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Abstract 
The DDE-Biftool software is applied to solve the dynamical stability and bi-
furcation problem of the neutrophil cells model. Based on Hopf point finding 
with the stability property of the equilibrium solution loss, the continuation 
of the bifurcating periodical solution starting from Hopf point is exploited. 
The generalized Hopf point is tracked by seeking for the critical value of free 
parameter of the switching phenomena of the open loop, which describes the 
lineup of bifurcating periodical solutions from Hopf point. The normal form 
near the generalized Hopf point is computed by Lyapunov-Schimdt reduction 
scheme combined with the center manifold analytical technique. The near 
dynamics is classified by geometrically different topological phase portraits. 
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1. Introduction 

Mathematical modelling is powerful designed in understanding hematological 
stem cells (HSCs) regulation mechanism to explore its complex behaviors un-
derlying dynamical bifurcation mechanism ([1]-[3]). Normally, the circulating 
white cells, red cells and platelets are maintained at a homeostatic level, hence no 
obvious evidence of any oscillation behavior occurring. However, the neutrophil 
dynamics is further discussed based on the circulating cells dynamics with the 
discipline of the cell lineage. When neutrophil numbers fall to sufficiently low 
levels, the periodic oscillation phenomena of neutrophil counts are observed 
([4]-[6]). The often hematopoietic diseases are modeled with several delays his-
tory in one period, which describes neutrophil dynamics by DDEs with nonline-
arity ([4] [7] [8]). 
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Even brilliantly with some known models, the administration of the periodic 
diseases and the production of blood cells number is partially understood yet. 
Biologically and mathematically, the outline of the circulating cells feedback 
mechanism is schemed, which originated from HSCs number, as shown in Fig-
ure 1. In mammals, hematopoietic stem cells can proliferate and differentiate into 
one of the three major cells, and end with the release of the mature blood cells 
into the circulation ([9]-[11]). The computation models of HSCs dynamics obey 
the Hill rules with the introduction rate manifesting time delay feedback in pro-
liferating phase, which is described as ([9]): 

( ) ( ) ( )( ) ( )02e s
s sQ t Q Q Q t Q tγ τβ β τ τ−′ = − + − −           (1.1) 

Here in Q denotes HSCs number, and giving Hill function ([10] [12] [13])  

( )
n

n nQ
Q
θβ
θ

=
+

                        (*) 

With all sorts of bifurcating solutions, and even chaos, system (1.1) has shed 
light on the pathophysiology dynamically development of the related hemato-
poietic diseases. In this paper, we also get a brand new function to replace of Hill 
function, 

( )
( )( )0 2

1 ,
1 2 cos

n

n n n

pQ
Q p p Q

β β −
=

+ +
               (F) 

with ep θ−= . 
 

 
Figure 1. The outline of the two department cells model of neutropenia dynamics. 

 
The control of the circulating blood cells is mediated by a delayed negative 

feedback mechanism, such as granulocyte colony stimulating factor (G-CSF) for 
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the white blood cells ([14]-[16]). As is known, the apoptosis is the programmed 
death of cells happening during the proliferation and differentiation process. In 
paper ([5] [17]-[19]), the feedback control of G-CSF has supposed to experience 
two time segments NPτ  and NMτ , and the amplifying coefficients in the pe-
ripheral cells cycle are set forth, which is formulated as  

e NP NP NMA η τ γτ−=                        (1.2) 

With the guide of the outline schemed in Figure 1, the studied neutrophil 
model is put forth as the follows 

( ) ( )( ) ( ) ( )

( )( )

d 2
d
d e
d

s s

NP NP NM
N N

N s

N

Q Q k N k Q c Q Q
t
N N k N Q
t

δ τ τ

η τ γτ
τ τ

β τ β

γ −

= − + + +

= − +
        (1.3) 

System (1.3) is of highly nonlinearity of DDEs with history of multi-delays, 
wherein with positive integer 1, 2m n= = . Hill function of ( )K N  is often given 
as ([7] [20]).  

