
International Journal of Intelligence Science, 2021, 11, 57-69
https://www.scirp.org/journal/ijis

ISSN Online: 2163-0356
ISSN Print: 2163-0283

DOI: 10.4236/ijis.2021.112005 Mar. 30, 2021 57 International Journal of Intelligence Science

An FPGA-Based Resource-Saving Hardware
Accelerator for Deep Neural Network

Han Jia, Xuecheng Zou

School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China

Abstract
With the development of computer vision researches, due to the state-of-the-
art performance on image and video processing tasks, deep neural network
(DNN) has been widely applied in various applications (autonomous vehicles,
weather forecasting, counter-terrorism, surveillance, traffic management,
etc.). However, to achieve such performance, DNN models have become in-
creasingly complicated and deeper, and result in heavy computational stress.
Thus, it is not sufficient for the general central processing unit (CPU) pro-
cessors to meet the real-time application requirements. To deal with this bot-
tleneck, research based on hardware acceleration solution for DNN attracts
great attention. Specifically, to meet various real-life applications, DNN acce-
leration solutions mainly focus on issue of hardware acceleration with intense
memory and calculation resource. In this paper, a novel resource-saving ar-
chitecture based on Field Programmable Gate Array (FPGA) is proposed.
Due to the novel designed processing element (PE), the proposed architecture
achieves good performance with the extremely limited calculating resource.
The on-chip buffer allocation helps enhance resource-saving performance
on memory. Moreover, the accelerator improves its performance by ex-
ploiting the sparsity property of the input feature map. Compared to other
state-of-the-art solutions based on FPGA, our architecture achieves good
performance, with quite limited resource consumption, thus fully meet the
requirement of real-time applications.

Keywords
Deep Neural Network, Resource-Saving, Hardware Accelerator, Data Flow

1. Introduction

To meet the demands of computer vision applications (e.g., object recognition
and classification), numerous deep convolutional neural network models have

How to cite this paper: Jia, H. and Zou,
X.C. (2021) An FPGA-Based Resource-
Saving Hardware Accelerator for Deep
Neural Network. International Journal of
Intelligence Science, 11, 57-69.
https://doi.org/10.4236/ijis.2021.112005

Received: January 12, 2021
Accepted: March 27, 2021
Published: March 30, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/ijis
https://doi.org/10.4236/ijis.2021.112005
https://www.scirp.org/
https://doi.org/10.4236/ijis.2021.112005
http://creativecommons.org/licenses/by/4.0/

H. Jia, X. C. Zou

DOI: 10.4236/ijis.2021.112005 58 International Journal of Intelligence Science

emerged and achieved overwhelming performance [1] [2] [3]. Along with the
development of deep learning algorithms, a broad variety of applications in the
Internet of Things (IoT) rise. However, state-of-the-art DNNs based on deep
network models put forward requests for enormous computation and memory
access, which lead to great latency and computation resource consumption. Hence,
hardware acceleration solutions with real-time processing become an increa-
singly urgent demand. Due to the intensive computation and huge external data
access for the DNN algorithm, CPU processors are unable to meet real-time de-
mands. Thus, the specialized accelerator for DNN model algorithms arouses
great research interest. The DNN algorithm can be accelerated during both the
training and inference phases. In this paper, we focus on the inference phase,
which is widely used in embedded vision system.

Enormous multiply and accumulate (MAC) operations and a great number of
parameters are the two main bottlenecks for DNN acceleration solutions. To
solve this, researchers have been focused on application and specific integrated
circuits (ASIC) [4] [5] [6] and FPGA [7] [8] [9] [10] [11]. Most researches have
been mainly focused on instruction flow and data flow architectures. Among the
researches, data flow architecture has become a key research area due to its high
parallelism property. Several recent hardware accelerating solutions have achieved
great performance. For example, tensor processing unit (TPU) [5] is a typical
data flow based architecture, which accelerates the convolutional operations
by utilizing systolic matrix multipliers. Compared to contemporary Graphics
Processing Unit (GPU) and CPU, TPU achieves approximately 15× - 30× spee-
dup. Apart from TPU, Eyeriss [4] exploits reuse strategy of input feature map
and weight filters by proposing the row stationary (RS) data flow, which helps
minimize energy consumption caused by the on-chip data movement and achieves
high energy efficiency. Based on above excellent researches, data flow architec-
ture shows great potential in DNN acceleration. In this paper, the proposed ar-
chitecture also concentrates on data flow architecture.

