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Abstract 
Recently, deep convolutional neural networks (DCNNs) have achieved re-
markable results in image classification tasks. Despite convolutional net-
works’ great successes, their training process relies on a large amount of data 
prepared in advance, which is often challenging in real-world applications, 
such as streaming data and concept drift. For this reason, incremental learn-
ing (continual learning) has attracted increasing attention from scholars. 
However, incremental learning is associated with the challenge of catastroph-
ic forgetting: the performance on previous tasks drastically degrades after 
learning a new task. In this paper, we propose a new strategy to alleviate 
catastrophic forgetting when neural networks are trained in continual do-
mains. Specifically, two components are applied: data translation based on 
transfer learning and knowledge distillation. The former translates a portion 
of new data to reconstruct the partial data distribution of the old domain. 
The latter uses an old model as a teacher to guide a new model. The experi-
mental results on three datasets have shown that our work can effectively al-
leviate catastrophic forgetting by a combination of the two methods afore-
mentioned. 
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1. Introduction 

Unlike traditional offline learning that trains model once on a whole dataset, in-
cremental learning is a learning paradigm that allows a model to be continually 
updated on a series of incremental data. Offline learning requires retaining his-
torical data and training it along with newly acquired data. This approach usual-
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ly requires huge storage space and high re-training time consumption. Incre-
mental learning is only trained on those new data, which is of great significance 
compared to offline learning in real-world applications. 

According to [1] [2], incremental learning consists of three scenarios: task- 
incremental learning (Task-IL), class-incremental learning (Class-IL) and do-
main-incremental learning (Domain-IL). Input distribution is changed with the 
increasing tasks in all three scenarios. All of them aim to continually train a 
model on new data to solve all tasks seen so far. On the other hand, they differ in 
serval ways. Label distribution remains unchanged in Domain-IL and varies in 
Task-IL and Class-IL with the increasing tasks. The main difference between 
Task-IL and Class-IL is that models are informed about which task needs to be 
performed in Task-IL while Class-IL does not [2]. In addition, Task-IL typically 
uses a "multi-headed" output layer in its network architecture, whereas Class-IL 
employs a "single-headed" network. Figure 1 illustrates in detail the differences 
and similarities among the three scenarios. 

Incremental learning, however, faces a serious challenge—catastrophic forget-
ting [3]. To resolve this problem, we propose a novel framework for learning a 
unified classifier under the domain-incremental setting. It incorporates two com-
ponents to mitigate catastrophic forgetting: 1) data translation based on transfer 
learning, which translates new data into the data that can be correctly recognized 
by the old model and reconstructs the partial distribution of previous-task data. 
2) Knowledge distillation, which is an effective way to preserve the knowledge 
learned in previous phases. Combining the two components can effectively bal-
ance the performance of old and new tasks. We systematically compare different  
 

 
Figure 1. Here is an initial task 1  (“camel - bus”) and an incremental task 2  (“cattle - pickup 

truck”). In each subplot, the left side ( ), ,x y t  shows the input (image, label, task-id) of the model, and 

the right side indicates the network architecture and output. The output layer shows the difference 
among the three incremental scenarios. In Domain-IL, the classification task is “animals-vehicles”, and 
the label distribution remains steady. In Class-IL, both new and old class labels are in the same output 
space (single-headed). In Task-IL, the output spaces are disjoint between tasks (multi-headed). 
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methods such as EWC [4], SI [5], MAS [6] on three incremental datasets con-
sisting of multiple domains. The experimental results strongly prove the efficacy 
of our work. 

2. Related Work  

In recent years, a number of methods have been proposed to tackle catastrophic 
forgetting problem in the field of incremental learning. They are summarized in 
a slice of work [7] [8] [9] [10]. In this section, we briefly discuss these methods. 

Regularization-based methods. The approaches of this strategy such as EWC, 
SI, MAS are also known as parameter-based methods. Their main idea is to 
identify and protect the weights in the old model that play a key role in the test-
ing phase, typically by adding additional regularization terms to the loss func-
tion. They mainly differ in how assessing the weight importance: EWC estimates 
the weight importance through the diagonal value of Fisher information matrix; 
SI evaluates by calculating how sensitive the loss function is to parameters; MAS 
uses the sensitivity of network output to estimate the weight importance. How-
ever, it is difficult to design reasonable weight evaluation metrics during incre-
mental processes [11]. In addition, such methods often require manually adjust-
ing the hyper-parameter for regularization term loss. 

