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Abstract 
This paper concerns the implementation of the orthogonal polynomials using 
the Galerkin method for solving Volterra integro-differential and Fredholm 
integro-differential equations. The constructed orthogonal polynomials are 
used as basis functions in the assumed solution employed. Numerical exam-
ples for some selected problems are provided and the results obtained show 
that the Galerkin method with orthogonal polynomials as basis functions 
performed creditably well in terms of absolute errors obtained. 
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1. Introduction 

Integro-differential equations (IDEs) have attracted growing interest over the 
years because of the mathematical application in real life problems. Mathemati-
cal modeling of real life problems usually resulted in fractional equations. Many 
mathematical formulations of physical phenomena contain integro-differential 
equations. These equations arise in many fields like Physics, Astronomy, Poten-
tial theory, Fluid dynamics, Biological models and Chemical kinetics. Integro- 
differential equations contain both integral and differential operators. The de-
rivatives of the unknown functions may appear to any order (see [1] and [2]). [3] 
obtained solution of an integro-differential equation arising in oscillating mag-
netic field using Homotopy perturbation method. Galerkin method is a powerful 
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tool for solving many kinds of equations in various fields of science and engi-
neering. It is one of the most important weighted residual methods inverted by 
Russians mathematicians Boris Grigoryevrich Galerkin. Recently, various Galer-
kin algoriyhm have been applied in numerical solution of integral and integro- 
differential equations. The following methods that are based on the Galerkin 
ideas, includes Galerkin Finite Element [4], iterative Galerkin with hybrid func-
tions [5], Crank-Nicolson least squares Galerkin [6], and Legendre Galerkin [7]. 
[8] published a note on three numerical procedures to solve Volterra integro- 
differential equations on structural analysis. 

2. Problem Considered 

We consider the higher order linear integro-differential equation as follows: 

( ) ( ) ( )( )
( ) ( )

0
, d

n h xi
i g x

i
P y k x t y t t f xλ

=

+ =∑ ∫                 (1) 

Subject to the following conditions 
( ) ( ) , 1,2, ,k

ky a k nα= =                      (2) 

where ( )0k kα ≥  are constant coefficients, ( )g x  and ( )h x  are lower and 
upper limits of integration, λ is a constant parameter and ( ),k x t is a function 
of two variables x and t called the kernel, ( )f x  is a known function and ( )y x  
is the unknown function to be determined. 

3. Definitions  

Integro-differential equation 
An integro-differential equation is an equation involving both integral and 

derivatives of a function. Example of such equation is stated below: 

( ) ( ) ( ) ( ) ( ) ( )2 1 0 , d
b

a
a y x a y x a y x H x t y t t f xλ′′ ′+ + + =∫         (3) 

Galerkin method 
Galerkin method is a method of determining coefficient ka  in a power series 

solution of the form: 

( ) ( ) ( )0
0

n

k k
k

y x y x a y x
=

≅ +∑                    (4) 

of the ordinary differential equation ( ) 0L y x  =   so that ( )L y x   , the result 
of applying the ordinary differential operator to ( )y x , is orthogonal to every 

( )ky x  for 1,2, ,k n=   
Chebyshev Polynomial 
The Chebyshev polynomials of the first kind are a set of orthogonal polyno-

mials defined as the solutions to the Chebyshev differential equation and de-
noted by ( )nT x . The Chebyshev polynomial of the first kind denoted by ( )nT x  
is defined by the contour integral  

( )
( )

2 1

2

11( ) d
4 1 2

n

n

t t
T x t

i tz t

− −−
=

π − +∫  
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Where the contour encloses the origin and is traversed in a counter clockwise 
direction. 

