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Abstract 
The mathematical model of stem cells is discussed with its motivation to de-
scribe the tissue relationship by technically introducing a two compartments 
model. The clear link between the proliferation phase of stem cells and the 
circulating neutrophil phase is set forth after delay feedback control of the 
state variable of stem cells. Hopf bifurcation is discussed with varying free 
parameters and time delays. Based on the center manifold theory, the normal 
form near the critical point is computed and the stability of bifurcating pe-
riodical solution is rigorously discussed. With the aids of the artificial tool 
on-hand which implies how much tedious work doing by DDE-Biftool soft-
ware, the bifurcating periodic solution after Hopf point is continued by vary-
ing time delay. 
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1. Introduction 

With concentration on the mathematical model of stem cells in understanding 
its tissue organization, the discussion of the cell’s differentiation and proliferation 
discipline has insight people to get the interesting view sights in dynamics of stem 
cells. The investigation work of Mackey and his collaborators has shown some 
examples of hematopoietic system dynamics within the limitation of the topic of 
DDEs (delay differential equations), which is infinite-dimensional and its present 
dynamical behavior also depends on the past history [1] [2] [3] [4]. Refer to [2] 
[5] [6] [7], some mathematical models with dynamical description which is origi-
nates from stem cells compartment to periodical oscillation neutrophil disease, and 
combined with the production and regulation of blood cells, are set forth by au-
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thors to be governed by DDEs versions. 
The clear link between the proliferation phase of stem cells and the circulating 

neutrophil compartment is described technically as shown in Figure 1. With the 
introduction rate β  from resting phase, stem cells can enter into their prolife-
rating phase, then after time delay sτ , either go to programmed death due to its 
apoptosis or reentrily go into the resting phase since experiencing the matura-
tion phase. After a cell division, the neutrophil number which gets through the 
proliferation phase and maturation phase is released into circulation through the 
body. Examples are as often seen in reference of Mackey’s work, which investi-
gates a tissue system composed of the stem cells compartment and neutrophil com-
partment, wherein the governing discipline and the relationship between two com-
partments are described by DDEs. 

Alike Lei but a few other people’s points of view [8] [9] [10], the mechanism 
applying for periodic oscillating neutrophil numbers is very complex, however, 
the granulocyte-colony stimulation factor in its amplification coefficient is in-
troduced. For the treatment of cyclical neutropenia experiencing time NMτ , the 
amplification coefficient is also time delay-dependent. Hence, the time delay in 
neutrophil coupling is composed of two time segments, that is, the time duration 
respectively of proliferation phase and maturation phase of a neutrophil precursor. 
Lei emphasises that the level of stem cells decreases periodically in the treatment  

 

 
Figure 1. The cell lineage of the stem cells with its clear link to the neutrophils. 
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of neutrophil oscillation phenomena, and the corresponding amplification coef-
ficient can be written as 

0e NP NP NMA η τ γ τ−=                       (1.1) 

herein, the proliferation rate is denoted as NPη , and the death rate during ma-
turation phase is 0γ , and N NP NMτ τ τ= + . Therefore, DDEs model to govern 
the discipline of neutrophil cell lines is set forth [6] [11] 

( ) ( )( ) ( )

( )

d 2e
d
d
d

s s
s s

N N

r
N

N N

Q Q k N k Q Q Q
t
N N Ak N Q
t

τ
δ τ τ

τ τ

β β

γ

−= − + + +

= − +
         (1.2) 

The hematopoietic stem cells can enter into the proliferation phase with the 
rate β  (days−1), and differentiate into the committed neutrophil compartment 
at the rate Nk  (days−1), which is listed as 
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The estimation of parameter is valued as the following 2.4Nγ = , 0 0.01γ = , 

0 2.5k = , 0 0.4f = , 2 0.3θ = , 1 36θ = , 0.01kδ = , 0.2sr = , 2.5379NPη = , 
11Nτ = , 2.8238sτ = . Some known results as the fold bifurcation phenomena of 

limit cycle, since the collision of stable and unstable limit cycles happened with Ta-
kens-Bagnov sigularity of the equilibrium solution, have discussed in paper [11]. 