Distillation-based methods. Knowledge distillation has been widely used in 
incremental learning areas, such as UCIR [11], CCIL [12], WA and PODNet 
[13]. In these methods, old model acts teacher of incremental model. UCIR cal-
culates distillation loss from embedding, expecting the feature output of incre-
mental model to be consistent with old models. CCIL demonstrates that a com-
bination of cross-entropy loss and distillation loss that balances intra-task and 
inter-task learning can resolve catastrophic forgetting. WA utilizes knowledge 
distillation and weight aligning in classifier layer to maintain the discrimination 
and fairness in incremental learning. PODNet proposes the pooled outputs dis-
tillation loss which is a set of constraints over the output of each intermediate 
convolutional layer to prevent from forgetting. However, since the teacher mod-
el has only old task knowledge, these methods usually need to store some pre-
vious data to compute distillation loss. 

Parameter isolation methods. This family consists of fixed network methods 
and dynamic architectures [7]. In fixed network methods, old task parts are 
usually masked out during training new tasks. For example, PathNet [14] im-
poses at parameters level and HAT [15] imposes at unit level. Dynamic archi-
tectures methods learn new tasks by increasing the capacity of network. And 
typical methods are PNN [16], RCL [17] and DER [18]. PNN first fixes the net-
work structure and parameters corresponding to the old task, and for incremen-
tal tasks, it increases the network width and connects the output of the old net-
work to the new network. Unlike PNN’s increased fixed network width, RCL 
expands by reinforcement learning. DER freezes learned representation to retain 
old knowledge and dynamically expands new feature extractors to learn new 
tasks. Obviously, their networks grow with increasing tasks. 
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Meta-learning based methods. Jathushan Rajasegaran et al. [19] claim that 
meta-learning is suited for incremental learning since tasks are progressively in-
troduced. And they propose iTAML which stores some previous data to learn a 
generic model by meta-updates for incremental learning. At inference time, the 
task is predicted using generalized model parameters first, and then these gene-
ralized parameters are updated to the task-specific parameters to predict classes 
belonging to the respective task. This process is time-consuming [19]. Meta-DR 
[13] combines meta-learning with domain randomization to ease adaptation to 
new tasks. Meta-DR needs to have access to data from both the old and new 
domains in order to align the distributions [20].  

Compared to these works, our work is of the third flavor: unlike regulariza-
tion-based methods protect the old model’s parameters, we completely free the 
parameters in training. Our approach neither preserves previous data to com-
pute distillation loss, nor expands the network as task increases. Most of pre-
vious work focused on Class-IL [4] [5] [6] [18] [19] [21] and Task-IL [4] [5] [6] 
[14] [15] [16] [17] studies, while ours aims to alleviate catastrophic forgetting in 
Domain-IL [4] [5] [6] [13], such as the concept drift in reality. The incremental 
data with extremely different feature styles, such as DomainNet [22] widely used 
in domain adaptation [23], is not considered in this work since their underlying 
features are hardly reused by network in incremental learning. This is the limita-
tion of our approach. 

3. Our Approach 
3.1. Preliminaries: Domain-IL 

Formally, define { }1 2, , , n=      as a series of continual N-classification 
tasks. And { }1 2, , , n=      are the domain data for each task, where x is a 
data and y indicates its label. At the t-th stage, the goal of Domain-IL is training 
a model { }t tθ=  on data t  to perform the current task t  as well as 
previous tasks 1: 1t− , i.e., 1:t  are candidates at test time. Note that 1: 1t−  
cannot be accessed at this stage. 

3.2. Knowledge Distillation and Data Translation 

Knowledge distillation, as discussed in [24], transfers knowledge from one net-
work (teacher) to another (student). In traditional training, ground truth is used 
as a hard-label to optimize cross-entropy loss. Differing from this, knowledge 
distillation uses the teacher’s output distribution as a soft-label to optimize dis-
tillation loss. As shown in Equation (1), where ( )| ;i stup y x θ  and ( )| ;i teap y x θ  
are the prediction distribution of teacher model and student model on data ix . 

