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Abstract 
The simulation of the Heteroclinic Loop and Homoclinic Loop in a controlled 
Chen system is finished. The controlled Chen system is 2Z  symmetric, and 
the limit cycle loop or the attractor is observed as a varying free parameter. As 
the loop becomes the boundary of the unstable manifold of the equilibrium 
solution, the heteroclinic orbit from the unstable equilibrium solution to the 
loop is formed. Usually, the twins’ unstable manifold appears due to 2Z  sym-
metry. The Generalized Hopf point brings forth the limit point cycle bifurca-
tion, and nearby, the homoclinic bifurcation is observed. The homoclinic bi-
furcation arises since the equilibrium solution undergoes a Bogdanov-Takens 
bifurcation of codimension two. A novel phenomena of multi-loop coexist-
ence are observed near the intersection point of the homoclinic bifurcation 
curve and Hopf line. Later, homoclinic curve tangents to the Bautin bifurca-
tion line, the stable limit cycle expands into a homoclinic solution, which is 
called a limit point homoclinic solution. 
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1. Introduction 

In 1963, Lorenz observed the first chaos attractor and developed the chaos system 
named the Lorenz system [1]. Even from then on, people devote enormous work 
to finding the chaos, and the research work has more focus on the new singularity 
of system complex dynamics to understand it [2]-[5]. In 1999, Chen developed 
the new chaos system, which is the Chen system, to have new symmetry. Chen 
system is similar to the Lorenz system; however, they aren’t topologically equiva-
lent [6] [7]. The development of the Chen system control method has referred to 
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the papers [8] [9] due to its broad application in secure communication, noise 
control fields, etc. 

Chen system has 2Z  symmetry, its unstable manifold, which is two-dimen-
sional, is mirror symmetrical. In general, we have developed the controlled Chen 
system as follows: 

 
( )

( ) 2
1 2

x a y x
y c a x xz cy e x e yz
z xy bz

′ = −
′ = − − + + +
′ = −

  (1) 

With 1 0e = , the symmetry unstable manifold is separated by two twin attrac-
tors from each other after parameter perturbation, which inspires us further new 
enthusiasm with interests in its heteroclinic orbits and homoclinic orbits simula-
tion by numerical computation. We apply the Matcont software to compute some 
novel bifurcation points, and in this way, the homoclinic orbits are computed. The 
continuation of homoclinic orbits as the free parameters are continuously varied 
is done, and the homoclinic bifurcation line is tracked. 

With 1 0e = , we assume system (1) has zero O  and the other two equilibrium 

points P  and Q . Suppose ( )T1, 1,1J = − − , it is seen that  

x x
F J y JF y

z z

    
    =    

        

, hence after 

 ,JP Q JQ P= =   (2) 

And we have the following proposition, 
If the equilibrium ,P Q  is unstable, that is, the characteristic equation has ei-

genvalues 

 ( ) ( )1 2,30λ λℜ < < ℜ   (3) 

(A1) Suppose there exists a heteroclinic orbit 1het  from P  to limit cycle 
loop Γ, that is 1limit t het P→−∞ = , 1limit t het→+∞ = Γ , the new heteroclinic orbits 

2het  from Q  to loop Γ is proved to satisfy the condition 2limit t het Q→−∞ = ,  

2limit t het→+∞ = Γ . 
Proof: It is easily seen that 2 1het Jhet= , 1 2het Jhet= . In addition, the two un-

stable manifolds originated from P  and Q  is coincide with each other. We 
also easily get that limit t het→+∞ = Γ  since limit t het O→−∞ = . 

By Poincaré section computation, the bifurcation diagram of the periodicity of 
limit cycles is drawn versus the varying free parameter. The routes to chaos are 
verified by the Poincaré section scheme. With 1 0e > , the symmetry boundary Γ 
destroys itself and separates into two loops ( )1 1, , ,x y z eΓ  and ( )2 1, , ,x y z eΓ − − − , 
hence we derive the conclusion. 

(A2) For 1 0e > , Suppose there exists a limit cycle loop ( )1 1, , ,x y z eΓ , with het-
eroclinic 1het  given that 1 1limt het→+∞ = Γ  and 1limt het P→−∞ = , then the new 
limit cycle loops ( )2 1, , ,x y z eΓ − − −  appears, which lie on the boundary of the 
unstable manifold of the equilibrium Q  and the heteroclinic loop 2het  satisfy-
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ing 

 2 2 2lim , limt thet het Q→+∞ →−∞= Γ =   (4) 

Proof: It is easy to get that ( ) ( )1 1Q e JP e− = , and suppose that 2 1het Jhet= , 
the conclusion is given. 

