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Abstract

The simulation of the Heteroclinic Loop and Homoclinic Loop in a controlled
Chen system is finished. The controlled Chen system is Z, symmetric, and
the limit cycle loop or the attractor is observed as a varying free parameter. As
the loop becomes the boundary of the unstable manifold of the equilibrium
solution, the heteroclinic orbit from the unstable equilibrium solution to the
loop is formed. Usually, the twins’ unstable manifold appears dueto Z, sym-
metry. The Generalized Hopf point brings forth the limit point cycle bifurca-
tion, and nearby, the homoclinic bifurcation is observed. The homoclinic bi-
furcation arises since the equilibrium solution undergoes a Bogdanov-Takens
bifurcation of codimension two. A novel phenomena of multi-loop coexist-
ence are observed near the intersection point of the homoclinic bifurcation
curve and Hopf line. Later, homoclinic curve tangents to the Bautin bifurca-
tion line, the stable limit cycle expands into a homoclinic solution, which is
called a limit point homoclinic solution.
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1. Introduction

In 1963, Lorenz observed the first chaos attractor and developed the chaos system
named the Lorenz system [1]. Even from then on, people devote enormous work
to finding the chaos, and the research work has more focus on the new singularity
of system complex dynamics to understand it [2]-[5]. In 1999, Chen developed
the new chaos system, which is the Chen system, to have new symmetry. Chen
system is similar to the Lorenz system; however, they aren’t topologically equiva-

lent [6] [7]. The development of the Chen system control method has referred to
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the papers [8] [9] due to its broad application in secure communication, noise
control fields, etc.

Chen system has Z, symmetry, its unstable manifold, which is two-dimen-
sional, is mirror symmetrical. In general, we have developed the controlled Chen

system as follows:

X' =a(y—x)
y'=(c—a)x—xz+cy+ex’ +e,yz (1)
Z'=xy-hz

With e =0, the symmetry unstable manifold is separated by two twin attrac-
tors from each other after parameter perturbation, which inspires us further new
enthusiasm with interests in its heteroclinic orbits and homoclinic orbits simula-
tion by numerical computation. We apply the Matcont software to compute some
novel bifurcation points, and in this way, the homoclinic orbits are computed. The
continuation of homoclinic orbits as the free parameters are continuously varied
is done, and the homoclinic bifurcation line is tracked.

With e =0, weassume system (1) haszero O and the other two equilibrium

points P and Q. Suppose J =(-1,-1, 1)T , it is seen that

X X
FlJ|y||=JF|Yy]|,hence after
z z

JP=Q, JQ=P 2)

And we have the following proposition,
If the equilibrium P,Q is unstable, that is, the characteristic equation has ei-

genvalues
9%(/?1)<0<SR(/LZ,3) (3)

(A1) Suppose there exists a heteroclinic orbit het, from P to limit cycle
loop T, that is limit het, =P, limit het, =I", the new heteroclinic orbits
het, from Q toloop T is proved to satisfy the condition limit, , het, =Q,
limit, ,, het, =T".

Proof: It is easily seen that het, = Jhet,, het, = Jhet, . In addition, the two un-

t—>—0 t—>+0

t—>—0

stable manifolds originated from P and Q is coincide with each other. We
het=T" since limit,, _het=0.

By Poincaré section computation, the bifurcation diagram of the periodicity of

also easily get that limit, o

limit cycles is drawn versus the varying free parameter. The routes to chaos are
verified by the Poincaré section scheme. With e >0, the symmetry boundary T’
destroys itself and separates into two loops T (X,y,z,e/) and T,(-x,—y,z,-¢&),
hence we derive the conclusion.