( ) ( )( )distill
1

1 | ; log | ;
n

i tea i stu
i

p y x p y x
n

θ θ
=

 = − ∑            (1) 

Domain-IL is known to have characteristics that the input distribution varies 
and the label distribution remains unchanged with increasing tasks. Knowledge 
distillation is suited for Domain-IL due to its ability of knowledge transferring. 
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We treat an old model as a teacher to guide a new model to memorize old 
knowledge. Despite the old knowledge is storing in old model, the old data is in-
accessible in incremental learning. A number of works [11] [12] directly stores 
some old data to compute distillation loss, which take additional storage. De-
GAN [25] utilizes generative adversarial net (GAN) to synthesis fake old images 
for knowledge distillation. However, training a functional GAN requires addi-
tional training consumption. Unlike these methods, the goal of our approach is 
to re-memorize the input distribution of all previous tasks using just last-task 
model and new data without any additional space to store historical data or 
training a complete GAN for fake data generation. This distribution is further 
trained to compute distillation loss. 

Suppose that two models are trained on two different domains separately. We 
define the data that are predicted correctly with high confidence by the both of 
models as public domain data and the rest of data as their own private domain 
data. Our approach proceeds as follow. At t-th incremental stage, { }1 1t tθ− −=  
is a pre-trained model learned at 1t −  stage and t  is the training data for 
this stage. We freeze the parameters of 1t−  and make predictions for t . As 
mentioned above, the training data t  is divided into public domain data pubx  
and private domain data prix  based on whether its predicted probability of la-
bel is greater than a given threshold p or not. We translate the data from private 
domain to public domain (P2P) by transfer learning. Algorithm 1 and Figure 2  
 

 
Figure 2. An overview of the proposed P2P at the t = 2 incremental stage. P2P translates xpri 
from the private domain of D2 to the public domain. In subplot (a), the dotted elliptic 
means previous domain, while solid elliptic means current training domain. Subplot (b) 
represents a model M1 trained on first task (“thunder snake - agama lizard”). Subplot (c) 
shows a process of P2P that translates a private data xpri (“frilled lizard”) from D2. After 
training, the translated data xtrans, which is generated by adding a series of noises on xpri, 
could be predicted correctly by M1 with a high confidence as shown in subplot (d). 
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elaborate the process of P2P. prix  predicted by 1t−  results in a large cross- 
entropy loss. P2P is a process of training prix  to reduce loss, which treats prix  
as learnable parameters. Firstly, prix  is added with a random noise δ and then 
fed into 1t−  to compute cross-entropy loss and gradient. The gradient will be 
the noise δ for the next iteration. We then repeat the above process several times. 
In the end, the translated data transx  tends to be predicted correctly by 1t−  
with a high confidence. 

( )cross-entropy 1arg min ; ,
pri

trans t
x x

x x y
δ

θ −
= +

 =                    (2) 

This training process is intuitively like “adding”/“erasing” some of the features 
that 1t−  considers important/unimportant to data, allowing it to be gradually 
predicted correctly. P2P is inspired by M2m [26], which is a rosy method for the 
imbalanced classification. M2m augments less-frequent classes via translating 
samples from more-frequent classes by adding a series of noise. There is a main 
difference between P2P and M2m: M2m translates between classes, while P2P 
translates between different domains of the same class. 

We find that the translated data looks exactly like the original data from hu-
man eye and could be still predicted correctly by the model that is trained on 

t . This means that the translated data generated by P2P does not reconstruct a 
complete data distribution of old domain but it enriches the diversity of public 
domain. Nevertheless, the translated data and the public domain data reflect the 
partial distribution of old domain. We apply knowledge distillation to these data 
to retain the information of old domain. 

 
Algorithm 1. Framework of proposed P2P 

Require: previous model 1t− , a batch dataset { } 1
, n

i i i
D x y

=
= , the probability thre-

shold p, the number of iterators k, learning rate α . 
Ensure:  A translated dataset transD , a private domain dataset priD , a public domain 

dataset pubD . 