Main target of this paper is to deal with computation and memory resource
limitations in real-life applications, further reduce resource consumption com-
paring to existing works is the main research point, along with applying data
reuse technique as the acceleration method.

In this paper, a novel resource-saving architecture is proposed to deal with
acceleration demands of DNN model, and limited calculating resource con-
sumption is also the main research point for further real-life applications such as
IoT devices. Compared to previous research works, PE array of the proposed
architecture can be reused to implement 1 × 1 or 3 × 3 convolution operations,
thus resource consumption can be greatly reduced. On-chip buffer allocation
strategy and corresponding data reuse technique is proposed, to reduce the data
access between the on-chip buffer and double data rate (DDR). What’s more, by
utilizing the sparsity property of DNN, an effective utilization method is also in-
troduced. Thus, a high-performance accelerator solution with limited resource

https://doi.org/10.4236/ijis.2021.112005

H. Jia, X. C. Zou

DOI: 10.4236/ijis.2021.112005 59 International Journal of Intelligence Science

consumption is designed. This paper is organized as follows. Section 2 introduc-
es the targeted network model. The proposed novel resource-saving DNN acce-
lerator solution is presented in Section 3. Section 4 gives out the experimental
results on FPGA with targeted DNN model and compares with state-of-the-art
architectures. Section 5 gives a conclusion.

2. Targeted Network-VGG16

K. Simonyan and A. Zisserman from the University of Oxford proposed
VGG-16 in the paper “Very Deep Convolutional Networks for Large-Scale Im-
age Recognition” [12]. VGG-16 is a DNN model which achieves 92.7% top-5 test
accuracy in ImageNet, an extremely challenging dataset consists of over 14 mil-
lion images belonging to 1000 classes. Due to its state-of-the-art performance in
various datasets, VGG-16 has become one of the most famous and widely stu-
died models. Compared with AlexNet, another classic network model, VGG-16
makes great improvement by replacing large kernel-sized filters (11 × 11 and 5 ×
5 in the first and second convolutional layer, respectively) with multiple 3 × 3
kernel-sized filters one after another. Training progress of VGG-16 takes weeks
utilizing NVIDIA Titan Black GPU’s. The architecture of VGG-16 is depicted
below in Figure 1.

The input of VGG-16 to Conv1 layer is of fixed size 224 × 224 RGB image.
The image is processed through a stack of convolutional layers, where the filters
are with a very small 3 × 3 receptive field. Stride of convolutional layers is fixed
to 1. To preserve spatial resolution after convolution operations, spatial padding
is applied to convolutional layer input. For 3 × 3 convolutional layers utilized by
VGG-16, padding is set to 1 pixel. In VGG-16, five max-pooling layers are in-
troduced and follow some of the convolutional layers (not all the convolutional
layers are followed by max-pooling). Max-pooling of VGG-16 is performed over
a 2 × 2 kernel, with stride of 2.

At the end of convolutional layers follows three fully-connected (FC) layers.
First two FC layers have 4096 channels each, and the third one with 1000. The
final layer is a soft-max layer and then outputs the final result.

Rectified linear unit (ReLU) is implemented with all hidden layers as activa-
tion function to realize non-linearity. It is noticeable that Local Response Nor-
malisation (LRN) is not included, as it leads to memory consumption and com-
putation time increase, with quite limited performance improvement.

Figure 1. VGG-16 network architecture.

https://doi.org/10.4236/ijis.2021.112005

H. Jia, X. C. Zou

DOI: 10.4236/ijis.2021.112005 60 International Journal of Intelligence Science

It has been demonstrated that the representation depth is beneficial for the
classification accuracy. Utilizing conventional convolutional network architec-
ture with substantially increased depth, state-of-the-art performance on the
challenging ImageNet dataset can be achieved. Thus, VGG-16 network is a quite
classic architecture for image classification. However, along with the benefits
brought by deeper network architecture, comes with great amount of parameter
and MAC operations. Moreover, utilization of FC layers also brings in enormous
amount of parameters. Hence, hardware acceleration solution for VGG-16 is
quite urgent for the implementation. Luckily, the single-column structure and
simple kernel size variation make VGG-16 friendly for hardware implementa-
tion. Therefore, VGG-16 network model is widely used for evaluation of FPGA-
based accelerators solutions. The proposed work is also based on VGG-16 net-
work architecture.