( ) ( )( ) ( )
( ) ( )( ) ( ) ( )( )
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s s
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         (1.3) 

For further discussing the periodical oscillating mechanism, we set forth the 
state feedback control strategy which changes the system stability according to 
Hopf bifurcation criterion, hence, the small amplitude periodical solutions ap-
pear. Herein, we introduce state feedback control via different ways with delay 
signals, therefore, 1 2,K K  are weak feedback coefficients. 

Whilst the real parts of the corresponding characteristic roots become zero, 
DDEs system may lose the stability property of the positive equilibrium solution. 
In the general case, Hopf bifurcation occurs which is born with the new periodi-
cal solution under the assumption that Hopf bifurcation satisfies the trans-
versal condition [12] [13]. We mainly focus on Hopf bifurcation of hematopoie-
tic system with respect to time delay sτ . As free parameter sτ  varies conti-
nuously, the bifurcating periodical solution changes its stability character 
which happened with one real Flouquet multiplier or a pair of conjugate com-
plex multipliers getting through the unit circle [14] [15] [16] [17] [18]. If and 
only if the Flouquet multiplier attains at −1, the period-doubling bifurcation of 
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periodical solution arises at the threshold value. The collision phenomena of the 
limit cycles also happen as Flouquet multiplier is positive 1. The hysteresis phe-
nomena of the limit cycle are observed as the subcritical Hopf bifurcation occurs 
at some threshold value. The interesting dynamical bifurcation is also discussed 
with feedback control coefficient 2K . Simultaneously, the routes of period-doubling 
bifurcation to chaos are discovered. 

As shown in Figure 2, the coexistence phenomena of periodical solutions are 
observed in system (1.3) undertaking the strategy of the state feedback control. 
The coexistence limit cycle can be produced by the fold bifurcation or pe-
riod-doubling bifurcation of the limit cycle. Generally, the hysteresis phenomena 
of limit cycle are also observed since fold bifurcation with limit cycle collision 
phenomena. In either case of bifurcation scenario, the limit cycle with a doubly 
period arises near the period-doubling bifurcation point. DDE-Biftool software 
program solves the window visualization of limit cycle continuation as varying 
free parameters. As shown in Figure 2(a), three different period-2 solutions are 
observed with chosen feedback coefficient 1 20.1, 0.005K K= − = − . We also ob-
serve period-2 and period-4 solutions coexistence phenomena with chosen feedback 
coefficient 1 20.1, 0.015K K= − = − , as shown in Figure 2(b). The period-doubling 
bifurcation occurs in system (1.3) while varying feedback coefficient which rich 
the system bifurcation behaviors. 

The whole paper is organized as the listed. In Section 2, the routes to chaos are 
discussed via period-doubling bifurcation and the Poincare section simulation 
verifies the coincident results as varying 2K  feedback coefficient continuously. 
In Section 3, Hopf bifurcation is discussed and the transversal condition is de-
rived. In Section 4, the stability of bifurcating periodical solution from Hopf bi-
furcation is further discussed by dimension reduction technique combined with 
the center manifold theory [19] [20] [21]. And the simulation results verify the  

 

 
Figure 2. The coexitence phenomena of stable and unstable periodical solutions finding in system (1.3) with different feedback 
control coeffients (a) 1 20.1, 0.005K K= − = − ; (b) 1 20.1, 0.015K K= − = − . 
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analysis results. The limit cycle bifurcation is discussed further with the artificial 
DDE-Biftool computation technique. Finally, a conclusion is given. 

2. Routes to Chaos 

As Hopf bifurcation happens, the new bifurcating periodical solution occurs 
which may bring forth the dynamical property of system (1.3) qualitatively 
changed. As Flouquet multiplier of the periodical solutions has attained at −1, the 
period-doubling bifurcation of periodical solution arises which brings forth a 
new periodical solution having its doubly period. The most interesting pheno-
menon is the scenario cascades that periodical bifurcation produces new solu-
tion with enlarged period continuously until chaos appears, which is called the 
routes of period-doubling bifurcation to chaos [14]. With chosen 1 0.1K = − , whilst 
varying 2K  continuously, we get period-2, period-4, period-8 solution, etc. 
of system (1.3), as shown in Figure 3. The period window is observed by the 
numerical analysis with the Poincare section ( ) 5000NN t τ− = , as shown in Fig-
ure 4. 