For 1 0e = , the heteroclinic orbit is symmetric, however, the unstable manifold 
of ,P Q  are coincide with saddle O , that is, the same cycle loop lying at the 
boundary of its unstable manifold. Sometimes, the limit cycle loop is evolving into 
two homoclinic cycles across the zero point, that is, limt O→±∞ Γ = . We often ob-
serve the homoclinic bifurcation phenomena as varying two free parameters by 
continuing the limit cycle loop. For example, if the equilibrium happens with Bog-
danov-Takens (BT) bifurcation, which is of singularity 2 [10]-[12], the homoclinic 
bifurcation may occur nearby. The generalized Hopf bifurcation happens with the 
first Lyapunov exponent of normal from equal to zero. Since the hysteresis phe-
nomena near the generalized Hopf (GH) point [10], there are two coexisting limit 
cycles nearby. BT bifurcation brings forth the homoclinic bifurcation phenomena; 
therefore, if a homoclinic loop exists, which becomes the boundary of a stable 
limit cycle? In fact, a novel phenomenon of two loops with one homoclinic orbit 
coexisting occurs at parameters near the intersection of the homoclinic line and 
Hopf curve. With the perturbation of 1e , the continuation of the homoclinic bi-
furcation is completed further. Later on, the homoclinic line emerges into a limit 
point cycle bifurcation line, which expands the related stable limit cycle into a 
limit point homoclinic solution. 

The whole paper is organized into three sections. In section 2, the heteroclinic 
orbit links the limit cycle and the two unstable equilibrium solutions, respectively, 
through the unstable manifold. By observing the periodic windows of the Poincaré 
bifurcation diagram, two separated limit cycles that lie in the boundary of the twin 
unstable manifold with 1e±  are simulated. In section 3, the generalized Hopf bi-
furcation is discussed, and its near dynamics are classified geometrically. In sec-
tion 4, the homoclinic bifurcation is continued by using Matcont software [13]-
[15]. The continuation of a pair of symmetrical homoclinic orbits is tracked along 
the homoclinic line bifurcating from the BT point. The discussion is given finally. 

2. The Heteroclinic Loop Simulation 

In this section, we suppose the equilibrium solution P  and Q  are unstable sad-
dle-focus. The general algorithm for solving the ODE equation is carried out to com-
pute the heteroclinic solution, which is plotted in Figure 1. It is directly drawn with 

1 0e = , 2 2.2e =  and 

 ( ) ( )1 2 2 1, , ,u s u sW O het W P W O het W Q JP Q het Jhet= = = = = =  

in Figure 1(a). The limit cycle Γ is observed with 1 20, 22e e= =  and 

 ( )1 2 2 1, ,,u uW P het W Q het JP Q het Jhet= = = =  

which also satisfy 
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 1 2 1 2lim , lim , lim , limt t t thet het het O het O→+∞ →+∞ →−∞ →−∞= Γ = Γ = =  

This verifies that the unstable manifold of ,P Q  and O  are in coincidence. Fur-
ther, we set 1 0e = , 2 0.6e = , then the chaos is observed, which is the unstable man-
ifold of P  and Q , as shown in Figure 2. Other parameters are fixed as 35a = , 

28c = , 3b = . 
As the parameter 1e  varies, the symmetry limit cycle, which lies at the boundary 

of the unstable manifold, is destroyed. As shown in Figures 3(a)-(f) and Figures 4(a)-
(c). The periodicity of the limit cycles is analyzed by Poincaré section computation, 

 

 
Figure 1. The heteroclinic orbit is observed. (a) As 2 22e = , the heteroclinic orbit starts from the zero solution to the nontrivial 
equilibrium; (b) As 2 2.2e = , the heteroclinic orbit starts from an unstable equilibrium to a limit cycle. 
 

