiazole 

Yield 83%. m.p = 205˚C. 1HNMR (400 MHz, CDCl3): δ 1.7 ppm (d, CH3), 4.7 (q, 
-CH-O-), 5.8 ppm (d, -CH-), 6.9 ppm (d, -CH-), and 6.9 - 7.5 ppm (m, aromat-
ic). 13CNMR (100 MHz, CDCl3): δ C1 (129.9 ppm), C2 (129.1 ppm), C3 (137 
ppm), C4 (135.8 ppm), C5 (127.8 ppm), C6 (126.5 ppm), C7 (140.5 ppm), C8 
(125.3 ppm), C9 (149.3 ppm), C10 (89.2 ppm), C11 (27.9 ppm), C1 (145.5 ppm), 
C2 (116.1 ppm), C3 (129.9 ppm), C4 (120.8 ppm), C5 (129.9 ppm) and C6 (116.1 
ppm). MS: m/z: 298.07 (100.0%), (M + 1) 299.06 (87.2%), (M + 2) 297.05 
(12.8%). 

3.3.5. Compound 18:  
(E)-5-(4-Chlorostyryl)-2-Methyl-3-Phenyl-2,3-Dihydro-1,3,4- 
Oxadiazole 

Yield 92%. m.p = 199˚C. IR: 590 cm−1 (chloride sub., bending), 669 cm−1 (C-H, 
bending), 800.52 cm−1 (aromatic, bending), 710 cm−1 (mono sub., bending), 1050 
cm−1 (C-O, stretching), 1249.33 cm−1 (C-N, stretching), 1350 cm−1 (C-H, bend-
ing), 1540 cm−1 (C=C, aromatic), 1658 cm−1 (C=C, stretching), 1678 cm−1 (C=N, 
stretching), 2413 cm−1 (aromatic, overtone), 2857 cm−1 (C-H, stretching), 3035 
cm−1 (C-H, aromatic) and 3095 cm−1 (C-H, stretching. 1HNMR (400 MHz, 
CDCl3): δ 1.6 ppm (d, CH3), 4.3 (q, -CH-O-), 5.2 ppm (d, -CH-), 6.7 ppm (d, 
-CH-), and 6.8 - 7.9 ppm (m, aromatic). 13CNMR (100 MHz, CDCl3): δ C1 
(130.9 ppm), C2 (129.4 ppm), C3 (133.3 ppm), C4 (133.9 ppm), C5 (133.3 ppm), 
C6 (129.4 ppm), C7 (142.5 ppm), C8 (122.3 ppm), C9 (153.6 ppm), C10 (85.2 
ppm), C11 (29.9 ppm), C1 (142.6 ppm), C2 (116.4 ppm), C3 (129.9 ppm), C4 
(121.8 ppm), C5 (129.9 ppm) and C6 (116.4 ppm). MS: m/z: 298.07 (100.0%), 
(M + 1) 299.06 (63.7%), (M + 2) 297.05 (36.3%). 

3.3.6. Compound 19:  
1,4Bis((2)-(5-Methyl-4-Phenyl-4,5-Dihydro-1,3,4-Oxadiazole-2-Yl) 
Vinyl)Benzene 

Yield 76%. m.p = 295˚C - 297˚C. 1HNMR (400 MHz, CDCl3): δ 2.4 ppm (d, 
CH3), 4.89 (q, -CH-O-), 5.95 ppm (d, -CH-), 6.5 ppm (d, -CH-), and 6.6 - 8.1 
ppm (m, aromatic). 13CNMR (100 MHz, CDCl3): δ C1 (122.9 ppm), C2 (129.1 
ppm), C3 (119.3 ppm), C4 (133.9 ppm), C5 (119.3 ppm), C6 (129.1 ppm), C7 
(89.6 ppm), C8 (32.1 ppm), C9 (149.6 ppm), C10 (122.8 ppm), C11 (148.7 ppm), 
C12 (134.4 ppm) and C13 (129.9 ppm). 
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3.3.7. Compound 20:  
(E)-4-(2-(5-Methyl-4-Phenyl-4,5-Dihydro-1,3,4-Oxadiazol-2-Yl) 
Vinyl)Phenol 

Yield 39%. m.p = 233˚C. IR: 659 cm−1 (C-H, bending), 798 cm−1 (aromatic, 
bending), 708 cm−1 (mono sub., bending), 1049 cm−1 (C-O, stretching), 1218 
cm−1 (C-OH, stretching), 1310 cm−1 (C-N, stretching), 1367 cm−1 (C-H, bend-
ing), 1535 cm−1 (C=C, aromatic), 1608 cm−1 (C=C, stretching), 1658 cm−1 (C=N, 
stretching), 2460 cm−1 (aromatic, overtone), 2832 cm−1 (C-H, stretching), 3055 
cm−1 (C-H, aromatic), 3095 cm−1 (C-H, stretching) and 3507 cm−1 (OH, Stret-
ching). 1HNMR (400 MHz, CDCl3): δ 1.93 ppm (d, CH3), 4.83 (q, -CH-O-), 5.9 
ppm (d, -CH-), 6.1 ppm (d, -CH-), 6.9 - 7.5 ppm (m, aromatic) and 9.8 (s, OH). 
13CNMR (100 MHz, CDCl3): δ C1 (159.1 ppm), C2 (135.8 ppm), C3 (119.3 ppm), 
C4 (129.9 ppm), C5 (119.3 ppm), C6 (135.8 ppm), C7 (149.5 ppm), C8 (123.8 
ppm), C9 (149.6 ppm), C10 (90.9 ppm), C11 (21.1 ppm), C1 (145.6 ppm), C2 
(120.4 ppm), C3 (109.3 ppm), C4 (121.8 ppm), C5 (109.3 ppm) and C6 (120.4 
ppm). 

