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Abstract 
The observed dynamical property illustrates that state feedback control may 
stabilize invariant attractor to stable state in a simple version of hematopoie-
tic stem cell model. The stability character of the positive steady state is ana-
lyzed by the computation of the rightmost characteristic roots in complex 
plane. Hopf bifurcation points are tracked as the roots curve crossing imagi-
nary axis from the left half plane to the right half plane continuously. The bi-
furcation direction and stability of the bifurcating periodical solution are 
discussed by norm form computation combined with the center manifold 
theory. Furthermore, the numerical simulation verifies that instead of chaos, 
system is stabilized to period-1, 2, 3, 4 and period-7 periodical solutions in 
some delay windows, and the continuous of periodical solutions is also nu-
merical simulated with varying free parameters continuously. 
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1. Introduction 

Delay differential equations have been broadly focused in every fields of scien-
tific investigation work since time delay is a natural factor in the reality life [1] [2] 
[3]. For example, cell’s maturation time in biology, the reflection time for driv-
ing in road traffic, etc. In engineering control fields, people try to design delay 
control apparatus to let the original system stabilized to stable periodical orbits 
or produce new bifurcation behavior [4] [5]. The more attention work is the 
state feedback control in engineering control studying, the periodical oscillation 
behavior is induced via either time delay state feedback or difference feedback 
control [6] [7]. 

As is well known, the new periodical oscillation phenomena occur at Hopf 
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point since system lost its stability. As for the eigenvalue problem of DDEs, Hopf 
bifurcation occurs as the imaginary roots cross the imaginary axis from the left 
half plane to the right half plane. With single time delay effects, people try to 
analyze Hopf bifurcation of linear DDEs by computing imaginary roots by the 
algebra method [8] [9]. Wang and Hu have shown the high analyzing technique 
by applying Sturm criterion with Maple language computation [10] [11]. Kuang 
computes the eigenvalue problem of a type DDEs by locating imaginary roots of 
Hopf bifurcation with consideration of delay-dependant physical parameter [12]. 
Together with Cookie’s work [13], Kuang’s work invokes people’s big interest in 
studying biological model with delay-dependent nonlinear coefficient. In fact, it 
is ubiquitous to introduce delay-dependent physical parameter in biological 
models since nonlinear birth rate to specify the loss rate in specie’s growth stage 
[14] [15] [16]. 

The stability switching always brings forth the periodical oscillation pheno-
mena and complex dynamical behavior. A standard and much studied work of 
DDE is the Mackey-Glass equation which is proposed to model the production 
of white blood cells and given by  

 
( )
( )1 c

ax t
x bx

x t

τ

τ

−
= −

+ −
                          (1) 

For which an invariant attractor is observed with parameters such as  
0.2, 0.1, 10a b c= = =  and 16.5τ = . With state feedback control of time delay, 

system (1) is described as  

 
( )
( )

( ) ( )( )
1 c

ax t
x bx K x t x t

x t

τ
τ

τ

−
= − + − −

+ −
                (2) 

Herein, x denotes the concentration of white blood cells, a, c are Hill coefficients, 
and b represents death rate. 

Since in one respect, with state feedback control to perturb system’s dynamics 
to produce new bifurcation behavior; and in another respect, mathematically, to 
reflect the function of perturbation of state difference biologically since migra-
tion phenomena in model analysis. 

The different dynamical character of hematopoietic stem cell model is dis-
played as shown in Figure 1(a) and Figure 1(b). The observed invariant attrac-
tor is becoming asymptotically stable steady state as exerting feedback control 
with strength 0.2K = − . As varying the free parameter, the steady state may loss 
its stability into instability state to induce the oscillation phenomena arising in 
system. To further analyze the bifurcation mechanism of the stability of the 
equilibrium solution, the characteristic root with zero real part appearing in its 
characteristic equation is analyzed analytically. Hence, we endeavour to calculate 
the rightmost characteristic root wisdomly from geometrical point view which to 
decide the asymptotically stability of the equilibrium solution. 