 
Figure 2. The chaos is simulated with 2 0.6e = . (a) Sight in X Y Z− −  view; (b) View in X Y−  plane. 
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Figure 3. The perturbation of the parameter 1e  brings forth the periodical solutions 1,2Γ , which have a relationship  

( ) ( )2 1 1 1, , , , , ,x y z e J x y z eΓ − − − = Γ . Fixed parameters are chosen as 10a = , 5b = , 8c = , 2 0.6e = . (a) With 1 0.12e = ± ; (b) With 

1 0.14e = ± ; (c) With 1 0.16e = ± ; The period doubling bifurcation happens with varying parameter 1e  further; (d) With 1 0.29e = ± ; 
(e) With 1 0.32e = ± ; (f) With 1 0.336e = ± . The observed attractors are plotted with 15a = , 0.6b = , 12c = , 2 0.6e = ; (g) With 

1 0.28e = ; (h) With 1 0.3e = ; (i) With 1 0.316e = . 
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Figure 4. The near dynamics of the generalized Hopf point. The bifurcation diagram has 
three different regimes, which represent the topological and geometrical classification of 
the near dynamical behavior. 
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which is often the route to chaos via period-doubling bifurcation of periodic so-
lutions. Via the routes to chaos, the periodical window of solutions is observed as 
a varying parameter 1e . For example, if we choose parameters with 10a = , 

5b = , 8c = , 2 0.6e = , we draw Figure 3 with varying parameter 1e . The peri-
odic solutions of its return map with different periodicities are observed. Choose 

1 0.12,0.14,0.16e =  and 1 0.29,0.32,0.336e = , the periodical oscillations are ob-
served with asymmetrical periodical solutions, which have periodicity with routes 
to quasi-periodical solutions shown in Figures 2(a)-(c), and the period-doubling 
bifurcation shown in Figures 2(d)-(f). 

With 15a = , 0.6b = , 12c = , 2 0.6e = , the similar numerical simulation is 
carried out to compute the periodical window as varying 1e , the asymmetry so-
lutions are drawn with opposite value 1e± . With the above conclusion, we can 
express the periodical solutions by ( ) ( )2 1 1 1, , , , , ,x y z e J x y z eΓ − − − = Γ . As shown 
in Figures 3(a)-(c), the attractors with multi-period cycles are simulated. 

3. Bifurcation of GH Analysis 

The generalized Hopf bifurcation (GH) is a Hopf bifurcation that occurs when the 
first Lyapunov exponent equals zero. For system (1), as the imaginary roots cross 
the imaginary axis, Hopf bifurcation and the stability property are lost in its in-
stability state. In general, Sub-critical Hopf or super-critical Hopf bifurcation oc-
curs, which bifurcates periodic solutions. The stability of the bifurcating periodi-
cal solutions is determined by normal form coefficients. In general, the periodic 
solution is stable if the first Lyapunov exponent is negative, and is unstable other-
wise. Therefore, Bautin bifurcation occurs when the first Lyapunov exponent is 
zero, which is also called the GH bifurcation [13] [14]. Usually, two limit cycles 
collide at the GH bifurcation line, and the near dynamics of the GH point are 
analyzed by the classifying method. Herein, with the assumption 1 0e = , we do 
system stability analysis by the linearizing method. 

Suppose system (1) has an equilibrium solution ( )* * *, ,P x y z  and  

( )* * *, ,Q x y z− − . Do axis transformation and the linearized system at P  is writ-
ten as 

 
( )

( ) ( ) ( )* 2 * 2 * *

* *

x a y z
y a c z x e z c y e y x z
z y x x y bz

′ = −
′ = − + − + + + −
′ = + −

  (5) 

Therefore, the characteristic equation is written as 

 

( ) ( ) ( )
( )
( )

3 2
2 * 2 * 2 * 2 * *

2 2
* *

2 2 2
2 * 2 * * 2 * * * * *

Δ

2

2

0

e z a b c ae z be z e x y

a ab ac az bc x

abe z ae x y ae y a b abc abz ax ax y

λ λ λ λ

λ

= − + − − + + + +

+ − − + − + −

+ + + − + − − −

=

  (6) 

Set iλ ω= , one gets that 
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( )
( ) ( )

3 2 2
2 * 2 * 2 * * * *

2 2 2 2
2 * 2 * 2 * * 2 * * * * *

2 0

2

ae z be z e x y a ab ac az bc x

e z a b c abe z ae x y ae y a b abc abz ax ax y

ω ω

ω

− + + − − + − + − =

− − + = + + − + − − −

(7) 

The BT bifurcation occurs at the intersection point of the fold line and Hopf 
line, so we get 