( ) 1
0

1

m

m mK N f
N

θ
θ

=
+

                     (1.4) 

We set ( ) ( )
0

1 ds j
sc g s s

τ
γτ = − ∫ , which is increasing with time delay sτ . In 

general, the function ( )jg sγ  denotes Gamma-distribution with formula  

( )
( )0

1
0

e

j j
j

s

sg s
jγ γ

γ−

=
Γ

                      (1.5) 

where in 0γ  is positive constant and 0j N∈ , ( ) ( )1 !j jΓ = − . It is easily seen 

that if 1j = , ( ) 0e s
sc γ ττ −= , and herein after we choose 2j =  to get  

( ) 0 0
0e es s

s sc γ τ γ ττ γ τ− −= +                    (1.6) 

and ( )0lim 1
s scτ τ→ = . 

The stability property of system loss as Hopf bifurcation is observed, and 
double Hopf bifurcation occurs as Hopf lines intersect itself with varying free 
parameters. We discuss double Hopf bifurcation further in another paper. The 
often analytical technique of Hopf bifurcation is completed by the imaginary 
roots computation of the related characteristic equation of the linearized system 
([21] [22]). And the bifurcation direction of the periodical solutions arising from 
Hopf point is calculated by the normal form on the center manifold ([23] [24]). 
With the Lyapunov-Schmidt reduction method referred, the near dynamics of 
the double Hopf point is classified geometrically in topological phase portraits 
by the derived normal form. Generalized Hopf bifurcation happens at the switch 
point of super-Hopf bifurcation and sub-Hopf bifurcation. And in general, the 
calculated first Lyapunov coefficient in normal form is zero ([25]-[27]). Hence 
after the expanded normal form to five degree is demanded and the limit point 
cycle bifurcation line is computed by normal form coefficients. 

DDE-Biftool is an artificial hand-tool in DDEs bifurcation computation and 
has the big compatibility with every sort of delay systems ([28] [29]). As another 
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preserved method, DDE-Biftool discovers the generalized Hopf point by a spe-
cial observation of loops of limit cycles. With free parameter 0γ  varying, the 
bifurcating periodical solutions arise from Hopf point. However, near GH point, 
the super-critical Hopf point and the sub-critical Hopf point are close to each 
other, and surely candidates for a lineup of the limit cycles continued from one 
Hopf point to another. The featured open loops of lineup of periodical solutions 
continuation are described. At GH point, the collide of stable limit cycles and 
unstable limit cycles also happens, which extends a limit point cycle bifurcation 
line from GH point. Whether the limit point cycle bifurcation line is in coinci-
dence with the above referred bifurcation line calculated by normal form coeffi-
cients? 

The whole paper is organized as follows. In Section 2, the continuation of 
equilibrium solution is done with varying free parameter 0γ , and the bifurcat-
ing periodical solution arising Hopf point is finished. In Section 3, the preserved 
method of discover generalized Hopf point is programmed, which display both 
the open loops of lineup solutions nearby and the closed lineup solutions of pe-
riodical oscillation at the critical values. In Section 4, the programmed lineup 
solutions of limit cycle are also observed by varying parameter kδ  and Nτ , 
which are either open loops or closed loops continued by DDE-Biftool; In Sec-
tion 5, the normal form of GH are computed by dimensional reduction method. 

2. Hopf Bifurcation Analysis of System 

Suppose ( )* * *,E Q N=  is the equilibrium solution of system (1.3), then it is 
satisfied the right side of the equations. Applying DDE-Biftool with sys_ rhs 
command to setup system (1.3), the continuation solution of the equilibrium is 
often carried out. The stability property of equilibrium solutions is analyzed by 
br_ stable command. As shown in Figure 2(a), applying DDE-Biftool software, 
we continue the equilibrium solution and compute the stability property as var-
ying 0γ . Hopf points are found due to the loss of stability of the equilibrium 
solution as varying free parameter. We use 0*γ  to denote the threshold of Hopf 
bifurcation and Hopf points are listed  
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(a)                                                 (b) 

Figure 2. The continuation of the equilibrium solution and bifurcating periodical solutions arise from Hopf points v.s. 