Orthogonal over a set  
A set of function ( ){ }r xφ  is said to be orthogonal over a set of points { }ix  

with respect to the weight function ( )w x , if  

( ) ( ) ( )
0

0,
N

i j i k i
i

w x x x i kφ φ
=

= ≠∑  

Orthogonal over an interval 
A set of functions ( ){ }r xφ  is said to orthogonal on an interval [ ],a b  with 

respect to the weight function ( )w x , if  

( ) ( ) ( )d 0,
b

i ja
w x x x x i jφ φ = ≠∫  

Approximate solution  
Approximate solution is used for the expression obtained after the unknown 

constants have been generated and substituting back into the assumed solution. 
It is hereby call approximate solution since it is a reasonable approximation to 
the exact solution.  

4. Construction of Orthogonal Polynomials 

In this section, we constructed orthogonal polynomials ( )if x , valid on the in-
terval [ ],a b  with the leading term ix   

Then, starting with 

( )0 1f x = ,                           (5) 

Thus, we find the linear polynomials ( )1f x , with leading term x, is written as 

( ) ( )1 1,0 0f x x k f x= + ,                      (6) 

where, 1,0k  is a constant to be determined. Since ( )0f x  and ( )1f x  are or-
thogonal, we have, 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )2
0 1 0 1,0 0d 0 d d

b b b

a a a
w x f x f x x xw x f x x k w x f x x= = +∫ ∫ ∫  

using (5) and (6). 
From the above, we have, 

( ) ( )
( ) ( )( )

0
1,0 2

0

d
b

a
b

a

xw x f x
k x

w x f x
= − ∫
∫

  

Hence, (6) gives, 

( )
( ) ( )

( ) ( )( )
0

1 2
0

d
b

a
b

a

xw x f x
f x x x

w x f x
= − ∫

∫
 

Now, the polynomials ( )2f x , of degree 2 and the leading term 2x  is written 
as  

( ) ( ) ( )2
2 2,0 0 2,1 1f x x k f x k f x= + +                  (7) 
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where the constants 2,0k  and 2,1k  are determined by using orthogonality con-
ditions  

( ) ( ) ( )
( ) ( )2

0,
d

d ,
b

bp qa
pa

p q
w x f x f x x

w x f x x p q

≠= 
=

∫ ∫
         (8) 

Since ( )2f x  is orthogonal to ( )0f x , we have  

( ) ( ) ( ) ( )2
0 2,0 0 2,1 1 d 0

b

a
w x f x x k f x k f x x + + = ∫            (9) 

Since, 

( ) ( ) ( )0 1 d 0
b

a
w x f x f x x =∫  

The above equation gives  

( ) ( )
( ) ( )( )

( )
( )

2 2
0

2,0 2
0

d
d

d

b b

a a
b b

a a

x w x f x x w x x
k x

w x f x w x x
= − = −∫ ∫
∫ ∫

           (10) 

Again, since ( )2f x  is orthogonal to ( )1f x , we have 

( ) ( ) ( ) ( )2
1 2,0 0 2,1 1 d 0

b

a
w x f x x k f x k f x x + + = ∫  

Thus, using (7), we obtain  

( ) ( )
( ) ( )( )

2
1

2,1 2
1

d
b

a
b

a

x w x f x
k x

w x f x
= − ∫
∫

                   (11) 

Since 2,1k  and 2,0k  are known, (7) determines ( )2f x . Proceeding in the 
same way, the method is generalized and we have, 

( ) ( ) ( ),0 0 ,1 1 , 1
j

j j j j jf x x k f x k f x k −= + + + +            (12) 

where the constants ,j ik  and so chosen that ( )jf x  is orthogonal to  

( ) ( ) ( )0 1 1, , , jf x f x f x−  

These conditions yield, 

( ) ( )
( ) ( )( ), 2 d

b j
ia

j i b
ia

x w x f x
k x

w x f x
= − ∫
∫

                  (13) 

Few terms of orthogonal polynomials valid in the interval [−1, 1] are given 
below. 