 
2 2

2 * 2 * 2 * * * *
2 2 2

2 * 2 * * 2 * * * * *

2 0

2 0

ae z be z e x y a ab ac az bc x

abe z ae x y ae y a b abc abz ax ax y

+ + − − + − + − =

+ + − + − − − =
 (8) 

Suppose a Hopf bifurcation occurs at the equilibrium solution P , with  
( )0iλ ω ω= ± > , and the corresponding right eigenvector q  and left eigenvec-

tor p  are written as 

 

( )

( ) ( ) ( )( )
( )

*

2 2 2
1 * * 1 * 2 *

2 * *

,
2

2 2 2

a
a i

q
y i a

b i

e y a c b iy e ia ic y e b i y

b a ip m
b i

e y x

ω
ω

ω

ω ω

ω
ω

− 
 − − =
 +
− 

+ 
 − + + − − + + − +
 

− =  
− 

 − 

 (9) 

After axis transformation, the multilinear form of system (1) is truncated to its 
third-order form in the style of a Taylor expansion. 

 ( ) ( ) ( )3, , ,X LX B X X C X X X o X′ = + + +   (10) 

Herein, we derive that 

 , , ,Lq i q Lq i q pL i p pL i pω ω ω ω= = − = − =  

and , 1p q = , , 0p q = . Set X qz qz W= + + , then Equation (10) is written as 

 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

( )

2 2

2

22

22 2
20 11 02

, , 2 , , , ,

2 , 2 ,

, , , , ,

, 2 , , 2 , ,

, , , , ,

z i z p B q q z p B q q zz p B q q z

B qz W B qz W

W LW B q q q p B q q q p B q q z

B q q q p B q q q p B q q zz

B q q q p B q q q p B q q z o z

LW H z H zz H z o z

ω′ = + + +

+ +

′ = + − −

+ − −

+ − − +

= + + + +

  (11) 

with 

 
( )20 , , ,G p B q q=

 

 
( )11 2 , ,G p B q q=

 

 ( )02 , ,G p B q q=
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 ( )21 3 , , ,G p C q q q=
 

 
( ) ( ) ( )( )20 , , , , ,H B q q q p B q q q p B q q= − −

 

 
( ) ( ) ( )( )11 , 2 , , 2 , ,H B q q q p B q q q p B q q= − −

 

 
( ) ( ) ( )( )02 , , , , ,H B q q q p B q q q p B q q= − −

 
With the assumption 2 2

20 11 02W W z W zz W z= + + + , differentiate both sides 
of the equality with respect to time t  to get 

 
20 20 20

11 11

02 02 02

2

2

LW i W H
LW H
LW i W H

ω

ω

= −
= −
= − −

  (12) 

Do inverse computation to get 

 
( )( )

( )

( )( )

1
20 20

1
11 11

1
02 02

2

2

W i L H

W L H

W i L H

ω

ω

−

−

−

= −

= −

= − −

  (13) 

By near identity transformation, the normal form is written as 

 ( ) ( )320z i z C z z o zω′ = + +  

with 

 ( ) ( ) ( ) 22
11 20 20 11 11 02

1 20 2 , 2 ,
3

C B q W B q W G G G G
iω

 = + + − − 
 

  (14) 

With Matcont software, the generalized Hopf bifurcation point is calculated 
along the Hopf line, which satisfies ( )0 0C = , the exact condition for the first 
Lyapunov exponent. The generalized Hopf bifurcation curve is also calculated on 
the parameter ( )2,a e  plane as varying two free parameters, as shown in Figure 
5(a). As often, people intend to understand the near dynamics of the GH point by 
the classification method. We also draw it in Figure 5(a), by parameter regimes 
with numbers (1)-(3) to indicate that the near dynamics of the GH point can be 
classified into different dynamical behaviors topologically. In regime (1), two sym-
metry stable limit cycles exist, with the equilibrium solutions being unstable. In 
regime (2), two symmetry pairs of limit cycles arise. In coexisting limit cycle pairs, 
the red pair denotes the unstable periodical solutions, whilst the blue pairs repre-
sent the stable periodical solutions. It is named the hysteresis phenomenon of the 
limit cycle, which is induced by sub-critical Hopf bifurcation along the right line 
of the GH point. In regime (3), the equilibrium solutions are stable. It is seen that 
a pair of limit point cycles is observed along the GH bifurcation curve with green 
color. The continuation job is finished with varying free parameters, as shown in 
Figure 5(b), which illustrates the sub-critical Hopf bifurcation phenomena near 
the GH point. The listed GH point is calculated with parameters chosen as 