(A2) For e >0, Suppose there exists a limit cycle loop T';(X,Y,2,€), with het-
het, =I'; and lim het, = P, then the new
limit cycle loops T',(—X,—Y,Z,—€,) appears, which lie on the boundary of the

eroclinic het, given that lim

t—+0 to—o0

unstable manifold of the equilibrium Q and the heteroclinic loop het, satisfy-
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ing

lim het, =T',, lim_,__ het, =Q (4)

Proof: It is easy to get that Q(—€,)=JP(e,), and suppose that het, = Jhet,,

the conclusion is given.

t—>+00

For e, =0, the heteroclinic orbit is symmetric, however, the unstable manifold
of P,Q are coincide with saddle O, that is, the same cycle loop lying at the
boundary of its unstable manifold. Sometimes, the limit cycle loop is evolving into
two homoclinic cycles across the zero point, thatis, lim,_,, I'=0.We often ob-
serve the homoclinic bifurcation phenomena as varying two free parameters by
continuing the limit cycle loop. For example, if the equilibrium happens with Bog-
danov-Takens (BT) bifurcation, which is of singularity 2 [10]-[12], the homoclinic
bifurcation may occur nearby. The generalized Hopf bifurcation happens with the
first Lyapunov exponent of normal from equal to zero. Since the hysteresis phe-
nomena near the generalized Hopf (GH) point [10], there are two coexisting limit
cycles nearby. BT bifurcation brings forth the homoclinic bifurcation phenomena;
therefore, if a homoclinic loop exists, which becomes the boundary of a stable
limit cycle? In fact, a novel phenomenon of two loops with one homoclinic orbit
coexisting occurs at parameters near the intersection of the homoclinic line and
Hopf curve. With the perturbation of ¢, the continuation of the homoclinic bi-
furcation is completed further. Later on, the homoclinic line emerges into a limit
point cycle bifurcation line, which expands the related stable limit cycle into a
limit point homoclinic solution.

The whole paper is organized into three sections. In section 2, the heteroclinic
orbit links the limit cycle and the two unstable equilibrium solutions, respectively,
through the unstable manifold. By observing the periodic windows of the Poincaré
bifurcation diagram, two separated limit cycles that lie in the boundary of the twin
unstable manifold with te, are simulated. In section 3, the generalized Hopf bi-
furcation is discussed, and its near dynamics are classified geometrically. In sec-
tion 4, the homoclinic bifurcation is continued by using Matcont software [13]-
[15]. The continuation of a pair of symmetrical homoclinic orbits is tracked along

the homoclinic line bifurcating from the BT point. The discussion is given finally.

2. The Heteroclinic Loop Simulation

In this section, we suppose the equilibrium solution P and Q are unstable sad-
dle-focus. The general algorithm for solving the ODE equation is carried out to com-
pute the heteroclinic solution, which is plotted in Figure 1. It is directly drawn with
e =0, e,=22 and

W'O =het, =W°P, W"(O)=het,=W*(Q), JP=Q, het, = Jhet,
in Figure 1(a). The limit cycle T is observed with e =0,e, =22 and
W"P =het,, W*(Q)=het,, JP=0Q, het, = Jhet,

which also satisfy
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lim__  het =T, lim_, het,=T, lim___het =0, lim___het,=0

This verifies that the unstable manifold of P,Q and O arein coincidence. Fur-
ther, weset ¢ =0, e, =0.6, then the chaos is observed, which is the unstable man-
ifold of P and Q, as shown in Figure 2. Other parameters are fixed as a =35,
c=28, b=3.

As the parameter € varies, the symmetry limit cycle, which lies at the boundary
of the unstable manifold, is destroyed. As shown in Figures 3(a)-(f) and Figures 4(a)-
(c). The periodicity of the limit cycles is analyzed by Poincaré section computation,

(@) 25 (b)
12
2
10 —|
1.5 —
8 -
N1 N 6
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Figure 1. The heteroclinic orbit is observed. (a) As e, =22, the heteroclinic orbit starts from the zero solution to the nontrivial

equilibrium; (b) As e, =2.2, the heteroclinic orbit starts from an unstable equilibrium to a limit cycle.
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25 _ 15
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Figure 2. The chaos is simulated with e, =0.6. (a) Sightin X —Y —Z view; (b) Viewin X -Y plane.
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Figure 3. The perturbation of the parameter €, brings forth the periodical solutions I’ ,, which have a relationship