( )
( )

( )

( )

( )

0

1

2
2

3
3

4 2
4

1

1
3
3
5
6 3
7 35

f x

f x x

f x x

f x x x

f x x x

=

=

= −

= −

= − +



 

etc. 
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5. Demonstration of Orthogonal Galerkin Method on  
General Problem Considered 

In this section, we considered (1) and (2).  
Here we assumed an approximate solution of the form 

( ) ( ) ( )
0

, 1 1
N

N i i
i

u x u x a f x x
=

≅ = − ≤ ≤∑                (14) 

where ( )( )0if x i ≥  are the orthogonal polynomial constructed and valid in the 
interval [−1, 1]. 

Thus, differentiating (14)/with respect to x, n times, we have  

( ) ( ) ( ) ( ) ( ) ( )
0

N
n n n

N i i
i

u x u x a f x
=

≅ =∑                  (15) 

Substituting (14) and (15) into (1), we obtain  

( ) ( ) ( ) ( ) ( )
0

0 0 0 0
, d

n N N Nxn
k i i i i

k i i i
P a f x f x a k x t f t tλ

= = = =

= +∑∑ ∑ ∑∫         (16) 

We determined the unknown coefficients ia  using the Galerkin idea by mul-
tiplying both sides of (16) by ( )jf x  and then integrating with respect to x from 
−1 to 1. 

Thus, we obtain 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

1
0 0

1 1

1 0 1
0 0

d

d , d d , 0,1, ,

n N
n

k i i j
k i

N Nx
j i i j

i i

P a f x f x x

f x f x x a k x t f t f x t x j Nλ

−
= =

− −
= =

= + =

∑∑ ∫

∑ ∑∫ ∫ ∫ 

 (17) 

This process generates a system of linear equations for the unknown { } 0

N
i i

a
=

 
together with the conditions  

( ) ( )
0

, 1,2, ,
N

j
i i j

i
a f a j nα

=

= =∑                   (18)  

for the same number of equations in the linear system. 
The unknown parameters are determined by solving the system (17) and (18). 

The values of the constants obtained are then substituted back into (14) to get 
the required approximate solution for the appropriate order.  

6. Numerical Experiments 

In this section, we consider four selected problems for experimenting and com-
pare our results with existing results. 

Numerical example 1 
We consider the Volterra integro-differential equations of the second kind of 

the form: 

( ) ( )
0

1 2 sin d
x

y x x x y t t′ = − + ∫                    (19) 

together with the condition given as 
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( )0 0y =                           (20) 

The exact solution is given as 

( ) cosy x x x=  

Here we solved example 1 for case 4N = . 
Thus, Equation (14) becomes 

( ) ( )
4

4
0

i i
i

y x a f x
=

= ∑                       (21) 

Substituting the values of ( ) ,0 4if x i≤ ≤ , we obtain 

( ) ( ) ( ) ( ) ( )

( ) ( )

2 3
4 0 1 2 3

4 2
4

1 32 1 2 1 2 1 2 1
3 5

6 32 1 2 1
7 35

y x a x a x a x x a

x x a

   = + − + − − + − − −   
   

 + − − − + 
 

  (22)
 

and, 

( ) ( ) ( ) ( )2 3
4 1 2 3 4

6 48 242 8 4 6 2 1 8 2 1
5 7 35

y x a x a x a x x a   ′ = + − + − − + − − +   
   

 (23) 

Substituting (23) into (19) for case N = 4, we obtain 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 3
1 2 3 4

2 3
0 1 2 3

4 2
4

6 48 242 8 4 6 2 1 8 2 1
5 7 35
1 32 1 2 1 2 1 2 1
2 5

6 32 1 2 1 d 1 2 sin
7 35

x

a

a x a x a x x a

a t a t a t t a

t t a t x x

   + − + − − + − − +   
   

    − + − + − − + − − −    
   

 + − − − + = − 
  

∫    (24)
 

Thus, evaluating the integral in (24) and simplifying, we obtain 

( )

( )

( )

