
International Journal of Intelligence Science, 2023, 13, 1-21
https://www.scirp.org/journal/ijis

ISSN Online: 2163-0356
ISSN Print: 2163-0283

DOI: 10.4236/ijis.2023.131001 Jan. 17, 2023 1 International Journal of Intelligence Science

Word Embeddings and Semantic Spaces in
Natural Language Processing

Peter J. Worth

Dept. of Computer Science and Electrical Engineering, Florida Atlantic University, Boca Raton, FL, USA

Abstract
One of the critical hurdles, and breakthroughs, in the field of Natural Lan-
guage Processing (NLP) in the last two decades has been the development of
techniques for text representation that solves the so-called curse of dimen-
sionality, a problem which plagues NLP in general given that the feature set
for learning starts as a function of the size of the language in question, up-
wards of hundreds of thousands of terms typically. As such, much of the re-
search and development in NLP in the last two decades has been in finding
and optimizing solutions to this problem, to feature selection in NLP effec-
tively. This paper looks at the development of these various techniques, leve-
raging a variety of statistical methods which rest on linguistic theories that
were advanced in the middle of the last century, namely the distributional
hypothesis which suggests that words that are found in similar contexts gen-
erally have similar meanings. In this survey paper we look at the development
of some of the most popular of these techniques from a mathematical as well
as data structure perspective, from Latent Semantic Analysis to Vector Space
Models to their more modern variants which are typically referred to as word
embeddings. In this review of algoriths such as Word2Vec, GloVe, ELMo and
BERT, we explore the idea of semantic spaces more generally beyond applica-
bility to NLP.

Keywords
Natural Language Processing, Vector Space Models, Semantic Spaces, Word
Embeddings, Representation Learning, Text Vectorization, Machine
Learning, Deep Learning

1. Language Processing and Machine Learning (ML)

Natural language processing (NLP) applications are ubiquitous now, perhaps the
most prolific of which is Search, or information retrieval as it is termed in

How to cite this paper: Worth, P.J. (2023)
Word Embeddings and Semantic Spaces in
Natural Language Processing. International
Journal of Intelligence Science, 13, 1-21.
https://doi.org/10.4236/ijis.2023.131001

Received: December 14, 2022
Accepted: January 14, 2023
Published: January 17, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ijis
https://doi.org/10.4236/ijis.2023.131001
https://www.scirp.org/
https://doi.org/10.4236/ijis.2023.131001
http://creativecommons.org/licenses/by/4.0/

P. J. Worth

DOI: 10.4236/ijis.2023.131001 2 International Journal of Intelligence Science

Computer Science (CS) and Artificial Intelligence (AI) research circles. Search,
arguably one of the most transformative technological advancements since the
commercial adoption of the Internet in the 1990s, is an application design pat-
tern that is rooted in NLP research and can be found in almost every application
nowadays, to the point where applications are severely hindered if they have no
search capability. But core NLP research and development in the last few dec-
ades has also led to technological advancements in applications such as chatbots
or virtual assistants, product reviews and recommendations, document summa-
rization and categorization, as well as spam filtering and fraud detection. All of
these applications, and the underlying “intelligence” that underpins them, are
based more or less upon advancements in NLP that have in many respects un-
derpinned the technological breakthroughs that are hallmarks of the digital era.
All of these applications rely on the ability of a machine to understand natural
language (hence the term “natural language processing”) and our ability from a
research perspective to devise techniques to facilitate the development of these
NLP based applications, in an unsupervised manner at massive scale, has been
arguably one of the driving forces for productivity and usability, increases across
the application landscape in the last decade, both for the consumer as well as the
business and for the mobile as well as desktop and server sides of the application
market.1

NLP as a discipline, from a CS or AI perspective, is defined as the tools, tech-
niques, libraries, and algorithms that facilitate the “processing” of natural lan-
guage, this is precisely where the term natural language processing comes from.
But it necessary to clarify that the purpose of the vast majority of these tools and
techniques are designed for machine learning (ML) tasks, a discipline and area
of research that has transformative applicability across a wide variety of do-
mains, not just NLP. NLP simply leverages these ML, and its successor deep
learning (DL) capabilities in order to solve for specific NLP problems from
which these core NLP applications can be developed—design patterns and algo-
rithms that underpin NLP applications such as text summarization, keyword ex-
traction, chatbot design and other AI applications that rest on these fundamental
NLP application components.

From an ML/DL perspective, NLP is just one of many of its applications
where standard input formats (vectors, matrices, tensors, etc.) are developed
such that they can be input into advanced, highly scalable and flexible ML & DL
models and frameworks, by means of which these NLP and other applications
can be developed at scale. Machines of course understand numbers, or data
structures of numbers, from which they can perform calculations for optimiza-
tion, and in a nutshell this is what all ML and DL models expect in order for
their techniques to be effective, i.e. for the machine to effectively learn, no mat-
ter what the task. NLP applications are no different from an ML and DL pers-
pective and as such a fundamental aspect of NLP as a discipline is the collection,

1Perhaps the most profound example of this currently is ChatGPT by Open AI available here:
https://openai.com/blog/chatgpt/.

https://doi.org/10.4236/ijis.2023.131001
https://openai.com/blog/chatgpt/

P. J. Worth

DOI: 10.4236/ijis.2023.131001 3 International Journal of Intelligence Science

parsing and transformation of textual (digital) input into data structures that
machines can understand, a description of which is the topic of this paper
(Figure 1).

Figure 1. NLP processing workflow (aka Pipeline).