I, (—%—Y,2,—&)=JT,(X,Y,2,e) . Fixed parameters are chosenas a=10, b=5, ¢=8, e,=0.6.(a) With e ==+0.12; (b) With
e, =+0.14; (c) With e, =£0.16 ; The period doubling bifurcation happens with varying parameter e, further; (d) With e =+0.29;
(e) With e, =40.32; (f) With e, =+0.336 . The observed attractors are plotted with a=15, b=0.6, c=12, e, =0.6; (g) With
e, =0.28; (h) With e =0.3; (i) With e =0.316.
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Figure 4. The near dynamics of the generalized Hopf point. The bifurcation diagram has
three different regimes, which represent the topological and geometrical classification of
the near dynamical behavior.
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which is often the route to chaos via period-doubling bifurcation of periodic so-
lutions. Via the routes to chaos, the periodical window of solutions is observed as
a varying parameter e, . For example, if we choose parameters with a=10,
b=5, ¢c=8, e, =0.6, we draw Figure 3 with varying parameter e, . The peri-
odic solutions of its return map with different periodicities are observed. Choose
g, =0.12,0.14,0.16 and e =0.29,0.32,0.336, the periodical oscillations are ob-
served with asymmetrical periodical solutions, which have periodicity with routes
to quasi-periodical solutions shown in Figures 2(a)-(c), and the period-doubling
bifurcation shown in Figures 2(d)-(f).

With a=15, b=0.6, c=12, e, =0.6, the similar numerical simulation is
carried out to compute the periodical window as varying e, the asymmetry so-
lutions are drawn with opposite value +e, . With the above conclusion, we can
express the periodical solutions by T, (—X, -y, ,—el) =JI, (X, v, Z, el) . As shown

in Figures 3(a)-(c), the attractors with multi-period cycles are simulated.

3. Bifurcation of GH Analysis

The generalized Hopf bifurcation (GH) is a Hopf bifurcation that occurs when the
first Lyapunov exponent equals zero. For system (1), as the imaginary roots cross
the imaginary axis, Hopf bifurcation and the stability property are lost in its in-
stability state. In general, Sub-critical Hopf or super-critical Hopf bifurcation oc-
curs, which bifurcates periodic solutions. The stability of the bifurcating periodi-
cal solutions is determined by normal form coefficients. In general, the periodic
solution is stable if the first Lyapunov exponent is negative, and is unstable other-
wise. Therefore, Bautin bifurcation occurs when the first Lyapunov exponent is
zero, which is also called the GH bifurcation [13] [14]. Usually, two limit cycles
collide at the GH bifurcation line, and the near dynamics of the GH point are
analyzed by the classifying method. Herein, with the assumption e =0, we do
system stability analysis by the linearizing method.
Suppose system (1) has an equilibrium solution P (X*, Ve, Z*) and

Q(—X*, =V, Z*) . Do axis transformation and the linearized system at P is writ-

ten as

x'=a(y-z)
y'=(-a+c-z)x+(z.+C)y+(&y. —x)z )
7' = y.x+xy-bz

Therefore, the characteristic equation is written as

A(A)=-2°+(e,z. —a—b+c) A% +(ae,z. +be,z. +€,X.Y. ) A

+(—a2—ab+2ac—az*+bc—xf)/1

(6)
+(abezz, +ae,X.Y. +ae,y’ —a’b+2abc —abz, —ax’? —ax*y*)
Set A =iw, one gets that
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o’ —(aezz*+bezz,,+e2x*y* -a’? —ab+2ac—az*+bc—x3)a):0

(e,z.—a-b+c)o’ = (abezz* +ae,X.Y. +ae,y’ —a’b+2abc —abz, —ax? —ax*y*)
™)

The BT bifurcation occurs at the intersection point of the fold line and Hopf

line, so we get

ae,z. +be,z. +e,x.y. —a’ —ab+2ac-az. +bc— x> =0 )