2 2 3
0 1 2

2 4 3 2
3

3 5 4 3 2
4

15 42 2 4
2 3

2 12 66 2 1 2 4
3 5 5
248 16 48 16 248 2 1 8 1 2 sin
35 5 7 7 35

xa x x a x x x a

x x x x x a

x x x x x x a x x

 − + + − + + − + 
 

 + − + − + − − 
 
 + − − − + − + + = − 
 

 (25) 

The unknown coefficients ( )4ia i ≤  are determined using the Galerkin idea 
by multiplying both sides of (25) by ( )2 1jf x −  and then integrating the re-
sulted equation between x = −1 to x = 1. 

For case j = 1, we multiplied both sides of (25) by (2x − 1) and then integrat-
ing the resulted equation between x = −1 to x = 1, to obtain 

0 1 2 3 4
4 2 460 60322 0.7953
3 5 9 35

a a a a a− − − − + = −            (26) 

For case j = 2, we multiplied both sides of (25) by ( )2 12 1
3

x − −  and then in-

tegrating the resulted equation between x = −1 to x = 1, to obtain 
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0 1 2 3 4
8 148 20 183272 128032 0.363
3 45 9 1575 315

a a a a a+ + + − =         (27)
 

For case j = 3, we multiplied both sides of (25) by ( ) ( )3 32 1 2 1
5

x x− − −  and 

then integrating the resulted equation between x = −1 to x = 1, to obtain 

0 1 2 3 4
32 92 1544 20776 11053408 0.18
5 15 525 75 11025

a a a a a− − − − + =        (28) 

For case j = 4, we multiplied both sides of (25) by ( ) ( )4 26 32 1 2 1
7 35

x x− − − +  

and then integrating the resulted equation between x = −1 to x = 1, to obtain 

0 1 2 3 4
1664 432 416 2518688 124288 2.3
105 35 105 3675 49

a a a a a+ + + − = −        (29) 

Now, using the condition given in (22), we obtain 

0 1 2 3 4
2 2 8 0
3 5 25

a a a a a− + − + =                   (30) 

Hence, (26)-(30) are then solved to obtain the unknown constants  
( )0,1,2,3,4ia i =  which are then substituted to the approximate Equation (22). 
Again, we solved (1) and (2) for case N = 6 by re-writing (21) as: 

( ) ( )
6

6
0

i i
i

y x a f x
=

= ∑                         (31)
 

Hence, (31) becomes 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2
6 0 1 2

3
3

4 2
4

5 3
5

6 4 2
6

12 1 2 1
3

32 1 2 1
5
6 32 1 2 1
7 35
10 52 1 2 1 2 1
9 21

15 5 52 1 2 1 2 1
11 11 231

y x a x a x a

x x a

x x a

x x x a

x x x a

 = + − + − − 
 

 + − − − 
 
 + − − − + 
 
 + − − − + − 
 
 + − − − + − − 
 

      (32)
 

And, 

( ) ( ) ( )

( )

( ) ( )

( ) ( )

2
6 1 2 3

3
4

3
4

5

3
5

6

62 8 4 6 2 1
5

48 248 2 1
7 35

20 2 1 1010 2 1
3 21

120 2 1 40 2012 2 1
11 11 11

y x a x a x a

x x a

x
x a

x xx a

 ′ = + − + − − 
 

 + − − + 
 
 −
 + − − +
 
 
 −
 + − − + −
 
 

        (33)  

Thus substituting (32) and (33) into (19), we obtain 
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( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 3
1 2 3 4

3 3
4 5

5

2 3
6 0 1 2 30

4 2

6 48 242 8 4 6 2 1 8 2 1
5 7 35

20 2 1 120 2 110 4010 2 1 12 2 1
3 21 11 11

20 1 32 1 2 1 2 1 2 1
11 2 5

6 32 1 2 1
7 35

x

a x a x a x x a

x x xx a x

a a t a t a t t a

t t

   + − + − − + − − +   
   

  − −
  + − − + + − − +
  
  