1. Freeze 1t−   

2. Compute the predicted probability distribution for ( )( )1: Softmax tD P x−=    

3. Divide ( ){ } ( ){ }: , | , , |
i ipub i i y trans i i yD D x y P p D x y P p= ≥ = <  

4. For prix D∈ , initialize *x x δ= +  with a small random noise δ  

5. for 1iter =  to k do 

6.     ( )*
*

cross-entropy 1; ,tx
x yδ θ −

 = ∇    

7.     * *

2

1x x α
δ

= −  

8. end for 

9. ( ) ( ){ }* *
1, | ,trans tD x y y x yθ −= =  

10. Return transD , priD , pubD  

3.3. An Overview of P2P-KD for Domain-IL 

In this section, we present P2P-KD that applies knowledge distillation along 
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with data translation for Domain-IL. P2P-KD first uses P2P to generate a series 
of translation data, and then uses the old model as a teacher to guide the new 
model’s learning, so that the new model can remember the knowledge that the 
old model has already learned. Algorithm 2 demonstrates the entire process of 
P2P-KD in Domain-IL. The first task is learned by a standard training, e.g., em-
pirical risk minimization with cross-entropy loss. As for the other stage t-th, t  
initializes with 1t−  and 1t−  teaches t  during training. Distillation loss 
is included in these stages. It is important to note that not all training data optimiz-
es distillation loss because the teacher model may make incorrect predictions for 
some private domain data, which could cause a negative influence on the student 
model. We compute distillation loss for public domain data and cross-entropy 
loss for private domain data. Public domain data consists of two parts: the data 
can be predicted correctly by 1t−  with high confidence ( pubx ) and the trans-
lated data ( transx ). The more similar the output prediction distribution of t  
and 1t−  is on the public domain data, the less forgetful t  is to the pre-
vious tasks. Distillation loss’s constraint can prevent the incremental model from 
overfitting the current task. To sum up, the overall loss in one batch is as follows, 
where β is a hyper-parameter used to adjust the weight of distillation loss. 

( ) ( )cross-entropy distill 1; ; ,t pri t pub tθ β θ θ −= +                    (3) 

Given the strong forgetting constraint and low computational cost, we com-
pute only distillation loss for public domain data. This is different from GD [21] 
and CCIL [12], in which distillation loss and cross-entropy loss are computed 
for the same data in their works. 

 
Algorithm 2. An overview of P2P-KD for Domain-IL 

1. 2t =  
2. while true do 
3.     Input: previous model 1t− , training dataset tD , other hyper-parameters for 
4.          Algorithm 1: , ,p k α  
5.     Output: model t  
6.     Initialize 1t t−=   
7.     Freeze 1t−  
8.     while true do  
9.         Sample a batch dataset D from tD  
10.        Get transD , priD , pubD  using Algorithm 1 

11.        pub pub transD D D=   

12.        Train t  by minimizing Equation (3) 
13.     end while 
14.     1t t= +  
15. end while 

4. Experiments 
4.1. Experimental Setup 

Datasets. We conduct three incremental datasets to evaluate methods: Digit5, 
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Incremental-CIFAR, Incremental-Animal. All three datasets are 10-classes clas-
sified datasets consisting of multiple domains. Digit5 is sampled from five dif-
ferent sources: MNIST [27], MNIST-M [28], SVHN, Synthetic Digits [28] and 
USPS. Following [29], 25000 images are sampled from training subset and 9000 
images are sampled from testing subset in MNIST, MNIST-M, SVHN, Synthetic 
Digits. We take the entire USPS dataset that contains only ~9300 images in total. 
Incremental-CIFAR and Incremental-Animal are sampled manually from 
CIFAR100 [30] and ImageNet [31] according the superclass rule, which have 3 
and 4 domains respectively. Every class contains 500 images for training and 100 
images for evaluation in Incremental-CIFAR. In Incremental-Animal, every 
class has ~1300 images for training and 50 images for evaluation which come 
from validation set because the ground truth of test data is not published. For 
more details about Incremental-CIFAR and Incremental-Animal, please refer to 
Table 1 and Table 2. 

 
Table 1. Illustration of incremental-CIFAR.  

Superclass Task1 Task2 Task3 

Aquatic mammals beaver otter seal 

Fish aquarium_fish ray trout 

Flowers poppy rose tulips 

Fruit apple orange pear 

Insects bee beetle cockroach 

Large carnivores leopard lion tiger 

Large herbivores camel cattle elephant 

Small mammals hamster mouse squirrel 

Trees maple_tree ak_tree palm_tree 

Vehicles bus pickup_trunk tractor 

 
Table 2. Illustration of incremental-ANIMAL. 