8
abe,z. +ae,x.y. +ae,y’ —a’b+2abc —abz. —ax? —ax.y. =0

Suppose a Hopf bifurcation occurs at the equilibrium solution P, with

A =#iw(w>0), and the corresponding right eigenvector ¢ and left eigenvec-

tor p are written as

-a
-a—iow
a= . ,
B y. (iw+2a)
b+iw
(2e,y. —a+c)b’ +(—(2iy.e, —ia+ic)m+y: (e, - 2))b+iwy: ©)
b=m b(a—iw)
b-iw
&Y — X,

After axis transformation, the multilinear form of system (1) is truncated to its

third-order form in the style of a Taylor expansion.
X' =LX +B(X,X)+C (X, X,X)+o(|X[) (10)
Herein, we derive that
Lg=iwq, LJ=-iwq, pL=-iwp, pL=iwp
and (p,q) =1, (p,q‘) =0.Set X =0z+Gz +W , then Equation (10) is written as
2'=iwz+(p,B(q,q))2* +2(p,B(a.9))zZ +(p,B(7.9))Z°
+2B(qz,W )+2B(qzZ,W)

W= LW +(B(q,q)—q<|0,B(Glaq»‘qm)z2
(11)

with
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With the assumption W =W,,2* +W,,2Z +W,,Z° +---, differentiate both sides
of the equality with respect to time t to get
LW,o = 2iaW,, —H,,
LW, =-H,, (12)
LW,, =-2iaW,, —H,

Do inverse computation to get
W,, = (2io—L) ™ H,y
W, =-L"H, (13)
W,, = (~2io—L)Y Hy,

By near identity transformation, the normal form is written as

7' =iwz+C(0)z° z+o(|| || )
with

C(0) = 2B(qW,, )+ 2B(q. Wy ) + .w(GmGﬂ Gy - IGOZIZJ (14)

With Matcont software, the generalized Hopf bifurcation point is calculated
along the Hopf line, which satisfies C(O) =0, the exact condition for the first
Lyapunov exponent. The generalized Hopf bifurcation curve is also calculated on
the parameter (a,e,) plane as varying two free parameters, as shown in Figure
5(a). As often, people intend to understand the near dynamics of the GH point by
the classification method. We also draw it in Figure 5(a), by parameter regimes
with numbers (1)-(3) to indicate that the near dynamics of the GH point can be
classified into different dynamical behaviors topologically. In regime (1), two sym-
metry stable limit cycles exist, with the equilibrium solutions being unstable. In
regime (2), two symmetry pairs of limit cycles arise. In coexisting limit cycle pairs,
the red pair denotes the unstable periodical solutions, whilst the blue pairs repre-
sent the stable periodical solutions. It is named the hysteresis phenomenon of the
limit cycle, which is induced by sub-critical Hopf bifurcation along the right line
of the GH point. In regime (3), the equilibrium solutions are stable. It is seen that
a pair of limit point cycles is observed along the GH bifurcation curve with green
color. The continuation job is finished with varying free parameters, as shown in
Figure 5(b), which illustrates the sub-critical Hopf bifurcation phenomena near
the GH point. The listed GH point is calculated with parameters chosen as
a=3.8503588, b=2; c=4.3414,e, =2.2321482.
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Figure 5. The homoclinic bifurcation phenomena happen on the (a—e,) parameter plane. (a) The homoclinic bifurcation line

with the novelty to cross over GH point, with fixed parameter b=3, ¢=23.478447389; (b) The intersection phenomena of homo-

clinic bifurcation line and Hopf line, and the tangency of homoclinic line with the GH bifurcation line, with fixed parameter b=2,
¢ =4.341405792; (c) The bifurcating homoclinic solutions of (a); (d) The bifurcating homoclinic solutions of (b).
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4. Homoclinic Bifurcation Phenomena

Homoclinic bifurcation phenomena are induced by the separation distance of the
orbit itself. One general method to get a homoclinic orbit is to compute the homo-
clinic orbit starting from the Bogdanov-Takens (BT) bifurcation point. For the BT
bifurcation point, the near dynamics of homoclinic bifurcation phenomena are very
interesting both in theory and numerical computation. However, it is the novel job
of dynamical bifurcation software, and the simulation work of the homoclinic loops
is exploited by steps, from the BT point to periodical solutions and the homoclinic
orbit. We are familiar with the dynamic hand tools, such as Matcont software, which
runs in Windows environments and has a quick speed.