In this context, NLP can be understood from a workflow or data processing

perspective which starts with raw text, or the corpus which is the term used in
the literature, to which various transformation, normalization and standardiza-
tion techniques are applied (such as parts of speech mapping, tokenization, and
stop word removal) which culminate in the output of data structures that are
optimized for various ML tasks, with the data structures themselves of course
optimized for the specific type of NLP application being developed or researched.
For example, if we are translating texts we need to work with words but if we are
summarizing text we may want to work with sentences or a series of words, or
n-grams as they are typically referred to, and each of these types of inputs re-
quire and necessitate different forms of output that are ultimately fed into the
ML or DL model that is presumably doing something useful from a predictive or
analytical perspective. These preprocessing, cleansing and normalization steps
that are applied to the natural language, i.e. the text or corpus, before it can be
worked with for learning are fundamental to NLP, without which machines
would not be able to learn nearly as well as they do in practice. In almost all
modern NLP applications, the output of this preprocessing or data transforma-
tion pipeline takes the form of vectors of real numbers that are mathematical
computed based upon some fundamental linguistic (theoretical) properties called

https://doi.org/10.4236/ijis.2023.131001

P. J. Worth

DOI: 10.4236/ijis.2023.131001 4 International Journal of Intelligence Science

word embeddings, the specific technological advancement that is the subject
herein. We call these data structures representations of the text, and while they
are typically constructed and associated with words, sometimes they are asso-
ciated with sentences, groups of words or n-grams, or even documents or sets of
sentences or phrases.

While the researchers and application developers in the NLP space leverage
classic ML DL data structures and algorithms, they nonetheless—because of the
nature of language itself—are confronted with specific unique challenges related
specifically to the nature of language itself that they at least must be familiar with
in order to apply ML and DL solutions to NLP problems. As such, terms that
become not just relevant but elementary in understanding NLP algorithms and
components are terms that come straight out of the field of linguistics, where
context, morphology, syntax, and semantics have well defined meanings which
correspond to certain data structures and/or processes within standard libraries
that have been developed to solve for some of the very hard problems of NLP
and which in turn now stand as the basis for future development – on the
shoulders of giants and such (Figure 2).2

Figure 2. Linguistics and NLP.

In this world, semantics, syntax and morphology come together to determine

the boundaries of various representations of language, language that is broken
into sentences—from paragraphs and texts—which they themselves are broken
into parts of speech, entity recognition and into other “parts of speech” which in
turn facilitate the “understanding” of the machine to ultimately, and this is the
ML part (which leverages DL design patterns), spit out optimal outcomes as de-
fined within the context of the specific NLP application being developed—be it a
support chatbot, a text summarization tool, an email spam filtering application,
or one of a host of other modern day applications that are built using modern

2In Python for example, the most popular ML language today, we have libraries such as spaCy and
NLTK which handle the bulk of these types of preprocessing and analytic tasks.

https://doi.org/10.4236/ijis.2023.131001

P. J. Worth

DOI: 10.4236/ijis.2023.131001 5 International Journal of Intelligence Science

NLP technology on top of ML and/or DL models. And as it turns out, for a ma-
jority of these models, the most effective and popular format, or again represen-
tation, of language that is effective for ML and DL paradigms is word embed-
dings, a specific type of fixed dimensional data structure which encodes, via the
use of sophisticated algorithms built on top of ML and DL models, semantic
meaning as it related to the word, n-gram or sentence structure that it is asso-
ciated with. These again mostly vectorized structures as it relates to the ML do-
main specifically are used not only to facilitate the “learning” process which is
core to NLP within the context again of ML, but also as of course the data struc-
tures that are used to “represent” the output of the natural language processing
pipeline.

2. The Curse of Dimensionality, Feature Selection, Vector
Space Models and Latent Semantic Analysis

In any ML problem, one of the most critical aspects of model construction is the
process of identifying the most important and salient features, or inputs, that are
both necessary and sufficient for the model to be effective. This concept, referred
to as feature selection in the AI, ML and DL literature, is true of all ML/DL based
applications and NLP is most certainly no exception here. The goal of feature
selection is to hone the number of features down to the most elemental level
while not losing any of the granularity or color of the overall model that is re-
flected on the various features, or inputs, which drive the learning model in
question—effectively balancing computational performance against model pre-
dictability as it were. In NLP, given that the feature set is typically the dictionary
size of the vocabulary in use, this problem is very acute and as such much of the
research in NLP in the last few decades has been solving for this very problem.

One of the great advancements in ML in the last two decades has been, facili-
tated by DL techniques underpinned by neural networks, has been the automa-
tion of the feature selection process, a process which was very manual in the
early days of ML. To this end, one of the fundamental and most important parts
of building NLP applications is leveraging these advancements in the feature se-
lection process, advancements that have come mostly in the form of word em-
beddings which were introduced in 2013 and represent one of if not the trans-
formative technology that has driven NLP development subsequently. Ultimate-
ly these features need to be represented as numbers, or vectors or matrices of
numbers, because this is what machines can not only understand, so to speak,
but also what they can compute effectively and can learn against. As such, word
embeddings represent words as vectors of real numbers, where these real num-
bers in a very specific statistical and algorithmic sense reflect, or represent, the
underlying text, i.e. natural language.3

This process, sometimes referred to as text vectorization, however can (and
really should) be understood as a projection of the text (or words or n-grams)

3Python, with the numpy libraries in particular, is very efficient for example at working with vectors
and matrices particularly when it comes to matrix math, i.e. linear algebra.

https://doi.org/10.4236/ijis.2023.131001

P. J. Worth

DOI: 10.4236/ijis.2023.131001 6 International Journal of Intelligence Science

into what is referred to in the NLP (and cognitive science) literature as semantic
space. Semantic space in this context is defined as a geometrically and algebrai-
cally defined N dimensional space where N = # of features, which again in the
case of NLP ML applications is typically words, n-grams, or phrases. This space
then mathematically bounds both the problem domain as well as the solution
domain, and with word embeddings in particular, a modern variant of text vec-
torization which is the subject of this paper, the dimensions are actually learned
by the model itself in order to ensure that the model exhibits certain properties,
properties which are a function of what is known as the distribution hypothesis,
more on this below (Figure 3).