3.3.8. Compound 21:  
(E)-2-Methyl-5-(4-Nitrostyryl)-3-Phenyl-2,3-Dihydro-1,3,4-Oxadia
zole 

Yield 62%. m.p = 225˚C. 1HNMR (400 MHz, CDCl3): δ 1.24 ppm (d, CH3), 4.63 
(q, -CH-O-), 6.4 ppm (d, -CH-), 6.8 ppm (d, -CH-) and 6.9 - 8.9 ppm (m, aro-
matic). 13CNMR (100 MHz, CDCl3): δ C1 (155.1 ppm), C2 (132.8 ppm), C3 
(125.6 ppm), C4 (143.9 ppm), C5 (125.6 ppm), C6 (132.8 ppm), C7 (144.7 ppm), 
C8 (129.8 ppm), C9 (149.6 ppm), C10 (90.9 ppm), C11 (27.1 ppm), C1 (143.6 
ppm), C2 (125.4 ppm), C3 (115.3 ppm), C4 (121.8 ppm), C5 (115.3 ppm) and C6 
(125.4 ppm). 

3.3.9. Compound 22:  
(E)-2,6-Dimethoxy-4-(2-(5-Methyl-4-Phenyl-4,5-Dihydro-1,3,4- 
Oxadiazol-2-Yl) Vinyl) Phenol 

Yield 65%. m.p = 280˚C. 1HNMR (400 MHz, CDCl3): δ 1.98 ppm (d, CH3), 3.8 
(s, CH3), 4.6 (q, -CH-O-), 5.9 ppm (d, -CH-), 6.7 ppm (d, -CH-) and 7.1 - 7.9 
ppm (m, aromatic). 13CNMR (100 MHz, CDCl3): δ C1 (139.6 ppm), C2 (149.9 
ppm), C3 (114.6 ppm), C4 (126.9 ppm), C5 (114.6 ppm), C6 (14998 ppm), C7 
(55.1 ppm), C8 (55.1 ppm), C9 (141.2 ppm), C10 (139.1 ppm), C11 (150.6 ppm), 
C12 (88 ppm), C13 (22.5 ppm), C1 (143.7 ppm), C2 (129.2 ppm), C3 (116.3 
ppm), C4 (120.8 ppm), C5 (116.3 ppm) and C6 (129.2 ppm). 

4. Results 
4.1. Cytotoxicity Results of MCF-7 

MCF-7 cell line was used to assay the antiproliferative activity of compounds 14, 
15, 16, 17 and 18, compound 18 was the most potent in this group with IC50 value of 
3.54 μm and compound 16 was the lowest in potency with IC50 value of 52.67 μm 
(Figure 2). Microscopical examination of the tested compounds in the cell line  
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Figure 2. IC50 Values of compounds 14 - 18 against MCF-7 Cell line [28] [29]. 
 
at 100 μm used to confirm the calculation of the IC50 (Figure 3). 

4.2. Cytotoxicity Results of HepG2 

HepG2 cell line was used to assay the antiproliferative activity of compounds 19, 
20, 21 and 22, compound 19 was the most potent in this group with IC50 value of 
9.38 μm and compound 21 was the lowest in potency with IC50 value of 32.39 μm 
(Figure 4). Microscopical examination of the tested compounds in the cell line at 
concentration of 100 μm was used to confirm the calculation of the IC50 (Figure 5). 

5. Conclusion 

From the above findings, we concluded that all assayed compounds have poten-
tial antiproliferative activity on both cell lines which were tested. Generally, it 
was found that the cyclized phenyl hydrazine derivatives (oxodiazoles) are more 
potent than derivatives with open side chains (not cyclized) [5]. For MCF-7 cell 
line, compound 18 was found to be the most potent compound in the group 
scoring 3.548 mm, compound 16 was the lowest in potency scoring 52.67 mm. 
For HepG2 cell line, compound 19 was found to be the most potent compound  
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Figure 3. MCF-7 cell line under microscopic examination of control and compounds 14 - 
18 at 100 μm concentration [28] [29]. 
 

 

Figure 4. IC50 Values of compounds 19 - 22 against HepG2 Cell line [28] [29]. 
 

 

Figure 5. HepG2 cell line under microscopic examination of control and compounds 19 - 
22 at 100 μm concentration [28] [29]. 
 
among the other compounds scoring 9.384 mm and compound 21 was the low-
est in potency in this group, scoring 32.39 mm (Figure 6). 
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Figure 6. Summary of the cytotoxic assay results of all compounds against standard 
drugs. 
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