With the consideration of delay-dependent physical parameter in DDEs, we 
solve the eigenvalue problem of Hopf bifurcation by a new method which is  
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(a) 

 
(b) 

Figure 1. The dynamics of hematopoietic stem cell model (1) and (1) with chosen time 
delay 16.5τ = , (a) The observed invariant attractor of system (1); (b) System is stabilized 
to the steady state under delay feedback control with strength 0.2K = − . 
 
illustrated as geometrical criterion in paper [17] [18]. Numerically, DDE-Biftool 
can compute the rightmost roots of the linear characteristic equation. We devote 
to compute the rightmost characteristic roots of the linear DDE of system (1) 
and (1) to give out the asymptotically stable condition, and make earnest endea-
vors to draw curve of the rightmost characteristic roots continuously as varying 
parameter K. Hopf bifurcation of Equation (1) and (1) are also analyzed to show 
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the bifurcation of periodical oscillation solutions with small amplitude. Fur-
thermore, based on the fundamental theory of functional differential equations 
[19] [20] [21], the bifurcating periodical solutions is computed via norm form 
analytical technique combined center manifold theory. The numerical simula-
tion displays that the observed perioid-1, 2, 3, 4 and perioid-7 solution and 
chaos solution in different delay window underlying state feedback control. 

The whole paper is organized as the listed. In Section 2, the distribution of 
characteristic roots in a band is calculated via geometrical analyze technique and 
the rightmost characteristic roots determines the stability of the positive steady 
state, and Hopf bifurcation is analyzed in Section 3. Based on the fundamental 
theory of DDEs, the dimension reduction system of system (1) and (1) is com-
puted and analyzed combined with the center manifold theory. The bifurcation 
direction and the stability of the bifurcating periodical solution are derived via 
formal norm analytical technique. The numerical simulation has shown the con-
tinuous of oscillation solutions as varying free parameters. 

2. The Computation of the Rightmost Characteristic Root 

The characteristic equation of the linear DDEs of Equation (1) and Equation (1) 
can be written as  

 ( ) ( ) ( ), , , , eP Q λτλ σ τ λ σ λ σ −∆ = +                     (3) 

For the fixed value of * *,σ σ τ τ= = , suppose iλ α β= + , substitute it into the 
characteristic Equation (2) then seperate the imaginary part from the real part to 
get  

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

* *

* *

* * * * *

* * * * *

, , , , e cos , , e sin 0,

, , , , e cos , , e sin 0

R R I

I I R

P Q Q

P Q Q

ατ ατ

ατ ατ

α β σ α β σ βτ α β σ βτ

α β σ α β σ βτ α β σ βτ

− −

− −

+ + =

+ − =
(4) 

By Equation (2) to get  

 ( ) ( )* ** *
2 2 2 2e cos , e sinI I R R I R R I

I R I R

P Q P Q P Q P Q
Q Q Q Q

ατ ατβτ βτ− −+ −
= − =

+ +
    (5) 

Set *S βτ= , the equivalent equation of Equations (2) is obtained as  

 

( ) ( )

*
2 2

2
2 2 2 2e ,

, tan

I I R R I R R I

I R I R

I R R I

I I R R

P Q P Q P Q P Q
Q Q Q Q

P Q P QG S S
P Q P Q

ατ

α

−    + −
= +   

+ +   

−
= − −

+

              (6) 

Hence we derive the following lemma 2.1,  
Lemma 2.1: Suppose ( ), 0SG Sα′ ≠ , then there’s implicit function ( )Sα α=  

determined by ( ), 0G Sα ≡ . 
Define the line  

 ( ) *2
1: e SL Y α τ−=                          (7) 

and the line  
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2 2

2 2 2 2 2: I I R R I R R I

I R I R

P Q P Q P Q P QR Y
Q Q Q Q

   + −
= +   

+ +   
               (8) 

then the intersection point *S  determines the corresponding characteristic 
roots ( ) ( )* *S i Sλ α β= + . 