    − − + − + − − + − − −    
    

 + − − − +


∫

( ) ( )

( ) ( )

3
4

4 5

3
5

6

20 2 1 1010 2 1
3 21

120 2 1 40 2012 2 1 d 1 2 sin
11 11 11

t
a t a

t tt a t x x

 −
 + − − +    

 −  + − − + − = −    

 (34)
 

Thus, evaluating the integral in (34) and simplifying, we obtain 

( )

( )

( )

( ) ( )

( ) ( )

2 2 3
0 1 2

2 4 3 2
3

3 5 4 3 2
4

4 3 5 4 3 2
5

5 3

15 42 2 4
2 3

2 12 66 2 1 2 4
3 5 5
248 16 48 16 248 2 1 8
35 5 7 7 35
20 1200 280 32010 2 1 2 1 32 60
3 147 3 3

12012 2 1 2 1
11

xa x x a x x x a

x x x x x a

x x x x x x a

x x x x x x x a

x x

 − + + − + + − + 
 

 + − + − + − − 
 
 + − − − + − + + 
 
 + − − − + − + − + 
 

− −+ − 6 5 4

3 2
6

72 1280 2400192
11 11 11

1280 320 1 2 sin
11 11

x x x x

x x a x x

 + − + −

+ − 
 −



=


 (35) 

The unknown coefficients ( )4ia i ≤  are determined using the Galerkin idea 
by multiplying both sides of (35) by ( )2 1jf x −  and then integrating the re-
sulted equation between x = −1 to x = 1. 

For case j = 1, we multiplied both sides of (35) by (2x − 1) and then integrat-
ing the resulted equation between x = −1 to x = 1, to obtain 

0 1 2 3 4 5 6
4 2 460 6032 97264 3601602 0.7953
3 5 9 35 189 231

a a a a a a a− − − − + − + = −  (36)
 

For case j = 2, we multiplied both sides of (35) by ( )2 12 1
3

x − −  and then in-

tegrating the resulted equation between x = −1 to x = 1, to obtain 

0 1 2 3 4 5 6
8 148 20 183272 128032 238816 1507904 0.363
3 45 9 1575 315 189 385

a a a a a a a+ + + − + − = (37) 

For case j = 3, we multiplied both sides of (35) by ( ) ( )3 32 1 2 1
5

x x− − −  and 

then integrating the resulted equation between x = −1 to x = 1, to obtain 

0 1 2 3 4 5

6

32 92 1544 20776 11053408 1007648
5 15 525 75 11025 315
2330560 0.18

231

a a a a a a

a

− − − − + −

=+
    (38)
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For case j = 4, we multiplied both sides of (35) by ( ) ( )4 26 32 1 2 1
7 35

x x− − − +  

and then integrating the resulted equation between x = −1 to x = 1, to obtain 

0 1 2 3 4 5

6

1664 432 416 2518688 124288 360321152
105 35 105 3675 49 47659

63937952 2.3
24255

a a a a a a

a

+ + + − +

− = −
  (39) 

For case j = 5, we multiplied both sides of (25) by  

( ) ( ) ( )5 310 52 1 2 1 2 1
9 21

x x x− − − + −  and then integrating the resulted equation 

between x = −1 to x = 1, to obtain 

( )

0 1 2 3 4 5

6

2528 4976 2720 550112 1396705664 85672064
63 180 7 315 218295 3969

48377661184 3152 2002592 144cos 1
693693 63 63 7

a a a a a a

a

− − + − + −

+ = − − +
 (40) 

For case j = 6, we multiplied both sides of (35) by  

( ) ( ) ( )6 4 215 5 52 1 2 1 2 1
11 11 231

x x x− − − + − −  and then integrating the resulted eq-

uation between x = −1 to x = 1, to obtain 

( ) ( )