0γ , the other parameters are fixed as 0.143kδ = , 0.577Nτ = . (a) The equilibrium solutions and Hopf points; (b) The 
continuation of periodical solutions with maximal magnitude and minimal magnitude versus 0γ .  

 
The bifurcating periodical solution arise from Hopf point, as shown in Figure 

2(b), in which using solid line to denote the maximal amplitude and dash line to 
represent the minimal amplitude of periodical solution. The bifurcating period-
ical solution is devastating to find nearby possible generalized Hopf(GH) bifur-
cation.  

3. Generalized Hopf Point with γ 0  

  
(a)                                               (b)  

Figure 3. The detection of GH point and the continuation of periodical solutions. (a) The imaginary roots calcula-
tion of GH point; (b) The amplitude picture with respect to 0γ  is continued. 
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Figure 4. (a) The continuation of periodical solution near GH point in X-Z view; (b) The pic-
ture near GH point in X-Y-Z view; (c) The continuation of periodical solution of GH point in 
X-Z view; (d) The picture of GH point in X-Y-Z view. 

 
We give the preserved method to detect Generalized Hopf point by pro-

grammed code in DDE-Biftool. That is, the periodical solution from left and 
right Hopf point on equilibrium solutions line collide. Therefore, with the ami-
nation to detect GH point, we pick up two periodical solutions to do continua-
tion of periodical solutions as varying 0γ , as shown in Figure 6. Originated 
from the following two periodical solutions psol1 and psol2 respectively,  
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The continue of periodical solutions is completed from Hopf point to Hopf 
point with respect to 0γ . As shown in Figure 3(a), the nearby GH are found 
with  

 
As seen in Figure 3(b), the periodical solution continued from GH is com-

pleted. The amplitude of periodical solutions versus 0γ  is shown which hints 
both subcritical Hopf bifurcation and supercritical bifurcation occurring. How-
ever, the calculation of bifurcating direction of periodical solution of GH point 
should be further discussed subsequently. 

The line up of the bifurcating periodical solutions is looped by the continua-
tion method in DDE-Biftool. The red color and blue color separate the periodi-
cal solutions before and after the limit point cycle bifurcation. As seen in Figure 
4(a) and Figure 4(b), the open loop of line up of solution is obtained with the 
continuation from the originated periodical solution “psol1”; however, the closed 
loop of line up of solution which started from the solution “psol2” gets into sight 
of Figure 4(c) and Figure 4(d). Hence GH point is found as listed above. Other 
parameter are fixed as 2.5Nγ = , 2.542NPη = , 0 0.8f = , 1 0.36θ = , 

0.0631sr = , 5NPτ = , 0 2.3β = , 0.43p = .  

4. GH Point with Parameter Nτ  and kδ  

It is claimed that GH point is found if a super-critical Hopf point collide with a 
sub-critical Hopf point. It is concluded that before and after threshold value of 
GH point, the lineup of limit cycle by continuation method manifests different 
routes design. Either lineup of periodical solutions from Hopf point continua-
tion to Hopf point, or only lineup of periodical solutions from limit point cycle 
to limit point cycle without Hopf point found. For example, we choose the fol-
lowing two different periodical solutions, which respectively continued to be the 
referred different lineup solutions of system. With 0.0124kδ = , the continua-
tion of limit cycle is done with varying delay Nτ , the closed loop of lineup of 
periodical solutions are observed. We increase the value of kδ  until attach at 
GH point, about 0.013431205338737kδ = , the loop of lineup of periodical so-
lutions shows connecting cusp point at GH point. The value of kδ  is increased 
further, the loop of lineup of periodical solutions is done, which is open lineup 
loop. As shown in Figure 5, three open loop of lineup solutions are observed 
when varying Nτ  with 0.0124,0.0133,0.0134kδ = ; three closed loop of lineup 
solutions are also exhibited with 0.0135,0.0137,0.0141kδ = . 