3. Hopf Bifurcation 

As a pair of imaginary roots cross the imaginary axis from the left half plane to 
the right half plane, Hopf bifurcation occurs with the non-degenerate transversal 
condition. To address the result derive in paper [13], we write out the linearized 
version of system (1.2) at the positive equilibrium solution ( )* * *,E Q N=  as the 
following listed 
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The characteristic equation of the linear equation (2.1) is written as 
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     (2.2) 

We aims to compute Hopf bifurcation point by considering parameter on 
( ),s sr τ -plane, and assume the characteristic equation (2.2) has the imaginary 
root ( )0iλ ω ω= > . Define three new angle variables  

0 , ,s Nθ ωτ φ ωτ ψ ωτ= = =  since the introduction of new time delay 0τ , which is 
an auxiliary delay though with the assumption 0 1τ =  as discussed subsequently.  
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Figure 3. (a) P-1 solution with 2 0.005K = − ; (b) P-2 solution with 2 0.005K = − ; (c) P-4 solution with 2 0.015K = − ; 
(d) P-8 solution with 2 0.026K = − ; (e) strange attractors with 2 0.028K = − ; (f) chaos with 2 0.03K = − . 
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Figure 4. The continuation of equilibrium solutions and bifurcating periodical solutions as varying free parameter sτ  conti-
nuously. Other parameters are fixed with (a) 2 0.005K = − ; (b) 2 0.015K = − . 
 

Hence after, by Euler formula, one gets 
( ) ( ) ( )
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( ) ( )
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              (2.3) 

Substitute them into the characteristic Equation (2.2) and separate the real 
part from the imaginary part, we get 
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Solving ( ) ( )sin ,cosφ φ  from Equation (2.4) to get 
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By the triangle relationship, people set up the following equalities 

( ) ( ) ( )
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          (2.6) 

for 0,1,2,n =  . 
Set the initial value of 0τ , for example 0 1τ = , hence after, angle variable θ  

is chosen as an independent varying parameter. That is, as θ  varying over its 
feasible value sets, one draw Hopf bifurcation curve by tracking the pathway with 
the given parameter value ( ) ( ),s s s sr r θ τ τ θ= = . 

Differentiate both the side of Equation (2.5) with respect to θ , one gets 
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       (2.7) 

Define the matrixes by 
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(2.8) 

then we have 

( ) ( )1 2

0 0

,s s
D Dr
D D

θ τ θ′ ′= =                    (2.9) 

We compute the transversal condition of Hopf bifurcation subsequently. 
Without loss of generality, differentiate Equation (2.2) with respect to sτ  to get 
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Hence after, we have 
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We also differentiate Equation (2.2) with respect to independent parameter θ  
to get 
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By Equation (2.12), one has 
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      (2.13) 

Therefore, the transversal condition is determined by the sign of the real part 
of the left side of Equation (2.13), which is written as 
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          (2.14) 

Therefore, we have the following result. 
Theorem 2.1. There is one pair of imaginary roots cross over the imaginary 

axis form left half plane to the right half plane if the condition  

( ) ( ) ( ) 0s
s s

r
r

θ
τ

 ∂∆ ⋅ ∂∆ ⋅
′ ℑ >

 ∂ ∂ 
 is satisfied, or from the right half plane to the left half 

plane if the condition 
( ) ( ) ( ) 0s
s s

r
r

θ
τ

 ∂∆ ⋅ ∂∆ ⋅
′ ℑ <

 ∂ ∂ 
 is satisfied. 

Note: DDE-biftool however provide us a facilitate hand-tool to solve Hopf bi-
furcation curve with computation and drawing work. As usual as often, when we 
use DDE-Biftool software, we can look the advantage of our algorithm that the 
transversal condition is given explicitly, and Hopf bifurcation curve is shown in 
Figure 6(a). 