Figure 3. Semantic space and word similarities.

In classical physics we deal (mostly) with four dimensions—three in Eucli-

dean (or Cartesian) space and a fourth dimension of time—while with ML
problems we are operating in dimensional space which is defined by the set of
features in our model (usually denoted by X), where dimension sizes of 100 or
even sometimes 1000 are quite normal given how ubiquitous data is in the mod-
ern, Internet era. With the increase in dimensional complexity though comes a
geometrically (if not exponentially) increase in computational resource require-
ments, a problem called the curse of dimensionality in ML and AI circles. In the
NLP domain this problem is exacerbated by the fact that the feature set for some
of the problem domains (like for example predictive text, chatbots, virtual assis-
tants or language translation) can be almost the size of the language dictionary
itself.4

This curse of dimensionality, which the NLP domain is in particular is chal-
lenged with, has driven a significant amount of research into this particular as-
pect of ML, i.e. feature selection, which is basically the process of identifying the
most important, or most relevant, set of features in a given model or problem
domain such that the applications that are developed can effectively run in a

4For a sense of scale the English language has almost 200,000 words and Chinese has almost 500,000.

https://doi.org/10.4236/ijis.2023.131001

P. J. Worth

DOI: 10.4236/ijis.2023.131001 7 International Journal of Intelligence Science

reasonable time with a reasonable amount of computing resources—however
reasonable might be defined for a given problem in a given industry. [What’s
reasonable for Google for example is not the same thing as what’s reasonable for
an Internet startup building a virtual assistant for a specific industry.] As such,
much of the research in NLP in the last few decades, and many of the break-
throughs in terms of application performance and effectiveness (accuracy), have
been in the area of encoding, or compressing, information related to various
forms of language—words, phrases, n-grams, sentences or documents—to con-
dense information, ultimately semantic information, into data structures (vec-
tors, matrices) that machines can process efficiently, i.e. learn efficiently from—
aka NLP feature selection. This part of NLP application development can be un-
derstood as a projection of the natural language itself into feature space, a
process that is both necessary and fundamental to the solving of any and all ma-
chine learning problems and is especially significant in NLP (Figure 4).

Figure 4. NLP research and development timeline.

This challenge of dealing with the sparsity of language data in vectorized
form, which again is fundamental to the problem of machine learning and AI
more generally, goes back to the 1980s with the advancement of techniques such
as Vector Space Models (VSMs) and Latent Semantic Analysis (LSA) as well as
random indexing, all techniques that were designed to convert sparse data and
compress it for more efficient computation within the context of machine
learning applications, i.e. dimension reduction or feature selection techniques.
In 2000, neural networks were introduced into the problem domain to solve for
some the same problems and eventually these techniques evolved into word
embeddings which have the unique quality of being able to be self-generated, i.e.
automatically generated using unsupervised learning methods [1], and which are
a way of representing semantic information, or meaning, in a non-sparse way.

One of the fundamental tenets of linguistics that has been well established

https://doi.org/10.4236/ijis.2023.131001

P. J. Worth

DOI: 10.4236/ijis.2023.131001 8 International Journal of Intelligence Science

since the middle of the last century is the idea that the meaning of a word can be
understood by not just the context within which it is found (or heard as the case
may be) but that generally, over a large corpus of text, or a large sampling of
language as the case may be, that words found within a similar context should in
most cases have similar meanings, leading to the now oft-used and famed ex-
pression in both linguistics and NLP circles that a word can be characterized, or
understood in some sense, by the company it keeps. This is known in linguistics
as well as NLP circles as the distributional hypothesis and it is this tenet that
underpins many of the techniques described here which fall under the heading
of word embeddings. It’s upon this notion, the distributional hypothesis, that
much of the semantic work in NLP is based, in particular as it relates to text
vectorization and word embeddings, the topic of this paper. The idea being that
if we can associate with a given work certain metrics that correlate to the word’s
distribution throughout a given text or corpus, words that have similar meanings
should in turn have similar distributional properties throughout that given tex-
tual corpus (Figure 5).

Figure 5. One hot encoding example5. [2]

While one-hot encoding and count vector (Bag of Words) representations of

text allow for the comparison of words in sentences, documents and sets of
documents, they don’t store information related to the context of a given word,
or sentence, within a given document, or corpus—such context is necessary for
example when developing (ML/NLP) applications that solve for sentiment anal-
ysis, (machine) translation, or question-answering (chatbots or IVR) problems.
These techniques also suffer from the fact that their number of dimensions (cf.
curse of dimensionality), the semantic spatial boundaries you could call it, where

5Image from Hu 2020.

https://doi.org/10.4236/ijis.2023.131001

P. J. Worth

DOI: 10.4236/ijis.2023.131001 9 International Journal of Intelligence Science

the number of features or dimensions of the model is a function of the overall
dictionary for the corpus at hand being analyzed. This becomes very cumber-
some for ML generally given that the performance of a given model is a function
of the feature set that is being analyzed and in this case the feature set is the
scope of words being used, with each word in the set being associated with a
vector that is sized based upon the total word count (Figure 6).6

Figure 6. Document query example on vector space model7.