3.8503588a = , 2b = ; 4.3414c = , 2 2.2321482e = . 
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Figure 5. The homoclinic bifurcation phenomena happen on the ( )2a e−  parameter plane. (a) The homoclinic bifurcation line 

with the novelty to cross over GH point, with fixed parameter 3b = , 3.478447389c = ; (b) The intersection phenomena of homo-
clinic bifurcation line and Hopf line, and the tangency of homoclinic line with the GH bifurcation line, with fixed parameter 2b = , 

4.341405792c = ; (c) The bifurcating homoclinic solutions of (a); (d) The bifurcating homoclinic solutions of (b). 
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4. Homoclinic Bifurcation Phenomena 

Homoclinic bifurcation phenomena are induced by the separation distance of the 
orbit itself. One general method to get a homoclinic orbit is to compute the homo-
clinic orbit starting from the Bogdanov-Takens (BT) bifurcation point. For the BT 
bifurcation point, the near dynamics of homoclinic bifurcation phenomena are very 
interesting both in theory and numerical computation. However, it is the novel job 
of dynamical bifurcation software, and the simulation work of the homoclinic loops 
is exploited by steps, from the BT point to periodical solutions and the homoclinic 
orbit. We are familiar with the dynamic hand tools, such as Matcont software, which 
runs in Windows environments and has a quick speed. 

Due to the symmetry property of system (1), we list the following conclusion. 
Suppose system (1) has two stable equilibrium solutions P  and Q : 
(A1) For 1 0e = , since Q JP= , a pair of homoclinic bifurcation orbits, 1Γ  

and 2Γ  are obtained near the BT bifurcation point, which satisfy 

 1 2 1lim , .t O J→±∞ Γ = Γ = Γ  

(A2) Varying free parameter 1e , the homoclinic bifurcation orbit is calcu-
lated starting from 1 0e = , then continued. 2Z −  symmetry is destroyed, how-
ever, ( ) ( )* * * 1 * * * 1, , , , , ,Q x y z e JP x y z e− − − = . Suppose BT bifurcation happens at 
( )* * * 1, , ,P x y z e  with 1 0e = , and a homoclinic orbit ( )1 1 2, , , ,x y z e eΓ  is ob-

tained near the BT point via free parameters perturbation, then at the BT bifurca-
tion point Q , and the homoclinic orbit ( )2 1 2, , , ,x y z e eΓ − − −  is derived by the 
same computation method, which relates to 1Γ  by 2 1JΓ = Γ . 

For 1 0e = , we carry out the bifurcation computation work by seeking the BT 
bifurcation point. By computing the roots 1,2 0λ =  of the characteristic equation 
in section 2, the BT point is found by tracking the Hopf bifurcation line or fold 
line on ( )2,a e -parameter plane, as shown in Figure 6. With chosen parameters 

3b = , 3.478447389c = , one BT point is calculated at 6.957a = , 2 1e = − , and 
the GH point is found at 3.813a = , 2 0.9023e = . The simulation job of Matcont 
manifests that the homoclinic bifurcation line through the GH point, and we em-
phasize that the homoclinic line coincides with the GH bifurcation curve (wherein 
two limit cycles collide), which is denoted by the pink line in Figure 6(a). As var-
ying two free parameters on the ( )2,a e  plane, the continuation of the homo-
clinic bifurcation orbits is plotted in Figure 6(c), which is in coincidence with the 
occurrence of limit cycles collision phenomena. It is called the SNhom orbit, 
which is significantly noticed as the homoclinic line crossing the GH point. 