4. Continuation of Bifurcating Solution as Varying sτ  

We continue the equilibrium solution as varying delay sτ . As shown in Figure 
5(a) and Figure 5(b), Hopf bifurcation occurs at the star point since the stability 
switching push the character roots cross the imaginary axis then forward to the 
right half plane or backward to the left half plane. The bifurcating periodical so-
lutions are continued with flouquet multiplier computed continuously. Thankful 
for the solving method of DDE-Biftool manuscript of Flouquet multiplier since 
it is right to find the key value on the unit circle. As two examples, choosing 

2 0.005K = −  and 2 0.015K = − , the bifurcation diagram is plotted in Figure 
5(a) and Figure 5(b), with green color denotes the stable states of equilibrium 
solution or periodical solution, while red color and pink color explains the unst-
able states. We met the difficulties during the process of computing period-doubling 
bifurcation solution sometimes. As shown in Figure 5, the period-2 solution bi-
furcates as bifurcating limit cycle (denoted as P-1) arising from Hopf points 
switches its stability. As shown in Figure 5(a), three branches of P-1 solution 

https://doi.org/10.4236/ijmnta.2023.121001


S. Q. Ma 
 

 

DOI: 10.4236/ijmnta.2023.121001 10 Int. J. Modern Nonlinear Theory and Application 
 

are plotted and one branch of P-2 solution bifurcating via period-doubling bifurca-
tion. We also get P-1, P-2 solutions in Figure 5(b), then P-4 solution bifurcates 
further again with flouquet multiplier gets close to −1 as varying control coeffi-
cient 2K . How about two branches of P-4 solution, it is computed by DDE-Biftool 
software. The fold limit cycle bifurcation occurs as the stable and unstable limit 
cycle collision. We record it by fold limit cycle bifurcation line with 2 0.005K = . 
Try our best, with locating the real flouquet multiplier of maximal absolute val-
ues equating positive 1 in addition a common multiplier usually equals 1, the limit 
cycle bifurcation line is drawn on parameter plane s sr τ−  plane. As shown in 
Figure 6(a), Hopf bifurcation curve is plotted with the transversal condition is 
given in Section 2. Furthermore, the period-doubling bifurcation line is plotted 
in Figure 6(b) and the fold limt cycle bifurcation line is drawn in Figure 6(c)  

 

 
Figure 5. The continuation of equilibrium solutions and bifurcating periodical solutions as varying free parameter sτ  conti-
nuously. (a) 2 0.005K = − ; (b) 2 0.015K = − . 
 
 

 
Figure 6. The bifurcation curve of equilibrium solution and periodical solution on s sr τ−  plane with chosen control coefficent 

2 0.005K = . (a) Hopf bifurcation curve of the equilibrium solution; (b) the period-doubling bifurcation curve of periodical solu-
tion; (c) the fold limt cycle bifurcation curve of periodical solution. 
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Figure 7. The time portraits of P-2 solution. (a) With chosen 2 0.005K = ; (b) The continuation of P-2 solution with varying 2K  
continuously. 
 

rigorously. Bautin bifurcation occurs as the intersection of fold limit cycle bifur-
cation with Hopf line. Without feedback control, that is 1,2 0K = , Bautin bifur-
cation point is analyzed with codimension 2 singularity in [12]. We also demon-
strate the stability of bifurcating periodical solution follows subsequently in 
Subsection 4.1. As shown in Figure 7(a) and Figure 7(b), the time portraits of a 
P-2 solution is plotted and also the continuation of portraits are plotted in Fig-
ure 7(b) with varying 2K  continuously. 

Normal Form Computation 

In this section, we apply Schmidt-Lyapunov reduction scheme combined with 
center manifold technique to compute the normal form near Hopf point [13] 
[18] [21]. Assume that Hopf bifurcation occurs at the critical point ( )* *,s sr τ , 
with the equilibrium solution ( )* *,Q N . Originated from system (1.3), by doing 
axis transformation * *,x Q Q y N N= − = − , one gets the 3rd order trunction of 
its Taylor expansion as 
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+ − − + − −

  (4.1) 

with 

( )

( )