An alternate method of storing word, sentence or document level information

was developed in the 1970s by Gerard Smart—the father of Information Retriev-
al as he is sometimes called for a system called SMART [3], which was the first
time that Vector Space Models (VSMs) were used to represent text such that the
similarity between documents as well as queries, in a search request for example,
could be computed using the cosine between the term vector and the document
vector. [4] With SMART, both text documents as well as search queries were
stored as vectors of term counts (TF-IDF introduced by Sparck Jones [5]) there-
by allowing for the similarity of searches and documents to be both accurately
and easily computed at scale.8 A related method of using Euclidean geometrical
mathematical formulations to solve for document similarity, as opposed to work
similarity, was developed in the late 1980s called Latent Semantic Indexing (LSI),
or Latent Semantic Analysis (LSA) within the context of words which was a later
development [6]. LSI was patented in 1988 and introduced in a research paper in
1990 [7] and is also predicated on the distributional hypothesis, using linear al-

6While there are methods for reducing this “feature size”, an elemental task in all machine learning
problems (e.g., simply limiting the word count to the most used, or frequently used, top N words, or
more advanced methods such as Latent Semantic Analysis), such methods are beyond the scope of
this paper.
7By Riclas - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=9076846
8Latent Semantic Analysis (LSA), or Latent Semantic Indexing (LSI) as it is sometimes called in in-
formation retrieval research circles, was patented in 1988 and represents a similar statistical method
to VSMs, also based upon the distributional hypothesis, which facilitates the ability to find similar
documents and terms across documents. (Deerwester et al. 1990, Turney et al. 2010)

https://doi.org/10.4236/ijis.2023.131001
https://commons.wikimedia.org/w/index.php?curid=9076846

P. J. Worth

DOI: 10.4236/ijis.2023.131001 10 International Journal of Intelligence Science

gebra techniques, specifically an operation called Singular Value Decomposition
(SVD), to operate on the term-document matrix to identify similarities between
documents and their associated terms [8].

3. The Distributional Hypothesis, Word Embeddings,
Word2Vec and GloVe

Approaches such as VSMs or LSI/LSA are sometimes as distributional semantics
and they cross a variety of fields and disciplines from computer science, to artifi-
cial intelligence, certainly to NLP, but also to cognitive science and even psy-
chology. The methods, which are rooted in linguistic theory, use mathematical
techniques to identify and compute similarities between linguistic terms based
upon their distributional properties, with again TF-IDF as an example metric
that can be leveraged for this purpose. In this context, these methods which be-
gan as VSMs combined with or supplemented by LSI or LSA, have evolved into
what we call in NLP research circles today as word embeddings, a semantically
encoded representation of words, documents or terms based upon the premise
that a given word’s meaning can be understood by its context, or in more ver-
nacular terms, the company it keeps, i.e. what is known as the distributional hy-
pothesis, an idea popularized by John Firth in the 1950s who coined the phrase
“you shall know a word by the company it keeps” [9].

While these internal (text) representations come in a variety of forms, each
form being optimized for a specific task or specific type of ML model for a given
(NLP) application (and sometimes are used together to form a multi-dimensional
view of the “language” that is being “processed”), generally however, given the
propensity of machines to be efficient at computing numbers (scalers), vectors
and matrices (tensors), they involve a conversion of text data into some vector of
scalers (or reals), where in a mathematical sense the “feature space” is bound by
a relevant and impactful (predictive) number of dimensions that can then be
used for efficient computation. There are various methods for doing this, the
most popular of which are covered in this paper—one-hot encoding, Bag of
Words or Count Vectors, TF-IDF metrics, and the more modern variants de-
veloped by the big tech companies such as Word2Vec, GloVe, ELMo and BERT.
Regardless of vectorization technique used, in other words which word embed-
ding algorithm is selected, these pre-computed text vectors which encode a spe-
cific kind of semantic information can then be fed into various ML or DL mod-
els for actual NLP application development—such as again performing some
sort of sentiment analysis or keyword generation, or in more complex examples
like chatbots or language translation.

Some of the simplest forms of text vectorization include one-hot encoding
and count vectors (or bag of words), techniques. These techniques simply en-
code a given word against a backdrop of dictionary set of words, typically using a
simple count metric (number of times a word shows up in a given document for
example). More advanced frequency metrics are also sometimes used however,

https://doi.org/10.4236/ijis.2023.131001

P. J. Worth

DOI: 10.4236/ijis.2023.131001 11 International Journal of Intelligence Science

such that the given “relevance” for a term or word is not simply a reflection of its
frequency, but its relative frequency across a corpus of documents. TF-IFD, or
term frequency-inverse document frequency, whose mathematical formulation
is provided below, is one of the most common metrics used in this capacity, with
the basic count divided over the number of documents the word or phrase shows
up in, scaled logarithmically.

Word embeddings evolved against the backdrop of these simpler mechanisms
for representing terms, words or n-grams, designed specifically to answer ques-
tions about semantic similarity which is a key requirement in search applica-
tions, or Information Retrieval as it is called in research circles. For example, in a
given Google search, one is trying to determine as accurately or ‘closely’ as poss-
ible, what documents are as closely related to the given search query that is input
by a given user. This application requirement can be conceived of, from a soft-
ware or NLP perspective, as solving for word, phrase or sentence similarity, for if
you can identify which documents are most similar to your search input, you
now have an effective way to rank order search results. Sound familiar? (Figure
7)

Figure 7. Word embeddings and similarity vectors.

This approach however relies on a certain (set of) linguistic theories which

then in turn are formulated mathematically, or more precisely statistically, in an
area of research and development that is sometimes referred to as distributional
semantics, where similarities between linguistic terms are derived from the dis-
tributional properties of the underlying terms. In this context, word embeddings
can be understood as semantic representations of a given word or term in a giv-
en textual corpus. At their core then, word embeddings can be understood as a
set of mathematically (statistically) generated (real) numbers, attributes or fea-
tures within the context of ML, that are created from a body of text which map a
given word into a semantic space for a given domain which follows from the
distribution hypothesis, namely that words that are found in similar contexts
have similar meanings, such that word, phrase or even document similarity can

https://doi.org/10.4236/ijis.2023.131001

P. J. Worth

DOI: 10.4236/ijis.2023.131001 12 International Journal of Intelligence Science

be efficiently computed. Semantic spaces are the geometric structures within
which these problems can be efficiently solved for.