Superclass Task1 Task2 Task3 Task4 

Birds n01530575 n01532829 n01560419 n01582220 

Geckos n01629819 n01630670 n01631663 n01632458 

Butterflies n02276258 n02277742 n02279972 n02280649 

Lizards n01687978 n01688243 n01689811 n01692333 

Snakes n01728572 n01728920 n01729322 n01729977 

Spiders n01773157 n01773549 n01773797 n01774384 

Weasels n02441942 n02442845 n02443114 n02443484 

Dogs n02085620 n02085782 n02085936 n02086079 

Wolves n02114367 n02114548 n02114712 n02086079 

Cats n02123045 n02123159 n02123394 n02123597 
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Evaluation metric. Similar to GD (Lee, 2019), we report the performance by 
two metrics: the average incremental accuracy (ACC) and the average forgetting 
(FGT). Let ( ), test

ix y ∈  be a test data from i-th task and ( ), ty x θ  be the pre-
diction of t-th model, such that the following ,i tA  measures the accuracy of the 
t-th model at the i-th task, where i t≤  and I is the indication function. 

( )
( )( ),

,

1 ;
test
i

i t ttest
x y Di

yA I x y
D

θ
∈

= =∑                   (4) 

Based on ,i tA , for a series of incremental task { }1 2, , , n=     , ACC is 
defined as: 

1: ,
2

1ACC
1

n

t t
t

A
n =

=
− ∑                         (5) 

Note that the performance of the first task is not considered, as it is not do-
main-incremental learning. Unlike ACC measures the overall performance di-
rectly, FGT measures the amount of forgetting on previous tasks, by averaging 
the performance decay: 

( )
1

, ,
2 11

1

1FGT max ,0
n t

i in i t
t ik k

A A
−

= =
=

−= −∑
∑

∑                 (6) 

Training details. All models are implemented with PyTorch and trained on 
one RTX-2080Ti GPU. In all experiments, we used SGD [32] with a momentum 
of 0.9. It is important to note that P2P proceeds online and does not require ad-
ditional storage space. For the experiments on Digit5, AlexNet [33] is adopted as 
backbone. The learning rate starts from 0.1 and is divided by 10 after 50, 80 
epochs (100 epochs in total) in the first task. We reset it to 0.001 to train incre-
mental tasks 200 epochs. Because we found that using a larger learning rate, such 
as 0.1, will cause the model to be more biased towards new data, leading to for-
getting of old tasks. The images are resized to 32 × 32 and randomly rotated as 
input. ResNet18 [34] is adopted as backbone in the experiments on Incremen-
tal-CIFAR and Incremental-Animal. For the first task and incremental tasks, the 
learning rate starts from 0.1 and is divided by 10 after 80, 100 and 50, 80 epochs 
(120 epochs and 100 epochs in total), respectively. Random cropping and hori-
zontal flip are used to augment the training images. In addition, the images in 
Incremental-Animal are resized to 224 × 224. For other hyper-parameters in 
Algorithm 1, p, k, α are respectively set to 0.9, 10, 0.1 in all experiments, same as 
the M2m [26] setting. We find that the private domain data in three datasets can 
be easily translated within 10 iterators. β in Equation (3) is set to 4 and the tem-
perature for smoothing softmax probabilities [24] is set to 2 for distillation. 

4.2. Evaluation 

Comparison of methods. Five methods are compared in our work: Finetune, 
Oracle, EWC, SI, MAS. We provide the performance of a model finetuned on 
new data as baseline. As an upper bound, Oracle method stores all training data 
of previous tasks and retrains them at every stage. Among prior works, three 
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state-of-the-art methods are compared: EWC, SI, MAS. For a fair comparison, 
we use grid search ([1e−3, 1e5]) to search hyper-parameter λ for these methods, 
which is an important hyper-parameter to adjust the weight of regularization 
term loss. In addition, the same augmentation used in P2P-KD is employed in 
training all the competitors. Each experiment is repeated five times with differ-
ent random seeds. Furthermore, we experiment with two different task order 
protocols: in-order and reverse-order. For example, “MNIST → MNIST-M → 
SVHN → Synthetic Digits → USPS” is the in-order protocol and “USPS → Syn-
thetic Digits → SVHN → MNIST-M → MNIST” is the reverse-order protocol for 
Digit5. The task order of the other two datasets is shown in Table 1 and Table 2. 
Besides that, we compare P2P-KD with Meta-DR briefly since Meta-DR does not 
open source codes. Please refer to Appendix. 