2 2 *2
0 2 0 1 0 2

1 1 22 *2 * 22 *2
2 1 2

2 2 *2
0 2 0 2 0 1

2 1 12 *2 2 *2 *2
2 12

2
,

2e 4e , ,s s s sr r

k f k Q
a k K K

Q N Q

k k Q f
a K b A

Q NQ

δ

τ τ

θ θ θ
θ θ θ

θ θ θ
θ θθ

− −

= − − − + − −
+ + +

= − + =
+ ++
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( ) ( )
( )

( )
( )
( )

( )
( )

( )
( )

* *
0 1 0 1

2 12 2* *
1 1

2 * 2 *2 2 4 2 *2 *4
0 2 2 0 2 2 2

0 13 42 *2 2 *2
2 2

2 * 2 *2 2 4 2 *2 *4
0 2 2 0 2 2 2

2 33 42 *2 2 *2
2 2

, ,

3 6
, ,

2e 3 2e 6
, ,

s s s sr r

f Q f Q
b A c

N N

k Q Q k Q Q
g g

Q Q

k Q Q k Q Q
g g

Q Q

τ τ

θ θ

θ θ

θ θ θ θ θ

θ θ

θ θ θ θ θ

θ θ

− −

= − =
+ +

− + − +
= − =

+ +

− + − +
= = −

+ +

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

*
0 1 0 1

4 52 3* *
1 1

*
0 1 0 1

6 73 4* *
1 1

* *
0 1 0 1

0 13 4* *
1 1

0 1 0 1
2 32 3* *

1 1

, ,

, ,

, ,

, .

f f Q
g g

N N

f f Q
g g

N N

Af Q Af Q
h h

N N

Af Af
h h

N N

θ θ

θ θ

θ θ

θ θ

θ θ

θ θ

θ θ

θ θ

= = −
+ +

= − =
+ +

= = −
+ +

= − =
+ +

 
Suppose ( ) ( )tu u tθ θ= +  with ( )T,u x y= , system (4.1) is a DDEs with its 

phase space defined on the Banach space [ ]( )2,0 ,NC Rτ−  with super norm 
( )0max

N
u u tτ θ θ− ≤ ≤= + . Based on the fundamental theory of DDEs, there ex-

ists the bounded variation matrix ( )η θ  to represent the linearized version of 
Equation (4.1) as its Rieze representation 

( )0
d

N
t tLu u

τ
η θ

−
= ∫                       (4.2) 

with 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 2 2 1

1 2

d s N

N N N

a a K c
b b

δ θ δ θ τ δ θ τ δ θ
η θ

δ θ τ γ δ θ δ θ τ
 + + + +

=  + − + + 
 (4.3) 

For Cφ ∈ , the solution operator of the linear Equation (4.2) is a strong con-
tinuous semigroup with its infinitesimal generator 

d , 0
d

, 0

N

L

φ τ θ
φ θ

φ θ

 − ≤ <= 
 =

                    (4.4) 

For *Cψ ∈  with [ ]( )* 20, ,NC Rτ  the conjugate space of C, the adjoint op-
erator *A  of A is denoted as 

( ) ( )
*

0 T

d , 0
d

d , 0
N

Ns
s

s s
τ

ψ τ
ψ

η ψ θ
−

− < ≤
= 
 − =
∫

              (4.5) 

And for *,C Cφ ψ∈ ∈ , define the inner product as the following bilinear 
form 

( ) ( ) ( ) ( ) ( )0T T
0

, 0 0 d d
N

θ

τ
ψ φ ψ φ ψ ξ θ η θ φ ξ ξ

−
= − −∫ ∫        (4.6) 
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Furthermore, for tu C∈ , we rewrite system (4.1) as its operator form of dif-
ferential equation as follows 

t t tu Au Ru′ = +                        (4.7) 

with the nonlinear operator R defined as 

0, 0,
, 0

N
t

t

Ru
Fu

τ θ
θ
− ≤ <

=  =
                   (4.8) 

with 

( )
( )
( ) ( ) ( )

( ) ( ) ( ) ( )