For 1 0e = , with chosen parameters 2b = , 4.341405792c = , the bifurcation 
diagram is also drawn in Figure 6(b). The pink color line is the bifurcation line 
of homoclinic bifurcation, whilst the green color line denotes bifurcation of the 
limit point cycles. The lines are drawn using the continuation method in Matcont by 
varying a  and 2e  continuously. The continuation job of the homoclinic orbit is 
done, and the red homoclinic orbits are drawn near the BT point, and the blue 
homoclinic orbits are varying parameters quickly before 2P  point, then beyond  
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Figure 6. The amplification of the homoclinic bifurcation line in the ( )2a e−  parameter 

plane with 2b = , 4.341405792c = . 
 

it. The overlap phenomena of the homoclinic orbits manifest the possible complex 
multi-loop dynamics in system (1). As shown in Figure 7, the intersection point 
of the homoclinic bifurcation line and Hopf line is denoted as 1P , and it is noticed 
that the nontrivial equilibrium herein is a center. However, the homoclinic bifur-
cation line is tangent to the limit point cycle line again at the point 2P . The multi-
loop dynamics phenomena appear between points 1P  and 2P . In addition to the 
homoclinic orbit, which usually lies on the red line, one limit point cycle is evolv-
ing into one stable and one unstable limit cycle on this segment. Further, after 
passing into the tangent point 2P , the stable and unstable limit cycles collide into 
the limit point cycle, which looks like the homoclinic orbit. The continuation of 
homoclinic orbits and the overlap phenomena are manifest in Figure 6(d). 

Perturbation with the free parameter 1e , the homoclinic bifurcation is also sim-
ulated with overlapping phenomena, as shown in Figure 7. With chosen parameters 

3b = , 3.478447389c = , the continuation of the homoclinic orbit is done on the 
( )1 2,e e  parameter plane. Hence, no symmetry homoclinic orbit is observed. The 
bifurcation line in the diagram, as shown in Figure 7(a) and Figure 7(b), manifests  
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Figure 7. The homoclinic bifurcation phenomena happen on the ( )2a e−  parameter plane with 1e  parameter perturbation. (a) 

The homoclinic bifurcation lines simulated with 4.03564a = , 3b = , 3.47844c = ; (b) The homoclinic bifurcation lines simulated 
with 6.2426188a = , 2b = , 4.341405792c = ; (c) The continuation of homoclinic solutions of (a), with 1 0e > , the red line is the 
homoclinic solution starting at 1 0e = , 2 1.25e = ; (d) The continuation of homoclinic solutions of (b), with 1 0e > , the red line is 
the homoclinic solution starting at 1 0e = , 2 0.8e = ; (e) The homoclinic solution overlaps with the periodic solution of doubly 

period; (f) The phase portraits of the periodical limit cycles of doubly period near ( )3.007, 2.874P − − . 
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the homoclinic bifurcation about the parameter 1e . Suppose 1Γ  is the homo-
clinic orbit with 1 0e > , then another homoclinic orbit 2Γ  is simulated that sat-
isfies ( ) ( )2 1 1 1. , , , , ,x y z e J x y z eΓ − − − = Γ . As shown in Figure 7(c) and Figure 
7(d), the continuation job of the homoclinic orbit is simulated. The red orbit de-
notes the homoclinic solution at 1 0e = . Noticed in Figure 7(d), a novel overlap 
phenomenon of a homoclinic loop to the phase of a doubly period solution is ob-
served at P  with 1 3.007e = − , 2 2.874e = − . We suppose that the homoclinic 
bifurcation line is tangent to the period doubling bifurcation line near the point 
P . By varying the parameter 1e , four 2P −  periodical limit cycles with double 
period are simulated, as shown in Figure 7(f). 

5. Discussion 

The controlled Chen system is dynamically interesting since it involves the simu-
lation of heteroclinic and homoclinic loops. The controlled Chen system is 2Z  
symmetric, and we observed the symmetrical attractor as a varying free parameter. 
The system manifests the heteroclinic orbit from the unstable equilibrium solu-
tion to the loop, and the boundary of the unstable manifold of the equilibrium 
solution was formed. Near the generalized Hopf bifurcation point, the limit point 
cycle was observed. The near dynamics of the Bautin point were classified topo-
logically and geometrically, and the Bautin bifurcation line was drawn. The homo-
clinic bifurcation line, which starts from the BT point, was computed by Matcont 
software. It was seen that the homoclinic line either coincides with the Bautin bifur-
cation line and crosses the GH point, or is tangent to the Bautin line with homo-
clinic overlap phenomena observed. The perturbation of the free parameter de-
stroys system symmetry. Hence, with 1e  either positive or negative, the new ho-
moclinic bifurcation phenomena were discussed. A novel homoclinic loop near 
the doubly period solutions was simulated due to overlap phenomena as a contin-
uation of homoclinic loops. 
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