0 1 2 3 4 5

6

2528 4976 2720 550112 1396705664 85672064
63 180 7 315 218295 3969

48377661184 1376 230568512 1290272cos 1 sin 1
693693 11 231 63

a a a a a a

a

− − + − + −

+ = − − +
 (41)

 

Now, using the condition given in (22), we obtain 

0 1 2 3 4 5 6
2 2 8 8 16 0
3 5 25 63 231

a a a a a a a− + − + − + =                 (42)
 

Hence, (36)-(42) are then solved to obtain the unknown constants  
( )0,1,2,3,4,5,5,6ia i =  which are then substituted to the approximate equation 

(32). More values of N are computed follow the same procedure and the results 
obtained are tabulated below. 

Example 2: 

( ) ( ) ( ) ( )1

1
e 2sin dxy x xy x xy x x y t t

−
′′ ′+ − = − + ∫

 
With the conditions  
( )0 1y =  and ( )0 1y′ = , The exact solution is ( ) exy x = .

 Example 3: Consider the Fredholm integro-differential equation (See [2]) 

( ) ( )1 2
0

1 e d , 0 1xy'''' x y t t x−= + < <∫  

Together with the conditions ( ) ( )0 0 1y y′= = ; ( )1 ey = ; ( )1 ey′ = . The ex-
act solution is ( ) exy x = . 
• Denotes the results are not available for comparison 
• Denotes Results are not available for comparison 

Example 4: Consider the Fredholm integro-differential equation (See [2]) 

( ) ( ) ( ) ( )
0

3 e d , 0 1
xxy'''' x x x y x y t t x= + + + − < <∫
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With the following conditions  
( )0 1y = ; ( )1 1 ey = + ; ( )0 2y′′ = ; ( )1 3ey′′ = . The exact solution is  

( ) 1 exy x x= + .
 • Denotes Results are not available for comparison 

• Denotes Results are not available for comparison 

7. Discussion of Results 

The approximate solution obtained by means of Galerkin method is a finite 
power series which can be in turn expressed in closed form of exact solution as 
the degree of the approximant increases. The finite series solution is obtained for 
each problem considered by increasing the value of N, which in turn converges 
to closed form of exact solution, the absolute errors obtained tend to zero and 
ensures stability of our method (See Tables 1-8). Also, from the results obtained 
by [2], our method proved superior to [2]. As N increases, the results obtained in 
some cases converged. It proves a very efficient method for the problems at-
tempted, for which the form of the solution is known. 

 
Table 1. Numerical results and absolute errors of example 1 for case N = 4. 

X Exact solution Approximate solution Approximate solution 

0 0 0 0 

0.1 0.09999984769 0.1007787777 7.7893 × 10−4 

0.2 0.19999871500 0.20007989915 8.0021 × 10−4 

0.3 0.29999588772 0.30082048742 8.2460 × 10−4 

0.4 0.39990252364 0.40085698231 9.5446 × 10−4 

0.5 0.49998096153 0.50093900554 9.5813 × 10−4 

0.6 0.59996710167 0.60128870164 1.2920 × 10−3 

0.7 0.69994775882 0.70214095881 2.1932 × 10−3 
0.8 0.79992201922 0.80415158192 4.2296 × 10−3 

0.9 0.89988896922 0.90630266921 6.4113 × 10−3 

1.0 0.99984769523 1.00008011995 2.3242 × 10−4 
 

Table 2. Numerical results and absolute errors of example 1 for case N = 6. 

X Exact solution Approximate solution Approximate solution 

0 0 0 0 
0.1 0.09999984769 0.1000123167 1.2409 × 10−5 

0.2 0.19999871500 0.2000261375 2.7350 × 10−5 

0.3 0.29999588772 0.3000306197 3.4732 × 10−5 

0.4 0.39990252364 0.4000469833 5.6731 × 10−5 

0.5 0.49998096153 0.5000608685 7.9907 × 10−5 

0.6 0.59996710167 0.6000487216 8.1620 × 10−5 

0.7 0.69994775882 0.7000377598 9.0001 × 10−5 

0.8 0.79992201922 0.8003215592 3.9951 × 10−5 

0.9 0.89988896922 0.9002501792 3.6121 × 10−5 

1.0 0.99984769523 1.0003425534 5.5778 × 10−5 
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Table 3. Numerical results and absolute errors of example 2 for case N = 4. 