Setting ( ) ( )x t x tτ− = , the positive steady state of Equation (1) and Equation  

(1) is calculated as * 1exp ln a bx
C b

 −  =   
  

. Doing the axis transformation  

*x x x= − , ( ) ( ) *x t x t xτ τ− = − − , one obtains the linear DDEs  

 ( ) ( ) ( )x t Ax t Bx t τ′ = + −                      (9) 

with  

 

( ) ( )( )

( )( )

1

2
1

1 1

,

1

c

c

c

c

c a b b a

A b K B K

a b b

   − + − −    = − + = − −
  
 + −    

        (10) 

Hence one has  

 ( ) ( ), , ,P b A Q b Bλ λ λ= − =                   (11) 

Equation (2) is rewritten as  

 

( ) ( ) ( )

2 2
2e ,

, tan

A S
B B

SG S S
A

ατ α
τ

α
τ α

− − −   = +   
   

= −
−

                  (12) 

By the second equation in Equations (2) one gets  

 ( )
( )

tan
tan

S A S
S
τ

α
τ
−

=                        (13) 

Therefore by Lemma 2.1, one defines ( )
( )1

tan
: exp 2

tan
S A S

L Y
S
τ −

= −  
 

 and  

( )

2

2 22 2
:

sin
SR Y

B Sτ
= . We also draw the following conclusion: 

Lemma 2.2: Suppose the intersection point of line L and line R is ( )* * *, ,S A B , 
then the only positive equilibrium solution is asymptotically stable if  

( )* * *
1 1 , , 1Y Y S A B= <  and versus if ( )* * *

1 1 , , 1Y Y S A B= > . In addition, Hopf 
bifurcation is induced at ( )* * *, ,S A B  if ( )* * *

1 1 , , 1Y Y S a B= = . 
The switching of stability of the only equilibrium solution is shown in Figure 

2(a) and Figure 2(b). The green line describes the continuous of asymptotically 
stable equilibrium solution with varying b and the red line represents the unsta-
ble equilibrium. Chosen different feedback strength 0K < , it is observed that 
the equilibrium solution is robust stable with smaller value of K. Figure 2(b) al-
so shows the stability property of equilibrium solution as varying time delay τ .  
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(a) 

 
(b) 

Figure 2. The location of the imaginary roots in complex plane, with chosen time delay 
16.5τ = . (a) Without output state feedback control since 0K = ; (b) The appearance of 

output state feedback control since 0.2K = − . 
 
The solution is asymptotically stable for small time delay then change to be un-
stable as increasing strength K. We draw the stable regime with green as shown 
in Figure 3 and red regime represents the unstable regime. It can be seen Hopf 
bifurcation occurs as stability property of the equilibrium solution is changed 
with varying parameter a and b and the amplifying picture denotes the stability  
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(a) 

 
(b) 

Figure 3. The continuous of equilibrium solution with different strength of  
0, 0.02K K= = −  and 0.08K = − . (a) The stability property of the equilibrium solution 

as varying b; (b) The stability property of the equilibrium solution as varying time delay.  
 
property of equilibrium solution with the specified value of 0.1K = −  as vary-
ing b continuously. Hopf bifurcation line is also drawn with blue line and the 
discussion of Hopf bifurcation is given in Section 3. 

3. Hopf Bifurcation 

As shown in Figure 2 and Figure 3, Hopf bifurcation occurs respectively with 
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varying parameter b and feedback strength K, and time delay τ . The formula of 
Hopf bifurcation is deduced by setting 0α = . Set iλ ω= , substitute it into 
Equation (2) then separate the real part from the imaginary part to get  

 
( ) ( ) ( )

( ) ( ) ( )

, , cos 0,

, , sin 0

R R

I R

P Q

P Q

ω σ ω σ ωτ

ω σ ω σ ωτ

+ =

− =
                  (14) 

Hence Hopf bifurcation occurs if and only if  

 2 2 2 0R I RP P Q+ − =                          (15) 

Set S ωτ= , by Equation (3), one gets  

 

( ) ( )

2 2

1 0,

tan 0

A S
B B

S S
A

τ

τ

−   + − =   
   

− =

                       (16) 

and further to obtain Hopf line in ( ),b K -plane. Hopf line is shown in Figure 4 
with blue color. By Equation (16), one obtains that  

 

( )( )
( )( )

( )
( )

2

1

1 tan 1

tan

tan
tan

S S

S B b

S b S
K

S

τ

τ
τ

± +
=

−

+
=

                     (17) 

Following we will compute the transversal condition for Hopf bifurcation. The 
characteristic Equation (2) can be rewritten as  
 

 
Figure 4. The equilibrium plane as varying parameter b and feedback strength K. The 
green regime denotes the asymptotical stability of the equilibrium solution whilst the red 
regime is unstable one.  
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( ) ( ) ( ), , , , eK P K Q K λτλ τ λ λ −∆ = +                 (18) 