At GH point listed as following, we setup the new solutions with profile 
method (example is illustrated at DDE-Biftool), the continuation of lineup of 
limit cycles is shown in Figure 6, as varying kδ .  
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Figure 5. The loops set of the continuation of periodical solutions as increasing free pa-
rameter kδ . The lineup solutions are obtained by varying time delay Nτ .  

 

 
Figure 6. The loops set of the continuation of periodical solutions as increasing free parameter kδ . The lineup solutions are 
obtained by varying time delay Nτ .  

5. The Norm Form of GH Point 

As discussed in the above sections, the generalized Hopf bifurcation occurs at 
( )0 0, Nkδ τ  with other parameter fixed. On Hopf line, the generalized Hopf point 
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separates the supercritical Hopf points from the subcritical Hopf points. Since it 
happens with a limit point cycle bifurcation line arise from bifurcation point, 
two limit cycles coexist due to GH bifurcation. In Normal form, we can compute 
the first lyapunov exponent equals zero. The bifurcating periodical solutions 
arising from GH point is determined by the second Lyapunov exponent, which 
is stable if the exponent is less than zero, and otherwise versus. Applying Lya-
punov-Schimdt reduction method, the norm form is often computed by the 
projection of solution operator on the phase space into the center manifold, and 
the bifurcating direction is determined. 

We set * *,x Q Q y N N= − = − , then applying the perturbation parameters 
method, the trunction system of system (1.3) with Taylor expansion to fifth or-
der is written as  

( ) t tU t LU FU= +                       (5.1) 

With ( )T,U x y= , and  

( ) ( )0
d

N
tLU

τ
η θ φ θ

−
= ∫                     (5.2) 

With [ ] 2: ,0N Rη τ− →  is a bounded variation function vector. We also have  

( ) ( ) ( )( )
2

0 j ki
t ijk t t s t s

i j k
FU B U U Uτ τ

+ + ≥

= − −∑  

where in the above expression represents the multi-linear form style as often re-
ferred. 

System (5.1) is defined on the phase space of a Banach space [ ] 2,0NC Rτ= − →  

with super norm ( )0sup
Nτ θφ φ θ− ≤ ≤= , with ( ) ( )tU U tθ θ= +  and tU C∈ . 

As often calculated in Section 3, the linearized system of Equation (1.3) has 
eigen roots with iω±  and eigenvector e , ei iq qωθ ωθ−  for 0Nτ θ− ≤ ≤ . Based on 
the fundamental theory of DDEs ([20]), the solutions of the linear operator are a 
strong continuous semigroup which has infinitesimal generator  

( )

d , 0,
d

, 0

N
φ τ θ

φ θ
φ θ θ

 − ≤ <= 
 =




                 (5.3) 

For [ ]( )2,0NC Rφ τ∈ − → . 

For [ ]( )* 20, NC Rψ τ∈ → , the adjoint operator is also defined as  

( )
*

*

d , 0 ,
d

, 0.

Ns
s

s s

ψ τ
ψ

ψ

− < ≤= 
− − =




                (5.4) 

For *,C Cφ ψ∈ ∈ , we define the bilinear function of inner product as  

( ) ( ) ( ) ( ) ( )0T T
0

, 0 0 d d
N

θ

τ
ψ φ ψ φ ψ ξ θ η θ φ ξ ξ

−
= − +∫ ∫        (5.5) 

Therefore, since it is satisfied with  

* *

e e , e e , for 0,
e e , e e , for 0 .

i i i i
N

i s i s i s i s
N

q i q q i q
p i p p i p s

ωθ ωθ ωθ ωθ

ω ω ω ω

ω ω τ θ
ω ω τ

− −

− −

= = − − ≤ ≤
= − = ≤ ≤

 
 

     (5.6) 
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The center space is defined with its bases as { }e , ei iP span q qωθ ωθ−= . Suppose 

Q C⊂  being the complementary subspace, and we can decompose the phase 
space C into its direct summation C P Q= ⊕ . We define the base function 

( ) ( )e , ei iq qωθ ωθθ −Φ =  for 0Nτ θ− ≤ ≤ , and also the base function ( )sΨ  in its 

conjugate space *C , ( ) ( )( )e , ei s i ss p s pω ωψ −Ψ = =  for 0 Ns τ≤ ≤ . Hence, we 

have  

, 1Ψ Φ =                          (5.7) 

For 0Nτ θ− ≤ ≤ , make the axis transformation  

( ) ( )
( )t t

z t
U W

z t
θ

 
= Φ + 

 
                    (5.8) 

with ( )T,t t tU x y= . 