X Exact solution Approximate solution Approximate solution 

−1 0.36787944 0.37418684 6.3074 × 10−3 

−0.8 0.44932896 0.45641056 7.0816 × 10−3 

−0.6 0.54881164 0.55712374 8.3121 × 10−3 

−0.4 0.67032005 0.68009815 9.7781 × 10−3 

−0.2 0.81873075 0.82014445 1.4137 × 10−2 

0 1.00000000 1.00180376 1.8937 × 10−2 

0.2 1.22140283 1.24357182 2.2169 × 10−3 

0.4 1.47182472 1.49774274 2.5918 × 10−2 

0.6 1.82211881 1.85630581 3.4187 × 10−2 

0.8 2.22551000 2.26616893 4.0928 × 10−2 

1.0 2.71828182 2.78212785 6.3846 × 10−3 
 

Table 4. Numerical results and absolute errors of example 2 for case N = 4. 

X Exact solution Approximate solution Approximate solution 

−1 0.36787944 0.367966169 8.6729 × 10−5 

−0.8 0.44932896 0.449409094 8.0134 × 10−5 

−0.6 0.54881164 0.548889417 7.7837 × 10−5 

−0.4 0.67032005 0.676389371 6.9321 × 10−5 

−0.2 0.81873075 0.818758949 7.8199 × 10−5 

0 1.00000000 1.000966532 7.6653 × 10−4 

0.2 1.22140283 1.222229894 8.9614 × 10−4 

0.4 1.47182472 1.472514031 6.8933 × 10−4 

0.6 1.82211881 1.822781972 5.9397 × 10−4 

0.8 2.22551000 2.226029824 4.8892 × 10−4 

1.0 2.71828182 2.718738011 4.5621 × 10−4 
 

Table 5. Numerical results and absolute errors of example 3 for case N = 4. 

X Exact 
Approximate 

of [2] 
Approx. of Our 

Method 
Absolute errors of 

[2] 
Absolute errors of 

Our Method 

0.0 1.0000000 1.0000000 1.00000000 0 0 

0.1 1.105171  1.105173451 * 2.451 × 10−6 

0.2 1.2214027 1.2214 1.221409351 1.0270 × 10−4 6.651 × 10−6 

0.3 1.349859 * 1.349868872 * 9.872 × 10−6 

0.4 1.4918246 1.4918 1.491856800 1.1246 × 10−3 3.220 × 10−5 

0.5 1.648721 * 1.648800850 * 7.985 × 10−5 

0.6 1.8221188 1.8221 1.822700800 6.1188 × 10−3 5.820 × 10−4 

0.7 2.013753 * 2.014370200 * 6.172 × 10−4 

0.8 2.2255409 2.2255 2.228210900 2.0241 × 10−2 2.670 × 10−3 

0.9 2.459603 * 2.465275000 * 5.672 × 10−3 

1.0 2.71828183 2.7183 2.725281830 5.1282 × 10−2 7.000 × 10−3 

*Denotes the results are not available for comparison.  
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Table 6. Numerical results and absolute errors of example 3 for case N = 10. 