Differentiate Equation (3) with respect to time delay τ , one has  

 ( )d de e 0
d d

P Q Q Qλτ λτ
λ λ

λ λτ λ
τ τ

− −′ ′+ − − =               (19) 

That is,  

 
( )ed 1

dd e
d

P Q Q
signRe signRe signRe

Q

λτ
λ λ

λτ

τλδ
λτ λ
τ

−

−

′ ′+ −
= = =       (20) 

On another respect, differentiate Equation (3) with respect to S to get  

 
( ) ( ) ( ) ( )( )

( ) ( )( )

e

e 0

K KP i S P K S Q i S Q K S

Q i S i S

λτ
λ λ

λτ

ω ω

ω τ ωτ

−

−

′ ′ ′ ′ ′ ′ ′ ′+ + +

′ ′+ − − =
         (21) 

By Equation (3) and Equation (3) one can compute that  

 

( ) ( )
( ) ( ) ( )

( )
( ) 2

e1
e

e

iS
K

iS

iS
K

K S Q i S
S signRe

i S i Q

K S Q
signRe

S Q

ω τ
δ

ω ω

ω ω

−

−

′ ′ ′∆ + −
=

′−

′ ′∆
=

′

       (22) 

with ( ) ( )1 S
S

τ ω
ω

τ
′−

′ = . 

4. Bifurcation of Periodical Solutions 

As we have discussed in Section 3, Hopf bifurcation occurs with one pair of im-
aginary roots iω  with zero real part of the characteristic equation. Suppose 
( )* *,K τ  is Hopf point, then we compute the bifurcation direction and stability 
of periodic solution by perturbation method combined with analytical technique 
on the center manifold. Set * *,K K ε εετ τ τ ετ= + = + , then Equation (1) can be 
written as its 3rd truncated expansion which listed as  

 
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

* *

2 3* * * *
1 2 ,

x t Ax Bx t K x t K x t

B x t x t s x t s x t

ε ε

ε

τ ε ε τ

τ ετ τ τ τ

′ = + − + − −

+ − − − − + − + −
  (23) 

with 
( ) ( )

12

1 3

1 1

1

ca b a b a bca c c
b b b

s
a b

b

− − − −     − − + −             =
− + 

 

 and  

 

2 2 3 2 3
2 2 2

2 4

4 2

,
1

ca b a b a b a b a b a b a bca c c c
b b b b b b b

s
a b

b

−  − − − − − − −             − − + + +                             =
− + 

 

(24) 

with the phase space ( ) [ ]( ){ }| , 0C C Rφ θ φ τ= ∈ − → , φ  is left continuous at 
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0θ = , the supremum norm is defined as ( )0sup τ θφ φ θ− ≤ ≤= , then based on 
the fundamental theory of funcational differential equations, there exists matrix 
function to write the linearized equation of Equation (4) as  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )* *

0 0 0
1 2d d dL

τ τ τ
ε φ η θ φ θ ε η θ φ θ η θ φ θ

− − −
= + +∫ ∫ ∫      (25) 

with  

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

* *
1

* *
2

d , d

d ( )

A B K K

B B

ε ε

ε

η θ δ θ δ θ τ η θ δ θ δ θ τ

η θ δ θ τ ετ δ θ τ

   = + + = − +   

 = + + − + 

 (26) 

Equation (3) can be written as its opearator differential form  

 ( ) ( ) ( )t tx t L x F xε= +                       (27) 

with nonlinear part  

 ( ) ( ) ( )( )2 3* *
1 2F s sφ φ τ φ τ= − + −                   (28) 

The solution operator of Equation (4) is a strong continuous semigroup with in-
finitesimal generator  

 
( )

d , 0,
d

0 , 0L

φ τ θ
φ θ

φ θ

 − ≤ <= 
 =

                    (29) 

The adjoint operator in the conjugate space [ ]( )* 0, ,C Rτ  is also defined as  

 
( ) ( )

*

*

0

d , 0 ,
d

d , 0

s
s

s s s
τ

ψ τ
ψ

η ψ

− < ≤
= 
− − = ∫

               (30) 

For any *,C Cφ ψ∈ ∈ , define the bilinear form as  

 ( ) ( ) ( ) ( ) ( )0

0
, 0 0 d

θ

τ
φ ψ ψ φ ψ ξ θ η θ φ ξ

−
= − −∫ ∫          (31) 