One of the major breakthroughs in word embedding technology came in 2013
when a team at Google led by Tomas Mikolov created Word2Vec [10] [11], a
word embedding solution that uses (unsupervised) deep learning techniques to
capture word associations from a large corpus of text leveraging both (conti-
nuous) bag of words as well as skip gram approaches to defining word context
(semantics). When setting up the word embedding structure, we tell the model
only how big we want the vector to be for each word (maybe between 50, 100,
200 or 300 for example), and let the model learn all the weights as well as the as-
sociated terms for said work, or token, again given context. As a result of such
modeling, we can identify for example, words of similar meaning by looking at
how close they are in the underlying vector space of words that is generated
from the given text.

There are two ways which the algorithm can be coded to learn the vector fea-
ture, or parameter values, one based on what is called the continuous bag of
words model and another based on a continuous skip gram model, with the
former method learning the embedding by predicting the current word based on
context (or place) within the text, and the latter model predicting surrounding
words based on a given current word. Both methods contextualize a given word
that is being analyzed by using this notion of a sliding window, which is a fancy
term that specifies the number of words to look at when performing a calcula-
tion basically. The size of the window however, has a significant effect on the
overall model as measured in which words are deemed most “similar”, i.e. closer
in the defined vector space. Larger sliding windows produce more topical, or
subject based, contextual spaces whereas smaller windows produce more func-
tional, or syntactical word similarities—as one might expect (Figure 8).

Figure 8. Word2Vec design architecture9.

9Image from Mikolov et al. 2013.1, still the best description of the way Word2Vec constructs its
word embeddings using one input layer, one hidden layer and one output layer.

https://doi.org/10.4236/ijis.2023.131001

P. J. Worth

DOI: 10.4236/ijis.2023.131001 13 International Journal of Intelligence Science

Word2Vec is trained on the Google News Dataset on about 100 billion words
and supports both word similarity as well as word prediction capabilities and as
such has applicability in a variety of NLP applications such as Recommendation
Engines, Knowledge Discovery (Search), as well as Text Classification problems.
Perhaps the most revolutionary advancement that Word2Vec supports however,
as do other word embedding libraries today, is the ability to pre-compute, store
and re-use word embeddings offline, an engineering design technique that has
come to be known as pre-trained word embeddings, which irrespective of the
underlying algorithm that is used to generate the word embeddings themselves,
has more so than anything else perhaps accelerated the pace of NLP innovation.

An alternative, unsupervised learning algorithm for constructing word em-
beddings was introduced in 2014 out of Stanford’s Computer Science depart-
ment [12] called GloVe, or Global Vectors for Word Representation. While GloVe
uses the same idea of compressing and encoding semantic information into a
fixed dimensional (text) vector, i.e. word embeddings as we define them here, it
uses a very different algorithm and training method than Word2Vec to compute
the embeddings themselves. The GloVe model is predicated on the idea that
word co-occurrence represents semantic information just as word distribution
does and as such it creates a massive word context co-occurrence matrix that it
uses as the basis for its training, looking to optimize its factorization against both
a word-feature matrix and a feature-context matrix, optimizing via an objective
function (loss function) that aims to learn word embeddings such that their dot
product equals the logarithm of the word’s probability of co-occurrence (Figure
9).

Figure 9. GloVe embeddings statistical co-occurrence design10. [13]

From the 2014 GloVe paper itself, the algorithm is described as “…essentially

a log-bilinear model with a weighted least-squares objective. The main intui-
tion underlying the model is the simple observation that ratios of word-word
co-occurrence probabilities have the potential for encoding some form of
meaning.” Given that the GloVe algorithm is trained using global word to word
co-occurrence matrices, it encodes more specificity regarding word association
than Word2Vec because it uses word co-occurrence probabilities across an en-
tire corpus to compute the embeddings, thereby encoding an extra layer of se-

10Image from Sarkar 2018, probably the best visual description of the GloVe algorithm to date.

https://doi.org/10.4236/ijis.2023.131001

P. J. Worth

DOI: 10.4236/ijis.2023.131001 14 International Journal of Intelligence Science

mantic information (meaning), allowing for greater performance and efficacy
across a range of NLP tasks.

Having said that, it’s important to understand that both Word2Vec and GloVe
construct a semantic space that leverages the position of a given word within the
context of the textual corpus itself as the basis for its semantic spatial geometry
so to speak, both relying on the distributional hypothesis but using different sta-
tistical techniques to encode the notion of “distribution” as it were—Word2Vec
being a more localized version, parametrized by its window size, and GloVe look-
ing across the entire corpus at co-occurrence metrics. Furthermore both Word2Vec
and GloVe word embeddings, despite their differences, nonetheless share the
basic characteristics of modern word embeddings that make them powerful in
an NLP context, namely that they 1) solve for the curse of dimensionality prob-
lem by minimizing the number of dimensions, or features, associated with a
given NLP term, word or n-gram, and 2) can be pre-trained for use in a wide va-
riety of applications without having to incur the cost of training for each appli-
cation, the latter being a radical transformative step for the rate of NLP applica-
tion development overall.

4. Neural Networks, Deep Learning, the Attention
Mechanism and Transformers (ELMo and BERT)

One of the linguistic aspects, or levels of granularity, missing from the simple
count vectorization as well as even the more advanced Word2Vec and GloVe
word embedding techniques however is that despite their sophistication and ease
of use, each word in these models has one and only one representation, a limita-
tion given that one of the distinctive characteristics of language is that words in
different contexts can have widely varying meanings, a property called polysemy
in linguistics. To address this, more advanced, bi-directional Deep Learning
techniques have been developed that allow both the local and global context of a
given word (or term) to be taken into account when generating embeddings,
thereby addressing some of the shortcomings of the Word2Vec and GloVe
frameworks.