X Exact 
Approximate  

of [2] 
Approx. of  

Our Method 
Absolute  

errors of [2] 
Absolute errors  
of Our Method 

0.0 1.0000000 1.0000 1.00000000000 0 0 
0.1 1.105171 * 1.10517109874 * 9.874 × 10−8 
0.2 1.2214027 1.2214 1.22140278125 2.700 × 10−6 8.125 × 10−8 
0.3 1.349859 * 1.34985906846 * 6.845 × 10−8 
0.4 1.4918246 1.4918 1.49182466533 2.460 × 10−5 5.329 × 10−8 
0.5 1.648721 * 1.64872104101 * 4.101 × 10−8 
0.6 1.8221188 1.8221 1.82211884674 1.880 × 10−5 4.674 × 10−8 
0.7 2.013753 * 2.01375304115 * 4.115 × 10−8 
0.8 2.2255409 2.2255 2.22554093985 4.090 × 10−5 3.985 × 10−8 
0.9 2.459603 * 2.45960302679 * 2.679 × 10−8 
1.0 2.71828183 2.7183 2.71828184068 1.820 × 10−5 1.068 × 10−8 

*Denotes the results are not available for comparison. 
 

Table 7. Numerical results and absolute errors of example 4 for case N = 4. 

X Exact Approx. of [2] 
Approx. of  

Our Method 
Absolute  

errors of [2] 
Absolute errors  
of Our Method 

0.0 1.0000000 1.0000 1.0000000000 0 0 
0.1 1.110517 * 1.1105179874 * 9.874 × 10−7 
0.2 1.2442805 1.244 1.2442922210 2.8055 × 10−4 1.172 × 10−6 
0.3 1.404958 * 1.4049590990 * 1.099 × 10−6 
0.4 1.5967298 1.592 1.4967570200 2.7299 × 10−4 9.722 × 10−5 
0.5 1.824361 * 1.8244327200 * 7.172 × 10−5 
0.6 2.0932712 2.068 2.0933164710 2.5270 × 10−2 4.527 × 10−5 
0.7 2.409627 * 2.4096387200 * 1.172 × 10−5 
0.8 2.7804327 2.696 2.7805028800 8.4430 × 10−2 9.018 × 10−4 
0.9 3.213943 * 3.2140147700 * 7.177 × 10−4 
1.0 3.71828183 3.5 2.7183814900 2.1820 × 10−1 6.966 × 10−4 

*Denotes the results are not available for comparison. 
 

Table 8. Numerical results and absolute errors of example 4 for case N = 10. 

X Exact Approx. of [2] 
Approx. of  

Our Method 
Absolute  

errors of [2] 
Absolute errors  
of Our Method 

0.0 1.0000000 1.0000 1.000000000000 0 0 
0.1 1.110517 * 1.1105170009231 * 9.231 × 10−10 
0.2 1.2442805 1.2443 1.2442805007638 1.950 × 10−5 7.638 × 10−10 
0.3 1.404958 * 1.4049580006618 * 6.618 × 10−10 
0.4 1.5967298 1.5967 1.5967298002963 3.000 × 10−10 2.963 × 10−10 
0.5 1.824361 * 1.8243610001316 * 1.316 × 10−10 
0.6 2.0932712 2.0933 2.0932712009316 1.772 × 10−8 9.316 × 10−9 
0.7 2.409627 * 2.4096270492700 * 4.927 × 10−8 
0.8 2.7804327 2.7804 2.7804327297800 3.214 × 10−7 2.978 × 10−8 
0.9 3.213643 * 3.2136430198200 * 1.982 × 10−8 
1.0 3.71828183 3.7184 2.7182827690000 1.820 × 10−5 9.390 × 10−7 

*Denotes the results are not available for comparison. 
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8. Conclusion 

In this work, we have proposed the Galerkin method for solving both the boun-
dary and initial value problems for a class of higher order linear and nonlinear 
Volterra and Fredholm integro-differential based on the constructed orthogonal 
polynomials as basis function. Illustrative examples are included to demonstrate 
the validity and applicability of the technique and the tables of results presented 
reveal that the absolute error decreases when the degree of approximation in-
creases. Furthermore, since basis functions constructed are polynomials, the 
values of the integrals for the nonlinear integro differential equations are calcu-
lated as approximately close to the exact solutions. 
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