Due to the symmetry property of system (1), we list the following conclusion.

Suppose system (1) has two stable equilibrium solutions P and Q:

(Al) For e =0, since Q=JP, a pair of homoclinic bifurcation orbits, I',
and T', are obtained near the BT bifurcation point, which satisfy

lim,_,, I, =0, T,=JI,.

(A2) Varying free parameter ¢, the homoclinic bifurcation orbit is calcu-
lated starting from e, =0, then continued. Z -2 symmetry is destroyed, how-
ever, Q(—X., =Y. z,—€)=JP(X., Y. Z.,€ ). Suppose BT bifurcation happens at

P(X., Y- 2,6 ) with e =0, and a homoclinic orbit T;(X,Y,z,€,e,) is ob-
tained near the BT point via free parameters perturbation, then at the BT bifurca-
tion point Q, and the homoclinic orbit I, (—x,—y, Z, —el,ez) is derived by the
same computation method, which relates to I'; by I', =JTI.

For e =0, we carry out the bifurcation computation work by seeking the BT
bifurcation point. By computing the roots 4,, =0 of the characteristic equation
in section 2, the BT point is found by tracking the Hopf bifurcation line or fold
line on (a,e,) -parameter plane, as shown in Figure 6. With chosen parameters
b =3,c=3.478447389, one BT point is calculated at a=6.957, e, =-1, and
the GH point is found at a =3.813, e, =0.9023. The simulation job of Matcont
manifests that the homoclinic bifurcation line through the GH point, and we em-
phasize that the homoclinic line coincides with the GH bifurcation curve (wherein
two limit cycles collide), which is denoted by the pink line in Figure 6(a). As var-
ying two free parameters on the (a,e,) plane, the continuation of the homo-
clinic bifurcation orbits is plotted in Figure 6(c), which is in coincidence with the
occurrence of limit cycles collision phenomena. It is called the SNhom orbit,
which is significantly noticed as the homoclinic line crossing the GH point.

For e =0, with chosen parameters b=2, ¢ =4.341405792, the bifurcation
diagram is also drawn in Figure 6(b). The pink color line is the bifurcation line
of homoclinic bifurcation, whilst the green color line denotes bifurcation of the
limit point cycles. The lines are drawn using the continuation method in Matcont by
varying a and e, continuously. The continuation job of the homoclinic orbit is
done, and the red homoclinic orbits are drawn near the BT point, and the blue

homoclinic orbits are varying parameters quickly before P, point, then beyond
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Figure 6. The amplification of the homoclinic bifurcation line in the (a—e,) parameter

plane with b=2, c¢=4.341405792.

it. The overlap phenomena of the homoclinic orbits manifest the possible complex
multi-loop dynamics in system (1). As shown in Figure 7, the intersection point
of the homoclinic bifurcation line and Hopfline is denoted as P, , and it is noticed
that the nontrivial equilibrium herein is a center. However, the homoclinic bifur-
cation line is tangent to the limit point cycle line again at the point P, . The multi-
loop dynamics phenomena appear between points P, and P,.Inaddition to the
homoclinic orbit, which usually lies on the red line, one limit point cycle is evolv-
ing into one stable and one unstable limit cycle on this segment. Further, after
passing into the tangent point P, , the stable and unstable limit cycles collide into
the limit point cycle, which looks like the homoclinic orbit. The continuation of
homoclinic orbits and the overlap phenomena are manifest in Figure 6(d).
Perturbation with the free parameter e, the homoclinic bifurcation is also sim-
ulated with overlapping phenomena, as shown in Figure 7. With chosen parameters
b =3, ¢=3.478447389, the continuation of the homoclinic orbit is done on the
(e,,e,) parameter plane. Hence, no symmetry homoclinic orbit is observed. The

bifurcation line in the diagram, as shown in Figure 7(a) and Figure 7(b), manifests
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Figure 7. The homoclinic bifurcation phenomena happen on the (a—ez) parameter plane with € parameter perturbation. (a)