Table 3 summarizes the results of these methods. Overall, P2P-KD outper-
forms significantly the non-oracle methods on Incremental-CIFAR and Incre-
mental-Animal under two different task order protocols. In the case of Incre-
mental-CIFAR under the in-order protocol, P2P-KD improves ACC by ~10% 
and FGT by ~9%. More specific results are shown in Figure 3. Higher ACC and 
lower FGT show the efficacy of the proposed learning scheme, which means that 
P2P-KD could more effectively learn new knowledge while alleviating the effects 
of forgetting. On Digit5 dataset, the ACC and FGT differences between all 
non-oracle methods are less than 2% and 3%, respectively. This is mainly due to 
the fact that the five domains are similar, especially in MNIST, MNIST-M and 
USPS. However, it is worth noting that P2P-KD still achieves the highest ACC  
 

Table 3. Table type styles. 

Dataset Digit5 Incremental-CIFAR Incremental-Animal 

Metric ACC (↑) FGT (↓) ACC (↑) FGT (↓) ACC (↑) FGT (↓) 

Protocol in-order 

Oracle 95.92 ± 0.06 0.75 ± 0.04 84.83 ± 1.45 0.78 ± 0.58 90.94 ± 0.47 0.69 ± 0.25 

Finetune 90.93 ± 0.39 6.84 ± 0.46 67.97 ± 1.75 2 24.63 ± 1.70 70.71 ± 0.87 26.57 ± 1.32 

EWC 91.82 ± 0.30 3.52 ± 0.23 68.87 ± 1.49 21.86 ± 1.42 74.11 ± 0.85 18.97 ± 1.00 

MAS 91.50 ± 0.39 5.46 ± 0.39 69.46 ± 1.32 17.85 ± 1.16 75.78 ± 1.50 11.48 ± 1.53 

SI 91.81 ± 0.38 4.56 ± 0.46 68.84 ± 1.67 20.28 ± 1.81 74.38 ± 0.76 17.05 ± 1.67 

P2P-KD 92.99 ± 0.46 3.88 ± 0.66 77.48 ± 1.75 10.83 ± 1.52 81.99 ± 0.63 6.89 ± 0.66 

Protocol reverse-order 

Oracle 96.19 ± 0.05 0.60 ± 0.07 84.25 ± 0.55 0.29 ± 0.17 89.73 ± 0.39 0.36 ± 0.16 

Finetune 88.21 ± 0.38 11.45 ± 0.65 69.59 ± 0.64 20.93 ± 0.91 66.37 ± 2.01 28.11 ± 1.19 

EWC 90.38 ± 0.36 7.51 ± 0.33 70.02 ± 0.89 19.23 ± 1.22 67.32 ± 1.51 25.05 ± 1.10 

MAS 90.00 ± 0.34 7.48 ± 0.38 70.39 ± 0.70 15.41 ± 0.98 67.84 ± 1.38 19.24 ± 1.12 

SI 89.91 ± 0.21 89.71 ± 0.56 70.32 ± 1.10 16.19 ± 1.64 67.62 ± 1.68 23.39 ± 1.44 

P2P-KD 89.71 ± 0.56 8.27 ± 0.72 78.40 ± 0.43 8.39 ± 0.77 77.86 ± 1.10 13.05 ± 1.73 
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Figure 3. Incremental-Animal classification accuracy for two protocols. The subplot shows per-task per-
formance on the test set throughout training sequence. Namely, Ai,t defined in Equation (4). 

 
among all the methods. This suggests that even in domains with similar charac-
teristics, P2P-KD can still effectively leverage knowledge transfer and avoid ca-
tastrophic forgetting.  