The most popular of these types of approaches that have been recently devel-
oped are ELMo, short for Embeddings from Language Models [14], and BERT,
or Bidirectional Encoder Representations from Transformers [15]. These word
embedding techniques are more advanced than their predecessors in terms of
encoding more information and as such have for the most part supplanted
Word2Vec and GloVe in more advanced NLP applications—given the fact that
they are also pre-trained on massive textual data sets, with no increase in over-
head to the applications themselves and can in most cases, because it generates
the same output data structure as their predecessors, i.e. word embeddings, can
be basically swapped into existing applications with very little development cost.

ELMo was released by researchers from the Allen Institute for AI (now Al-
lenNLP) and the University of Washington in 2018 [14]. ELMo uses character
level encoding and a bi-directional LSTM (long short-term memory) a type of

https://doi.org/10.4236/ijis.2023.131001

P. J. Worth

DOI: 10.4236/ijis.2023.131001 15 International Journal of Intelligence Science

recurrent neural network (RNN) which produces both local and global context
aware word embeddings. While forward language models compute the probabil-
ity of a word given previous words and a backward language model does the
opposite, ELMo leverages the bi-directional LSTM architecture to jointly max-
imize the likelihood of both the forward and backward words (characters ac-
tually in the case of ELMo), yielding better sense disambiguation support, ad-
dressing the polysemy issue where word meanings are contextualized and not
fixed across the entire corpus (Figure 10) [16].

Figure 10. ELMo objective function neural network (bidirectional LSTM) architecture11.

ELMo therefore represents a breakthrough in word embedding architecture

given the additional semantic information it encodes as a result of its more so-
phisticated use of DL paradigms to effectively encode semantic information
from two directions simultaneously, resulting in better performance versus the
older word embedding techniques across a wide array of NLP problems such as
question answering, named entity extraction, and sentiment analysis to name a
few [14] [16]. ELMo also has the unique characteristic that, given that it uses
character-based tokens rather than word or phrase based, it can also even recog-
nize new words from text which the older models could not, solving what is
known as the out of vocabulary problem (OOV).

A further advancement in word embedding technology was made in 2018
when Google labs developed what is today arguably the most advanced word
embedding language model/embedding framework based upon a new DL archi-
tectural framework called transformers [17], a technology that had been devel-
oped a year prior that was designed and optimized specifically for language

11Objective function and CNN architecture diagram combined here are from Wang et al. [16].

https://doi.org/10.4236/ijis.2023.131001

P. J. Worth

DOI: 10.4236/ijis.2023.131001 16 International Journal of Intelligence Science

translation and that further extended the capabilities of prior DL constructed
word embedding frameworks such as ELMo. Transformers are based upon en-
coder and decoder based neural network architecture that are specific designed
to solve sequence-to-sequence based tasks, as are prevalent in NLP applications
and design patterns like language translation for example, while supporting long
range dependencies, the latter requirement representing one of the main break-
throughs of the technology as prior technologies, such as RNNs or CNNs, had
limitations in terms of context size given the underlying neural network archi-
tecture.

As the 2017 paper title which introduced transformers indicates—Attention
is All You Need—transformer architecture is predicated on the notion of
self-attention, or simply the attention mechanism [18], which is the term used to
describe the way in which transformers encode and decode sequences with no
constraints on the size of the given context which is used to facilitate the trans-
formation from inputs to outputs. In other words, with transformer en-
code-decode architecture, while the model focuses on a specific part of a given
sequence, like a word or n-gram for example in an NLP context, the model still
nonetheless has access to the entire textual input if necessary as context in order
to facilitate the next prediction, or output, in the sequence, removing constraints
on sequence context effectively (Figure 11).

Figure 11. Transformer model architecture12.

12By Yuening Jia - DOI:10.1088/1742-6596/1314/1/012186, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=121340680

https://doi.org/10.4236/ijis.2023.131001
https://commons.wikimedia.org/w/index.php?curid=121340680

P. J. Worth

DOI: 10.4236/ijis.2023.131001 17 International Journal of Intelligence Science

BERT was developed at Google and was released in 2019 in a paper entitled
BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing, and, as the title refers to, leverages a transformer-based architecture,
and the attention mechanism to achieve state of the art performance on a wide
range of NLP tasks such as chatbots, question and answering capabilities, natural
language inference capability, classification and named entity recognition tasks
and more, leveraging stronger contextualized textual representations than any of
its predecessors. BERT leverages this transformer based attention mechanism
which emphasizes or enhances some parts of the text while de-emphasizing oth-
ers using weighting techniques which are common in deep learning applications
and also has the unique property of bidirectionality, which means that it can
process, i.e. read text, in both directions (front to back and back to front or right
to left and left to right as the case may be) at the same time, greatly increasing
training performance compute times and resource requirements.

The model itself uses two novel training techniques together to develop a ro-
bust set of embeddings associated with words that goes well beyond simple text
based vectorization techniques that we have discussed prior—the first is masked
language model (MLM), which is designed to mask words and have the model
predict them randomly throughout the sequence, and the other is next sequence
prediction (NSP) which predicts whether or not a given sentence A will follow a
given sentence B, the two methods being optimized for jointly working in paral-
lel to provide a sort of multi-dimensional semantic view of the text being
processed. [15]. It also is designed to come in pre-trained formats, BERT_large
which comes with over 345 million parameters or BERT_base which has just
over 110 million, both of which are designed to be integrated into NLP applica-
tions as is (pre-trained) and yet still allow for further customization of the em-
beddings to support a given task at hand (Figure 12).