The axis ( )z t  is calculated with formula  

( ) ( )e , , e ,i s i s
t tz t p U z t p Uω ω−= =              (5.9) 

and ( ) ( )e ei i
t tW U z t q z t qωθ ωθ−= − − . 

We define the projection operator on the center manifold ,C PΠ →  by  

( ) ( ) ,t tU s UθΠ = Φ Ψ                   (5.10) 

and the complementary operator ,I C Q−Π → , wherein Q Ker⊂ Π . Then on 
the center manifold, one derives  

( )t tW I U= −Π                       (5.11) 

Then by system (1.3), one gets that  

( )
( )

( )
( ) ( ) ( ) ( ) ( ) ( )( )T

1 20 t

z t z t
B F z t z t W

z t z t
θ θ

′   
= + Ψ Φ + Φ +   ′   

    (5.12) 

and 
0

0
i

B
i

ω
ω

 
=  − 

. Set  

( ) ( ) ( ) ( ) ( )( )0 1‍ ‍ 0 , ,i j i j
ij ij t t s t N

i j m i j l m
z t i z t g z z g W W W z zω τ τ

+ = + + =

′ = + + − −∑ ∑  (5.13) 

for 2,3,m =  . 
Combined with center manifold analytical technique, we write  

( ) ( ) ( )2 2
20 11 02tW H z H zz H zθ θ θ= + + +            (5.14) 

By definition (5.11), one has  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )

T
1 2

T
1 2

0 , 0

0 , 0
t t N

t
t t

W F z t z t W
W

W F F z t z t W

θ θ θ θ τ θ

θ θ θ θ θ

 −Φ Ψ Φ + Φ + − ≤ <′= 
+ −Φ Ψ Φ + Φ + =




 (5.15) 

Therefore, we differentiate tW  with respect to t to get  

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

20 20 1 200 2 020

11 1 110 2 110

02 02 1 020 2 200

2 ,

,

2

H i H g g

H g g

H i H g g

θ ω θ θ θ

θ θ θ

θ ω θ θ θ

= +Φ +Φ

= Φ +Φ

= − +Φ +Φ







        (5.16) 
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With initial value condition determined by the case 0θ =  in Equation (5.15). 
Integral Equation (5.16) with respect to θ  to get the coefficients  
( ) ( ) ( )20 11 02, ,H H Hθ θ θ  in the expression of tW  on the center manifold. 

By the near identity transformation  

( ),z z p z z= +  

With  

( ) 2 220 0211,
3

g ggp z z z zz z
i i iω ω ω

= + +
−

 

We get the first Lyapunov coefficient as  

( )

( ) ( ) ( )
( ) ( )

2 2
110 020200 110

0 210 101,0 11

101,1 11 101,2 11 011,0 20

011,1 20 011,2 20

2
0

3
0s N

s N

g gg gl g g H
i i i

g H g H g H

g H g H

ω ω ω
τ τ

τ τ

= + − + + ⋅

+ ⋅ − + ⋅ − + ⋅

+ ⋅ − + ⋅ −

      (5.17) 

With  

( ) ( ) ( )1,0 1,1 1,21, 0 1, 1,, ,
t t s t Nij ij ijij W ij W ij Wg g g g g gτ τ− −= = =  