The homoclinic bifurcation lines simulated with a =4.03564, b=3, c¢=23.47844;(b) The homoclinic bifurcation lines simulated
with a=6.2426188, b=2, c=4.341405792; (c) The continuation of homoclinic solutions of (a), with €, >0, the red line is the

homoclinic solution starting at ¢ =0, e, =1.25; (d) The continuation of homoclinic solutions of (b), with €, >0, the red line is
the homoclinic solution starting at € =0, e, =0.8; (e) The homoclinic solution overlaps with the periodic solution of doubly

period; (f) The phase portraits of the periodical limit cycles of doubly period near P(-3.007,-2.874).
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the homoclinic bifurcation about the parameter e . Suppose I'; is the homo-
clinic orbit with € > 0, then another homoclinic orbit I', is simulated that sat-
isfies T',(-x.—Y,2,—€,)=JI;(X,y,Z,€ ). As shown in Figure 7(c) and Figure
7(d), the continuation job of the homoclinic orbit is simulated. The red orbit de-
notes the homoclinic solution at e = 0. Noticed in Figure 7(d), a novel overlap
phenomenon of a homoclinic loop to the phase of a doubly period solution is ob-
served at P with e =-3.007, e, =-2.874. We suppose that the homoclinic
bifurcation line is tangent to the period doubling bifurcation line near the point
P . By varying the parameter e, four P—2 periodical limit cycles with double
period are simulated, as shown in Figure 7(f).

5. Discussion

The controlled Chen system is dynamically interesting since it involves the simu-
lation of heteroclinic and homoclinic loops. The controlled Chen system is Z,
symmetric, and we observed the symmetrical attractor as a varying free parameter.
The system manifests the heteroclinic orbit from the unstable equilibrium solu-
tion to the loop, and the boundary of the unstable manifold of the equilibrium
solution was formed. Near the generalized Hopf bifurcation point, the limit point
cycle was observed. The near dynamics of the Bautin point were classified topo-
logically and geometrically, and the Bautin bifurcation line was drawn. The homo-
clinic bifurcation line, which starts from the BT point, was computed by Matcont
software. It was seen that the homoclinic line either coincides with the Bautin bifur-
cation line and crosses the GH point, or is tangent to the Bautin line with homo-
clinic overlap phenomena observed. The perturbation of the free parameter de-
stroys system symmetry. Hence, with e, either positive or negative, the new ho-
moclinic bifurcation phenomena were discussed. A novel homoclinic loop near
the doubly period solutions was simulated due to overlap phenomena as a contin-

uation of homoclinic loops.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

[1] Masoller, C., Schifino, A.C.S. and Romanelli, L. (1995) Characterization of Strange
Attractors of Lorenz Model of General Circulation of the Atmosphere. Chaos, Soli-
tons & Fractals, 6, 357-366. https://doi.org/10.1016/0960-0779(95)80041-¢

[2] Lorenz, E.N. (2004) Deterministic Nonperiodic Flow. In: Hunt, B.R., Li, T.Y., Ken-
nedy, J.A. and Nusse, H.E., Eds., The Theory of Chaotic Attractors, Springer, 25-36.
https://doi.org/10.1007/978-0-387-21830-4 2

[3] Sarathy, R. and Sachdev, P.L. (1994) On the Gluing and Ungluing of Strange Attrac-
tors in the Study of the Lorenz System. Physics Letters A, 191, 238-244.
https://doi.org/10.1016/0375-9601(94)90133-3

[4] Al-Sawalha, M.M. and Noorani, M.S.M. (2009) Application of the Differential Trans-
formation Method for the Solution of the Hyperchaotic Rossler System. Communi-

DOI: 10.4236/ijmnta.2025.144004

72 Int. J. Modern Nonlinear Theory and Application


https://doi.org/10.4236/ijmnta.2025.144004
https://doi.org/10.1016/0960-0779(95)80041-e
https://doi.org/10.1007/978-0-387-21830-4_2
https://doi.org/10.1016/0375-9601(94)90133-3

S.Q. Maetal.