Figure 12. Bidirectional encoder representation from transformers architecture (BERT)13.

13Image from Wang et al. 2020.

https://doi.org/10.4236/ijis.2023.131001

P. J. Worth

DOI: 10.4236/ijis.2023.131001 18 International Journal of Intelligence Science

So with both ELMo and BERT computed word (token) embeddings then, each
embedding contains information not only about the specific word itself, but also
the sentence within which it is found as well as context related to the corpus
(language) as a whole. As such, with these advanced forms of word embeddings,
we can solve the problem of polysemy as well as provide more context-based in-
formation for a given word which is very useful for semantic analysis and has a
wide variety of applications in NLP. These methods of word embedding creation
take full advantage of modern, DL architectures and techniques to encode both
local as well as global contexts for words. It is in fact these more modern DL ar-
chitectures which have facilitated the development of these more effective and
performant word embedding architectures, paving the way for the success of
modern language models such as BERT (designed for language modeling and
next word or sentence prediction by Google and used in their search engine) as
well as GPT, another deep learning, pre-trained language model used for text
and language prediction (predictive text).

5. Summary: The Distributional Hypothesis and Semantic
Spaces, the Theoretical Foundations of NLP

One of the fundamental theoretical underpinnings that has driven research and
development in NLP since the middle of the last century has been the distribu-
tional hypothesis, the idea that words that are found in similar contexts are
roughly similar from a semantic (meaning) perspective. It’s upon this theoretical
foundation that first Vector Space Models were developed in the 1970s, Latent
Semantic Indexing/Analysis was invented in the 1980s and 1990s, and represents
the theoretical foundations of more modern advanced text vectorization tech-
niques which leverage neural networks in order to encode semantic information
with lexical structures such as characters, words, n-grams, or even sentences
documents such as Word2Vec, GloVe, ELMo and BERT amongst others.

The effectiveness of these developments, such as Word2Vec or GloVe embed-
dings, or their more modern and sophisticated counterparts ELMo or BERT, is
predicated on the notion that a word’s (or character, phrase, word, n-gram or
sentence as the case may be) distribution properties throughout a given textual
corpus, in a very utilitarian and scientific sense, semantically define the word, or
term, itself. In other words (pun intended), a statistically driven distributionally
semantic based approach to text modeling is a scientifically effective strategy for
efficiently solving some of the most intractable problems that underpin applica-
tion development in the NLP domain today—with applicability from informa-
tion retrieval or search, to document classification and sentiment analysis, to
text summarization and annotation problems, and even text generation applica-
tions like language translation or predictive text [19]. Each of these applications
in one way or another needs to understand the semantic spatial relationship be-
tween and among all of the different component parts of a given textual corpus
in order to be effective, and as such word embeddings, and the semantic space to

https://doi.org/10.4236/ijis.2023.131001

P. J. Worth

DOI: 10.4236/ijis.2023.131001 19 International Journal of Intelligence Science

which they belong, become an integral part of the NLP/ML pipeline. As such,
even the more classic versions of word embeddings such as Word2Vec and
GloVe provide a way to automatically generate and encode semantic informa-
tion into a fixed, N dimensional space by means of being trained across a mas-
sive digital textual corpus (corpi) just once, this notion of pre-training perhaps
being one of the most revolutionary developments in NLP in the last two to
three decades.

While word embeddings are simply vector representations of text represented
by a fixed set of real numbers (dimensions or features), in modern variants the
numerical attributes contained within these word vectors contain highly sophis-
ticated encoded information about the context, the meaning, of a given word in
said linguistic context, a context bounded by the dimensional attributes of the
semantic space which is encoded into each and every word embedding. From
this semantic location as it were, we can both evaluate how similar said word or
term is to any other word located in the semantic space, as well as identify simi-
lar words in said space, by simply measuring the distance between the two words
in the space itself using the angle difference between the two words as a function
of the origin of the space. Furthermore, once calculated, these (pre-computed)
word embeddings can be re-used by other applications, greatly improving the
innovation and accuracy, effectiveness, of NLP models across the application
landscape.

These word embedding algorithms as they are now called, all rest on sophisti-
cated mathematical and statistical formulations which take advantage of the state
of the art methods in Deep Learning such as Long Short Term Memory archi-
tectures and Transformers which leverage this notion of attention along with local
as well as global context dependencies, the bulk of which are open-sourced and
available in pre-trained formats so as to facilitate their integration into a wide
range of NLP tasks and applications, represent the most advanced method we
know today to leverage semantic information to perform learning on natural
language, one of the most fundamental technologies that has driven technology
innovation in the Digital Era. And while these word embeddings are critical to
the effectiveness of a broad range of NLP applications, leveraging this notion of
Semantic Spaces which was developed almost 50 years ago, nonetheless do not
have much applicability beyond the NLP and ML/DL fields as their meaning
(pun intended) is really only derived in the sense of their utility in identifying
word and term (and document) similarity rather than denoting something intel-
ligible so to speak by anyone, or anything, other than a machine.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References
[1] Hinton, G. and Roweis, S. (2002) Stochastic Neighbor Embedding. In: Becker, S.,

https://doi.org/10.4236/ijis.2023.131001

P. J. Worth

DOI: 10.4236/ijis.2023.131001 20 International Journal of Intelligence Science

Thrun, S. and Obermayer, K., Eds., Advances in Neural Information Processing
Systems 15 (NIPS 2002), The MIT Press, Cambridge.
https://cs.nyu.edu/~roweis/papers/sne_final.pdf

[2] Hu, J. (2020) An Overview of Text Representations in NLP. Towards Data Science.
https://towardsdatascience.com/an-overview-for-text-representations-in-nlp-31125
3730af1

[3] Salton, G. (1971) The SMART Retrieval System: Experiments in Automatic Docu-
ment Processing. Prentice-Hall, Hoboken.