Define the collection set { },i iω ωΛ = − , and the corresponding eigenspace  
( ){ },P cq cθΛ = ∈  given that  

 
( ) ( )

( ) ( )

*

* *

, 0,

, 0

q i q

p s i p s s

θ ω θ τ θ

ω τ

= − ≤ ≤

= − ≤ ≤




                (32) 

and , 1, , 0p q p q= = . It is easily calculated that  

 ( ) *e , 0iq ωθθ τ θ= − ≤ ≤                     (33) 

and  

 ( ) *e ,0i sp s N sω τ= ≤ ≤                     (34) 

with **

1
1 ei

N
B ωττ

=
+

. Suppose Q is the complementary subspace of PΛ  and  

the phase space is decomposed into C P QΛ= ⊕ . With a possible discontinuous 
jump at 0θ = , we also define the map  
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 max
0

0, 0,
, 0

X
I

τ θ
θ

− ≤ <
=  =

                     (35) 

Then for any 0x X Cϕ α= + ∈ , define the projection operator  
[ ]( ): ,0C R Pτ Λ′Π − → →  as ( ) ( ) ( )0 , 0X q p p wϕ α θ ϕΠ + =  +   . Therefore, 

for any tx C∈ , it is written as t tx zq zq y= + + , substitute it into operator dif-
ferential Equation (4) to obtain  

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )(

( ) ( ) ( )(

*

0 0
1 2

* * *

* * *

0 0

0 d d

0 0 0

t t t

t t t

t t

t

z i z p L x L x F x

i z p x x F x

i z N K zq zq y zq zq y

N Bzq zq y

τ τ

ε

ε ε ε

ω ε

ω ε η θ θ η θ θ

ω ε τ τ τ

τ ετ τ ετ τ ετ

− −

′ = + − +

= + + +

= + + + − − − − − −

+ − − + − − + − −

∫ ∫
 

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )

* * *

2* * *
1

3* * *
2

* * *
0( ) (

t

t

t

t t t

N Bzq zq y

N s zq zq y

Ns zq zq y

y y I X F zq zq y

τ τ τ

τ τ τ

τ τ τ

τ τ τ

+ − + − + −

+ − − + − + −

+ − + − + −

′ = + −Π − + − + −

                (36) 

The normal form on the center manifold is represented by the following  

 

( ) ( )
( ) ( )( ) ( )( )

( ) ( )( ) ( )

( ) ( )( )
( )

* * * *

* * * *

* *

* *

* *

2 3
* *

1 2

2
* *

1

2
*

1

1

e e e e

e e e e

2 e e , 0,

e e

2 e e

i i i i

i i i i
t t

i i
t

i i
t t t

i i

z i z N K z z z z NB z z

N s z z y Ns z z y

N s z z y q

y y s z z y

N s z z

ωτ ωτ ωτ ωτ
ε ε

ωτ ωτ ωτ ωτ

ωτ ωτ

ωτ ωτ

ωτ ωτ

ω ε ετ

τ τ

τ θ τ θ

τ

− −

− −

−

−

−

′ = + + − − − +

+ − + + − + + + −

 − ℜ − + + − − ≤ < 
 

′ = + + − + + −

− ℜ − + +



( )( ) ( )
2

* , 0,ty qτ θ θ







  − =   

 (37) 

Set  

 ( ) ( ) ( )2 2
20 11 02ty Y z Y zz Y zθ θ θ= + +                 (38) 

By Equation (4) to get differentiation of all the coefficients  
( ) , 2, ,ijY i j i j Nθ + = ∈  with respect to θ  and the corresponding initial condi-

tion which is omitted. Hence we obtain  

 
( )2 2 3

1 20 11 02 30

2 2 3
21 12 03 ,

z i c z g z g zz g z g z

g z z g zz g z

ω ε ε′ = + + + + +

+ + + +
           (39) 

( )
( ) ( ) ( )( )

* *

* *

1

2* 2 *
20 1 20 20

1 e e ,

2 e e

i i

i i

c NK NB

g N s Y Y

ωτ ωτ
ε ε

ωτ ωτ

τ

τ τ

− −

− −

= − −

= − − + + −
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( ) ( )( )
( )

( ) ( ) ( ) ( )( )