Ablation study. Our proposed method contains two components: P2P and 
KD. To analyze their effects, we also set up ablation experiments on three incre-
mental datasets. First, we remove the distillation loss in our method and name it 
P2P-CE. Namely, both the original data and the translated data use cross-entropy 
loss to train. Second, we remove the data translated by P2P on P2P-KD. For a fair 
comparison, we oversample the data in public domain (xpub defined in Section 3.2) 
to the same amount of P2P translated and we name it Oversampling-KD 
(OS-KD). Moreover, we set the same hyper-parameters to ablation methods as 
P2P-KD uses. We report an ablation study in Table 4. In general, compared to 
P2P-CE, P2P-KD greatly improves ACC by ~1%, ~7.5%, ~9% and reduces FGT 
by ~2%, ~15.5%, ~20% on Digit5, Incremental-CIFAR, Incremental-Animal re-
spectively. Compared to OS-KD, P2P-KD improves ACC by ~3%, and FGT by 
~6% on Incremental-Animal. They achieve similar performance on Digit5 and 
Incremental-CIFAR. We observe that Incremental-Animal is more complex and 
the public domain in Incremental-Animal is sparser than in the other two data-
sets. This makes it more challenging for the network to learn and adapt to the 
new data. However, our proposed method can increase the diversity of the 
training data through P2P, which improves the performance of the network on  
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Table 4. Ablation study. 

Dataset Digit5 Incremental-CIFAR Incremental-Animal 

Metric ACC (↑) FGT (↓) ACC (↑) FGT (↓) ACC (↑) FGT (↓) 

Protocol in-order 

P2P-CE 91.81 ± 0.43 5.69 ± 0.54 69.53 ± 1.77 26.96 ± 1.23 71.77 ± 0.71 30.41 ± 0.47 

OS-KD 91.87 ± 0.53 5.79 ± 0.74 76.61 ± 1.49 10.60 ± 1.23 80.97 ± 0.15 11.35 ± 1.06 

P2P-KD 92.99 ± 0.46 3.88 ± 0.66 77.48 ± 1.75 10.83 ± 1.52 81.99 ± 0.63 6.89 ± 0.66 

Protocol reverse-order 

P2P-CE 88.73 ± 0.23 10.87 ± 0.35 71.13 ± 1.08 23.13 ± 1.23 69.76 ± 1.70 29.33 ± 0.69 

OS-KD 90.36 ± 0.25 7.58 ± 0.34 77.08 ± 0.65 9.99 ± 0.80 74.37 ± 1.39 18.80 ± 1.17 

P2P-KD 89.71 ± 0.56 8.27 ± 0.72 78.40 ± 0.43 8.39 ± 0.77 77.86 ± 1.10 13.05 ± 1.73 

 
Incremental-Animal. The experimental results demonstrate that P2P-KD signif-
icantly outperforms P2P-CE on both ACC and FGT metrics. Moreover, in most 
experimental cases, it performs slightly better than OS-KD. This represents that 
KD plays a key role in alleviating catastrophic forgetting and P2P further boosts 
the performance of network. 

5. Conclusion 

In this paper, inspired by M2m (Kim & Jeong, 2020), we propose domain-incre- 
mental learning algorithms which combine data translation based on transfer 
learning with knowledge distillation into a unified training framework. The ex-
periments demonstrate that the efficacy of the proposed algorithm, which 
achieves competitive performance on three main incremental datasets and out-
performs other methods in most cases. The results further demonstrate the key 
role of knowledge distillation in mitigating catastrophic forgetting and the effi-
cacy of data translation in augmenting the diversity of the public domain. 
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Appendix 

In this section, we briefly compare our approach with Meta-DR on digit datasets. 
MNIST, MNIST-M, SVHN and Synthetic Digits are adopted by Meta-DR. Be 
consistent with it; we show the final accuracy of each task for comparison. Please 
refer to Table A1 and Table A2. 

 
Table A1. Experimental setup. 

 Meta-DR P2P-KD 

protoco 
MNIST → MNIST-M →  

SYN → SVHN 
MNIST → MNIST-M →  

SVHN → SYN 

backbone Resnet18 Alexnet 

augmentation Color, Contrast and so on (10 in total) Rotate 

training size 10000 per-task 25000 per-task 

optimizer Adam SGD 

 
Table A2. Comparison P2P-KD with Meta-DR. 

 MNIST MINST-M SYN SVHN 

Meta-DR 92.0 ± 0.6 75.1 ± 0.5 95.3 ± 0.3 91.9 ± 0.2 

P2P-KD 90.3 ± 0.7 97.3 ± 0.4 97.3 ± 0.1 84.7 ± 0.7 
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