[4] Salton, G., Wong, A. and Yang, C.S. (1975) A Vector Space Model for Automatic
Indexing. Communications of the ACM, 18, 613-620.
https://doi.org/10.1145/361219.361220

[5] Sparck Jones, K. (1972) A Statistical Interpretation of Term Specificity and Its Ap-
plication in Retrieval. Journal of Documentation, 28, 11-21.
https://doi.org/10.1108/eb026526

[6] Landauer, T.K. and Dumais, S.T. (1997). A Solution to Plato’s Problem: The Latent
Semantic Analysis Theory of the Acquisition, Induction, and Representation of
Knowledge. Psychological Review, 104, 211-240.
https://doi.org/10.1037/0033-295X.104.2.211

[7] Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W. and Harshman, R.A.
(1990) Indexing by Latent Semantic Analysis. Journal of the American Society for
Information Science (JASIS), 41, 391-407.
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9

[8] Turney, P. and Pantel, P. (2010) From Frequency to Meaning: Vector Space Models
of Semantics. Journal of Artificial Intelligence Research, 37, 141-188.
https://doi.org/10.1613/jair.2934

[9] Firth, J.R. (1957) Studies in Linguistic Analysis. Blackwell, Oxford.

[10] Mikolov, T., Chen, K., Corrado, G. and Dean, J. (2013) Efficient Estimation of
Word Representations in Vector Space. ArXiv: 1301.3781.

[11] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and Dean, J. (2013) Distributed
Representations of Words and Phrases and Their Compositionality. In: Burges, C.J.,
Bottou, L., Welling, M., Ghahramani, Z. and Weinberger, K.Q., Eds., Advances in
Neural Information Processing Systems 26, Curran Associates, Inc., Red Hook,
3111-3119.

[12] Pennington, J., Socher, R. and Manning C. (2014) GloVe: Global Vectors for Word
Representation. Proceedings of the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), Doha, 25-29 October 2014, 1532-1543.

[13] Sarkar, D. (2018) A Hands-on Intuitive Approach to Deep Learning Methods for
Text Data—Word2Vec, GloVe and FastText. Towards Data Science.
https://towardsdatascience.com/understanding-feature-engineering-part-4-deep-lea
rning-methods-for-text-data-96c44370bbfa

[14] Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K. and Zettle-
moyer, L. (2018) Deep Contextualized Word Representations. In: Walker, M., Ji, H.
and Stent, A., Eds., Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), Association for Computational Linguistics, New
Orleans, 2227-2237. https://doi.org/10.18653/v1/N18-1202

[15] Devlin, J, Chang, M.-W., Lee, K. and Toutanova, K. (2019) BERT: Pre-Training of
Deep Bidirectional Transformers for Language Understanding. In: Burstein, J., Do-
ran, C. and Solorio, T., Eds., Proceedings of the 2019 Conference of the North

https://doi.org/10.4236/ijis.2023.131001
https://cs.nyu.edu/%7Eroweis/papers/sne_final.pdf
https://towardsdatascience.com/an-overview-for-text-representations-in-nlp-311253730af1
https://towardsdatascience.com/an-overview-for-text-representations-in-nlp-311253730af1
https://doi.org/10.1145/361219.361220
https://doi.org/10.1108/eb026526
https://doi.org/10.1037/0033-295X.104.2.211
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6%3C391::AID-ASI1%3E3.0.CO;2-9
https://doi.org/10.1613/jair.2934
https://towardsdatascience.com/understanding-feature-engineering-part-4-deep-learning-methods-for-text-data-96c44370bbfa
https://towardsdatascience.com/understanding-feature-engineering-part-4-deep-learning-methods-for-text-data-96c44370bbfa
https://doi.org/10.18653/v1/N18-1202

P. J. Worth

DOI: 10.4236/ijis.2023.131001 21 International Journal of Intelligence Science

American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), Association for Computa-
tional Linguistics, Minneapolis, 4171-4186.

[16] Wang, Y., Hou, Y., Che, W. and Liu, T. (2020) From Static to Dynamic Word Re-
presentations: A Survey. International Journal of Machine Learning and Cybernet-
ics, 11, 1611-1630. https://doi.org/10.1007/s13042-020-01069-8

[17] Vaswani, A., Shazeer, N., Parmer, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, L.
and Polosukhin, I. (2017) Attention Is All You Need. ArXiv: 1706.03762.

[18] Galassi, A., Lippi, M. and Torroni, P. (2021) Attention in Natural Language Processing.
IEEE Transactions on Neural Networks and Learning Systems, 32, 4291-4308.
https://doi.org/10.1109/TNNLS.2020.3019893

[19] Koroteev, M.V. (2021) BERT: A Review of Applications in Natural Language Processing
and Understanding. ArXiv: 2103.11943.

https://doi.org/10.4236/ijis.2023.131001
https://doi.org/10.1007/s13042-020-01069-8
https://doi.org/10.1109/TNNLS.2020.3019893

	Word Embeddings and Semantic Spaces in Natural Language Processing
	Abstract
	Keywords
	1. Language Processing and Machine Learning (ML)
	2. The Curse of Dimensionality, Feature Selection, Vector Space Models and Latent Semantic Analysis
	3. The Distributional Hypothesis, Word Embeddings, Word2Vec and GloVe
	4. Neural Networks, Deep Learning, the Attention Mechanism and Transformers (ELMo and BERT)
	5. Summary: The Distributional Hypothesis and Semantic Spaces, the Theoretical Foundations of NLP
	Conflicts of Interest
	References