For 1,l i j l m= + + = , with 2,3,m =  . and system (5.1) is equivalent to  

( )
3 4
‍ ‍i j i j

ij ij
i j i j

z t i z g z z g z zω
+ = + ≥

′ = + +∑ ∑              (5.18) 

where in with no doubt, we omit ⋅


 in Equation (5.18). We have 21 0g l= , and  

( ) ( ) ( )2
30 300 200 20 101,0 20 101,1 20 101,2

2 0 ,
9 s Ng g ig H g H g H gτ τ
ω

= + + ⋅ + − ⋅ + − ⋅  

( ) ( ) ( ) ( )

( ) ( ) ( )

12 120 11 011,0 11 011,1 11 011,2 11 011,0

2
02 101,0 02 101,1 02 101,2 110 020 200

0 0
20 ,
3

s N

s N

g g H g H g H g H g
i iH g H g H g g g g

τ τ

τ τ
ω ω

= + ⋅ + − ⋅ + − ⋅ + ⋅

+ ⋅ + − ⋅ + − ⋅ + −
 

( ) ( ) ( )03 030 020 110 02 011,0 02 011,1 02 011,20 ,s N
ig g g g H g H g H gτ τ
ω

= − + ⋅ + − ⋅ + − ⋅  

( ) ( ) ( )

( ) ( ) ( )
40 400 020 21 30 101,0 30 101,1 30 101,2

20 201,0 20 201,1 20 201,2

0

0 ,

s N

s N

ig g g g H g H g H g

H g H g H g

τ τ
ω

τ τ

= + + ⋅ + − ⋅ + − ⋅

+ ⋅ + − ⋅ + − ⋅
 

( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

31 310 110 21 30 011,0 30 011,1 30 011,2

21 101,0 21 101,1 21 101,2 11 201,0

11 201,1 11 201,2 20 111,0 20 111,1

20 111,2 21 200

0

0 0

0
4 ,
3

s N

s N

s N s

N

ig g g g H g H g H g

H g H g H g H g

H g H g H g H g
iH g g g

τ τ
ω

τ τ

τ τ τ

τ
ω

= − + ⋅ + − ⋅ + − ⋅

+ ⋅ + − ⋅ + − ⋅ + ⋅

+ − ⋅ + − ⋅ + ⋅ + − ⋅

+ − ⋅ +

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

22 220 02 201,0 02 201,1 02 201,2 11 111,0

11 111,1 11 111,2 12 101,0 12 101,1

12 101,2 20 021,0 20 021,1 20 021,2

21 011,0 21 011,1 21

0 0

0

0

0

s N

s N s

N s N

s N

g g H g H g H g H g

H g H g H g H g

H g H g H g H g

H g H g H g

τ τ

τ τ τ

τ τ τ

τ τ

= + ⋅ + − ⋅ + − ⋅ + ⋅

+ − ⋅ + − ⋅ + ⋅ + − ⋅

+ − ⋅ + + − + −

+ ⋅ + − ⋅ + − ⋅ 011,2 200 21

21 110

3
3 ,

i g g

i g g

ω

ω

−
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Equation (5.8) is an ODE with its coefficients have unknown coefficient 
, 3ijH i j+ ≥ , we solve it by the same differential methods as referred in Equa-

tion (5.11) - Equation (5.16), that is  
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θ ω θ θ θ
θ ω θ θ θ
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= +Φ +Φ
= +Φ +Φ
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






 ( ) ( ) ( )

( ) ( ) ( ) ( )
3 1 13 2 31

04 04 1 04 2 40

,
4

g g
H i H g g

θ θ θ
θ ω θ θ θ

+Φ +Φ
= − +Φ +Φ

        (5.19) 

With initial value condition determined by the case 0θ =  in Equation (5.15). 
Set  

( ) 3 2 3
30 12 03

1,
2 2 4

i ip z z ig z g zz g z
ω ω ω

= − −           (5.20) 

And do near identity transformation  

( ),z z p z z= +                      (5.21) 

We get the second Lyapunov exponent  

2 32 03 03 12 30 12 12
3

4
i il g ig g g g g g

ω ω ω
= − + −           (5.22) 

Therefore, the normal form of the reduced system is written as  

( ) 2 3 2
1 2z t i z S z l z z l z zεω′ = + + +                (5.23) 

Under the polar axis ( ),ρ θ , the normal form is written as  

( ) { } { } { }( )2 4
1 2t S l lερ ρ ρ ρ′ = ℜ +ℜ +ℜ            (5.24) 

The limit cycle bifurcation is computed as  

{ } { } { }2
1 2 0l S lεεℜ − ℜ ℜ =                   (5.25) 

The first Lyapunov exponent of GH point equals zero, and it is concluded that 
the nearby dynamics of GH is classified by at least two parameters perturbation. 