(5]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

cations in Nonlinear Science and Numerical Simulation, 14, 1509-1514.
https://doi.org/10.1016/j.cnsns.2008.02.002

Mackey, M.C. and Glass, L. (1997) Oscillation and Chaos in Physiological Control
Systems. Science, 197, 287-289. https://doi.org/10.1126/science.267326

Chen, G. and Ueta, T. (1999) Yet Another Chaotic Attractor. International Journal of
Bifurcation and Chaos, 9, 1465-1466. https://doi.org/10.1142/s0218127499001024

Ueta, T. and Chen, G. (2000) Bifurcation Analysis of Chen’s Equation. International
Journal of Bifurcation and Chaos, 10, 1917-1931.
https://doi.org/10.1142/s0218127400001183

Chen, G. and Dong, X. (1998) From Chaos to Order. World Scientific.
https://doi.org/10.1142/3033

L, J.H., Chen, G.R. and Zhang, S.C. (2003) A Unified Chaotic System and Its Re-
search. Journal of University of Chinese Academy of Science, 20, 123-129.

Kuznetsov, Y.A. (1998) Elements of Applied Bifurcation Theory. 2nd Edition, Springer-
Verlag.

Li, J., Chen, G., Cheng, D. and Celikovsky, S. (2002) Bridge the Gap Between the Lorenz
System and the Chen System. International Journal of Bifurcation and Chaos, 12, 2917-
2926. https://doi.org/10.1142/5021812740200631x

Kuznetsov, Y.A. (2011) Practical Computation of Normal Forms on Center Mani-
folds at Degenerate Bogdanov-Takens Bifurcations. International Journal of Bifurca-
tion & Chaos, 15, 3535-3546.

Dhooge, A., Govaerts, W. and Kuznetsov, Y.A. (2003) MATCONT: A MATLAB
Package for Numerical Bifurcation Analysis of ODEs. ACM Transactions on Mathe-
matical Software, 29, 141-164. https://doi.org/10.1145/779359.779362

Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Sandstede, B. and
Wang X.J. (2000) AUTO97-AUT0O2000: Continuation and Bifurcation Software for
Ordinary Differential Equations (with HomCont), User’s Guide. Concordia Univer-
sity, Montreal. http://indy.cs.concordia.ca

Govaerts, W.J.F. (2000) Numerical Methods for Bifurcations of Dynamical Equilib-
ria. Society for Industrial and Applied Mathematics. Society for Industrial and Ap-
plied Mathematics. https://doi.org/10.1137/1.9780898719543

DOI: 10.4236/ijmnta.2025.144004

73 Int. J. Modern Nonlinear Theory and Application


https://doi.org/10.4236/ijmnta.2025.144004
https://doi.org/10.1016/j.cnsns.2008.02.002
https://doi.org/10.1126/science.267326
https://doi.org/10.1142/s0218127499001024
https://doi.org/10.1142/s0218127400001183
https://doi.org/10.1142/3033
https://doi.org/10.1142/s021812740200631x
https://doi.org/10.1145/779359.779362
http://indy.cs.concordia.ca/
https://doi.org/10.1137/1.9780898719543

	Heteroclinic Loop and Homoclinic Loop in a Controlled Chen System
	Abstract
	Keywords
	1. Introduction
	2. The Heteroclinic Loop Simulation
	3. Bifurcation of GH Analysis
	4. Homoclinic Bifurcation Phenomena
	5. Discussion
	Conflicts of Interest
	References