22 3
0 1 2

3 2 2 3
3 4 5 6 7

2 3
2 0 1

2
2 3

,
s

s
t

N N N

N N N N

g x g x g x t

g x t g xy g y g xy g y
Fu

b y t h y t h y t

h y t x t h y t x t

τ

τ

τ τ τ

τ τ τ τ

 + + −
 
 + − + + + +
 =
 − + − + −
 
 + − − + − −   

With the assumption of Hopf bifurcation at the critical value, we define the fi-
nite characteristic roots set { },i iω ωΛ = − . The corresponding eigenvector func-
tion Φ  for differential operator A and Ψ  for its adjoint operator *A  satis-
fies 

*0 0
,

0 0
i i

A A
i i

ω ω
ω ω

−   
Φ = Φ Ψ = Ψ   −   

            (4.9) 

Denote the subspace P is expanded by the eigenvector function Φ , and the 
corresponding complementary subspace is denoted by Q, then decompose 
C P Q= ⊕ . 

Consider the extended phase space [ ]( )2,0 ,NBC Rτ− , which is left conti-
nuous with a possible jump at 0θ = , for any BCϕ ∈ , one has 0Xϕ φ α= +  
with fundamental matrix 

0
2

0 0,
0

NX
I

τ θ
θ
− ≤ <

=  =
                   (4.10) 

we define the projection mapping : BC PΠ →  as 

( ) ( ) ( ) 0, 0 Xϕ θ ϕ θ ξΠ = Φ Ψ +Φ Ψ               (4.11) 

then we have Ker QΠ . 
As stated in the paper, we depart the local center c

locW  as the sum of linear 
part belonging to center eigenspace P and nonlinear part belonging to comple-
mentary subspace Q taht is 

( )| | , ,c
loc

z
W h z z

z
ϕ ϕ θ
   = = Φ +  
   

              (4.12) 

with 2z C∈ . It can be seen that ,
z
z

ϕ
 

= Ψ 
 

, ( ) ( ), ,h z z Kerθ ∈ Π , therefore, 

we get 

( ), , , 0h z zθΨ =                      (4.13) 

and 
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( ) ( )( ) ( ) ( )( ), , , , 0h hz t z t z t z t
z z
∂ ∂ Ψ = ∂ ∂ 

           (4.14) 

The solution ( ) ( )tu u tθ θ= +  of operator differential Equation (4.7) on the 
center manifold can be written as 

( ) ( ) ( )
( ) ( ) ( )( ), ,t

z t
u h z t z t

z t
θ θ θ

 
= Φ + 

 
             (4.15) 

and we have 

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )
( ) ( ) ( )( )

( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( )

, , , , ,

, , , 0

0 0, , , , , 0

h hz t z t z t z t z
z z

z t hB z t z t
z t

z t
B Lh z t z t F z t h z t z t

z t

θ θ θ

θ θ τ θ
θ

θ θ θ

 ∂ ∂  Φ +  ∂ ∂  
   ∂
Φ + − ≤ <  

∂  = 
 Φ + + Φ + = 
 



 (4.16) 

Therefore, we have 

( )( ) 0,t tu t u uΠ − − =                     (4.17) 

and 

( ) ( )( ) 0t tI u t u u−Π − − =                   (4.18) 

By computation of Equation (4.17) and Equation (4.18), we have 

( )
( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( )( )0 , ,
z t z t z t

B F h z t z t
z t z t z t

θ θ
      

= +Ψ Φ +             





    (4.19) 

and 

( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

, , , ,

0 , , , 0

0 0, , 0 0 0 0, , , 0

h z t z t z t h z t z t
z

z
F h z z

z

z z
F h z z F h z z

z z

θ θ

θ θ θ τ θ

θ

∂
=

∂
   
−Φ Ψ Φ + − ≤ <   

   + 
       Φ + −Φ Ψ Φ + =             

 

(4.20) 

Set 

( ) ( )( ) ( ) ( ) ( )2 2
20 11 02, ,h z t z t W z W zz W zθ θ θ θ= + + +       (4.21) 

and at 0θ = , 

( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 2
20,0 11,0 02,0

2 2
20,1 11,1 02,1

2 2
20,2 11,2 02,2

2 2 2
21,0 21,1 21,2

, , 0 0 0

0

s s s

N N N

s N

F z t z t f z f zz f z

f z f zz f z

f z f zz f z

f z z f z z f z z

θ

τ τ τ

τ τ τ

τ τ

= + +

+ − + − + −

+ − + − + −

+ + − + − +

  (4.22) 