*

*

* *

*
11 1 20

2
02 1

* 2 * *
21 1 11 11 20 2

2 2e 2 ,

e ,

2 e 2 e .

i

i

i i

g N s Y

g N s

g N s Y Y Y Ns

ωτ

ωτ

ωτ ωτ

τ

τ τ τ− −

= − − +

= −

= − − + − − +

    (40) 

By set eiz θρ= , Equation (4) can be written into its polar form  

 ( ) ( )( )2
1 2Re c Re cρ ερ ρ′ = +                    (41) 

with  

 ( )2 20 11 212

1c Re ig g gω
ω

= +                     (42) 

Hence, we deduce the following conclusion, 
Theorem 4.1. The bifurcation direction of the small amplitude periodical solu-

tion arise from Hopf point determined by 
( )
( )

2

d
d

Re c
Re

µ
λ

τ

= , which is super-critical  

Hopf bifurcation if 0µ <  or sub-critical Hopf bifurcation if 0µ > ; The bi-
furcating periodical solution is stable if ( )2 0Re c <  and unstable if ( )2 0Re c > .  

For example, with fixed parameter 0.2, 10a c= = , two super-critical Hopf 
points are detected respectively at 0.148, 16.5b τ= =  and 0.017, 16.5b τ= = . 
By formula (4), it is calculated that 2 0.2184741763 0c = − <  and  

2 0.3382864105 0c = − < . Hence, the bifurcating periodical solutions are stable 
and the continuous stable periodical solutions with varying parameter b is 
shown in Figure 5(a). The bifurcating stable periodical solution at 0.13b =  is 
shown in Figure 5(b) with blue lines, and the bifurcating period-2 solution at 

0.12b =  is plotted by green lines. The picture of phase portraits in Figure 5(c) 
is produced by x versus ( )x t τ−  with sub-figures. And we deduce a possible 
period-doubling bifurcation arising at 0.125b = . Comparing with the period of 
oscillating solution before bifurcation, a periodical solution with two times pe-
riod is produced since floquent multiplier is arriving at −1 at the bifurcation  
 

 
(a)                                                          (b) 
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(b)                                                          (c) 

 
(e)                                                          (f) 

Figure 5. Fixed 16.5, 0.02Kτ = = − , periodical oscillating solutions of Equation (1) and the continuous of periodical solutions of 
Equation (1) as varying free parameter b. (a) The vicinity of periodical solution at Hopf points; (b) The periodical solution at 

0.08b =  and the period-2 solution at 0.1b =  with 16.5τ = . (c) The corresponding phase portraits of (b); (d) The period-4 
solution at 0.125, 21b τ= = ; (e) Fixed 21τ = , the bifurcation of periodical solutions on Poincare section ( ) 0x t = ; (f) Fixed 

23.5τ = , the bifurcation of periodical solutions on Poincare section ( ) 0x t = . 

 
point. By varying time delay and choosing Poincare section ( ) 0x t′ = , the sena-
rio of period 1, 2, 3, 4 and period 8 bifurcation of period solutions are pictured 
as shown in Figure 5(d). The state feedback control in system (1) produce stable 
periodical orbits within some time delay windows, which may function hema-
topoietic stem cells system to visualize stable oscillation solution instead of 
chaos. 

5. Conclusions  

The dynamics of a hematopoietic stem cell model with delay state feedback con-
trol is discussed. Underlying super-critical Hopf bifurcation, system lost its sta-
bility to experience periodical oscillation behavior. The curve of the rightmost 
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characteristic roots is continuously simulated with varying free parameters, hence 
Hopf point is found as the roots curve cross the imaginary axis from the left half 
plane to the right half plane. Furthermore, the stable and unstable regime of the 
steady state is partitioned by Hopf bifurcation curve. The continuous bifurcating 
periodical solution is carried out with varying free parameters. It is discovered 
that period-1, 2, 3, 4, and period-7 solution arises underlying adding-period bi-
furcation and period-doubling bifurcation of periodical solutions. The results 
visualized the stable periodical orbits instead of chaos under the state feedback 
control with time delay. 

In this paper, we discussed the hematological system model underlying delay 
state feedback control. However, for simplicity, the feedback delay is uniform 
with the mature delay as in stem cells growth stage. We will further discuss the 
hematological system which contains two different time delays in later paper. 
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