Fixed 0 0.283470299684549γ = , we draw Hopf bifurcation line on parame-
ters ( ), Nkδ τ  plane, as shown in Figure 7(a). GH bifurcation is found at the 
bottom of the valley located in Hopf line, and the eigen roots of GH is pictured 
in Figure 1(a). GH is the separation point between supercritical Hopf points and 
subcritical Hopf points which locates on Hopf line on ( ), Nkδ τ  plane. The com-
putation of the normal form are exemplified by choosing Hopf points respectively. 
For Hopf point 1 with ( ) ( ), 8.187,0.0134316N kδτ = , which is subcritical Hopf 
point with { }1 0lℜ > ; For Hopf point 2 with ( ) ( ), 8.202,0.0134305N kδτ = , 
which is subcritical Hopf point with { }1 0lℜ > ; For Hopf point 3 with 
( ) ( ), 8.242,0.0134307N kδτ = , which is supercritical Hopf point with { }1 0lℜ > ; 
For Hopf point 4 with ( ) ( ), 8.256,0.0134318N kδτ = , which is supercritical Hopf 
point with { }1 0lℜ > . The bifurcating periodical solutions from Hopf point 1, 2, 
3, 4 are shown in Figure 7(b). 

Specially, for GH point with ( ) ( ), 8.22,0.01343N kδτ = , which is both super-
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critical and subcritical Hopf bifurcation with singularity of codimension 2. The 
near dynamics of phase portraits of GH point is topological classified, as shown 
in Figure 8(a). The continuation results of periodical solutions arising from GH 
point are pictured as varying Nτ . The continuation of bifurcating periodical 
solutions is completed by DDE-Biftool software, as shown in Figure 8(b). 
 

  
(a)                                              (b) 

Figure 7. The generalized Hopf bifurcation point in parameters ( ), Nkδ τ  plane. (a) Hopf line with the GH point, 

the imaginary roots is pictured in the middle view; (b) The bifurcating solutions from subcritical Hopf points 1, 2 
and supercritical Hopf points 3, 4.  

 

  
(a)                                              (b) 

Figure 8. GH point is both the supercritical Hopf point and subcritical Hopf point. (a) The phase portraits of near 
dynamics of GH point geometrically; (b) The maximal magnitude and minimal magnitude of bifurcating solutions 
continued when varying Nτ , which bifurcates from GH point. 

6. Conclusion 

With delay dependent coefficients in DDEs of neutrophil dynamics, the neutro-
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phil system was numerical simulated with the continuation method proposed by 
DDE-Biftool software. The generalized Hopf point (GH) was exploited to sepa-
rate the supercritical Hopf points from the subcritical Hopf points. The observed 
GH point was located in the bottom of the valley of Hopf line, which manifested 
the produced phase portraits of the classification of the near dynamics. The usual 
stable and unstable limit cycle collide to disappear beyond the equilibrium solu-
tion preserved its local stable property. The preserved program by applying 
DDE-Biftool also displayed the lineup solutions of bifurcating period limit cy-
cles. Near GH point, the open lineup of periodical solutions was observed, which 
often bifurcates from one Hopf point and then gets to another Hopf point to 
form a bubble of continuation of limit cycles. However, once the free parameter 
crossing the critical threshold, the closed lineup of periodical solutions was ex-
hibited which is a cycle again with no equilibrium solutions bifurcation any 
more. Nevertheless, the lineup of bifurcating limit cycles connects GH point, 
which features GH bifurcation with both supercritical Hopf and subcritical Hopf 
derived. 
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