Substitute it into Equation (4.20), then we get 
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( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

20 20 20,0 20,1 20,2

11 11,0 11,1 11,2

02 02 02,0 02,1 02,2

2 0 0

0 0

2 0 0

s N

s N

s N

W i W f f f

W f f f

W i W f f f

θ ω θ θ τ τ

θ θ τ τ

θ ω θ θ τ τ

= +Φ Ψ + − + −

= Φ Ψ + − + −

= − +Φ Ψ + − + −







 (4.23) 

Equation (4.23) satisfies the initial value condition 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

20 20 20,0 20,1 20,2

20,0 20,1 20,2

11 11,0 11,1 11,2

11,0 11,1 11,2

02 02 02,0 02,1 02,2

02,0 02,1 02,2

2 0 0 0 0

0

0 0 0

0

2 0 0 0 0

0

s N

s N

s N

s N

s N

s N

LW i W f f f

f f f

LW f f f

f f f

LW i W f f f

f f f

θ ω τ τ

τ τ

θ τ τ

τ τ

θ ω τ τ

τ τ

= +Φ Ψ + − + −

− + − + −

= Φ Ψ + − + −

− + − + −

= − +Φ Ψ + − + −

− + − + −

 (4.24) 

Based on Equations (4.23) and (4.24), by integral Equation (4.23) with the 
given initial condition, then the coefficent matrix ( ) ( ) ( )20 11 02, ,W W Wθ θ θ  can 
be easily computed. Hence after, the expression on the local center manifold is 
approximately derived. Substitute it into Equation (4.19), one also gets 

( )
( )

( )
( ) ( ) ( ) ( ) ( )( ) ( )

( )

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )( ) ( )
( )

( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )

2

20,0 20,1 20,2 2

11,0 11,1 11,2

2

02,0 02,1 02,2 2

2

21,0 21,1 21,2 2

0 0

0 0

0 0

0 0

s N

s N

s N

s N

z t z t z t
B f f f

z t z t z t

z t z t
f f f

z t z t

z t
f f f

z t

z t z t
f f f

z t z t

τ τ

τ τ

τ τ

τ τ

    
= +Ψ + − + −            

 
+ Ψ + − + −  

 
 

+ Ψ + − + −   
 
 

+ Ψ + − + −   
 





  (4.25) 

Therefore, we have expression 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2
20 11 02 21z t i z t g z t g z t z t g z t g z t z tω= + + + +   (4.26) 

with 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

20
20,0 20,1 20,2

20

11
11,0 11,1 11,2

11

02
02,0 02,1 02,2

02

21
21,0 21,1 21,2

21

0 0 ,

0 0 ,

0 0 ,

0 0

s N

s N

s N

s N

g
f f f

g

g
f f f

g

g
f f f

g

g
f f f

g

τ τ

τ τ

τ τ

τ τ

 
= Ψ + − + − 

 
 

= Ψ + − + − 
 
 

= Ψ + − + − 
 
 

= Ψ + − + − 
 

 

Furthermore, the normal form of system (4.1) is written as 

( ) ( ) ( ) ( ) ( )20z t i z t C z t z tω= +                 (4.27) 

with 
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( )
22

021120 11
210

3
ggg g

C g
i i iω ω ω

= − + +
 

5. Conclusion 

The dynamics of stem cells were discussed in stem cells renewal procedure, with 
the discipline between proliferating stem cells and oscillating cyclic neutropenia, 
the coexistence phenomena of periodical solutions were exhibited. It was seen that 
chaos occurs via scenario cascades of period-doubling bifurcation phenomena 
with the control strategy via state feedback with time delay. Hopf bifurcation cri-
terion was derived and a pair of imaginary roots cross the imaginary axis if and 
only if the transversal condition was not zero. Based on the center manifold theory, 
the normal form computation was done based on Schmidt-Lyapunov reduc-
tion technique. The continuous work of limit cycle was expanded with the bene-
fits to adopt DDE-Biftool technique. The periodical oscillation phenomena of 
neutropenia were discussed which can provide some evidence further in the di-
agnosis treatment. 
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