3. Novel Resource-Saving DNN Accelerator Architecture
3.1. Architecture Overview

The proposed data flow based resource-saving architecture is shown in Figure 2.
Convolutional operations are conducted in special designed PE array, which can
be reused for 1 × 1 and 3 × 3 convolution. In the proposed architecture, the im-
age buffers and weight buffers are directly linked to the PE. Computational re-
sults of PE array are streamed into the special function buffer.

The batch normalization (BN), activation and pooling operations are streamed
and conducted in the special function buffer, and hence minimize data access
between on-chip buffer and DDR. The special function buffer is composed of
many static random-access memory (SRAM) banks, which allows it to receive
computed results from the PE array in parallel.

3.2. Reusable PE Array

According to previous researches, PE architecture plays crucial role in DNN

Figure 2. Resource-saving accelerator architecture.

https://doi.org/10.4236/ijis.2021.112005

H. Jia, X. C. Zou

DOI: 10.4236/ijis.2021.112005 61 International Journal of Intelligence Science

hardware accelerator, as it determines resource consumption and throughput of
the entire architecture. Most recent works are based on two types of PE archi-
tectures to realize convolutional operations: spatial 2D-PE array, and systolic
matrix. Research work of TPU has demonstrated that systolic matrix is not
highly efficient dealing with small layer size [5], while the spatial 2D-PE array
performs much better. Hence, making the tradeoff between throughput, com-
plexity and resource consumption, a novel spatial 2D-PE array is designed.

Different from other normal PE designs employed by recent research works
that contain only one multiplier per PE [5] [6], the proposed PE consists of nine
multipliers. Such novel design explores the reuse technique of PE array to con-
duct 1 × 1 and 3 × 3 convolution, which perfectly suits the VGG-16 network ar-
chitecture. Figure 3 exhibits the proposed PE structure.

Apart from the nine multipliers, nine weight registers and nine image registers
are linked to the multipliers. It is worth noting that the image registers are de-
signed and connected in shift register mode, and transmits image data between
PEs. Besides, enable signals are linked to multipliers to decide work status of
them, to reduce energy consumption. Multipliers’ outputs are set to zero for
those are disabled.

With the special design above, two types of results can be outputted from one
PE: sum of nine multipliers results, or nine separate results. Therefore, either
one 3 × 3 convolution or nine 1 × 1 convolution operations can be conducted in
the proposed PE structure. Moreover, with multiple PEs, bigger kernel size con-
volutions (Such as 5 × 5, 7 × 7, even 11 × 11) can be implemented with this ar-
chitecture, hence improves the flexibility and scalability of the proposed archi-
tecture, more works to deal with various model architecture will be done in the
future. Implementation of 5 × 5 and 7 × 7 convolution operations is shown in
Figure 4. Peak multiplier utilization of proposed PE array when conducting 1 × 1

Figure 3. Reusable PE structure.

https://doi.org/10.4236/ijis.2021.112005

H. Jia, X. C. Zou

DOI: 10.4236/ijis.2021.112005 62 International Journal of Intelligence Science

Figure 4. Convolutional operation configuration. (a) 5 × 5; (b) 7 × 7.

and 3 × 3 convolution operations are 100%, which ensures the full implementa-
tion efficiency of computation resources. For larger size kernels, certain percen-
tage of multipliers are idle during calculation, however, such operations only
occupy small portion of whole network, the waste can be considered tolerable,
more details will not be discussed in this paper.

In the research work of Eyeriss, to reduce on-chip & off-chip data access,
reuse technique of input feature map rows is introduced. By exploiting this reuse
technique, on-chip energy cost is greatly lessened. During the computation of
convolution operations, there are two vital parameters: stride and padding. For
stride, it exhibits horizontally or vertically slides range of kernel. And padding is
to add certain number of pixels with zero value at input images’ edges. Accord-
ing to kernel size and input feature map size, different strategies that using pad-
ding or not can be utilized.

For the proposed architecture, similar row-reused method is implemented as
shown in Figure 5, as 3 × 3 convolutional kernel with stride of 1 occupies most
of VGG-16 convolution operation. As Figure 5 presents, input data stored
within on-chip buffer are organized in two-dimensional mode, and each row of
input data can be reused multiple times. For instance, Row1 is reused twice,
other rows such as Row2 can be reused even three times. Apart from image row
data reuse, number of SRAM banks can be significantly reduced with the pro-
posed technique, thus lessen complexity of the design work.

In the VGG-16 network model, three FC layers are employed apart from the
convolutional layers. FC layers can be taken as special convolutional layers, with
1 × 1 input feature map, 1 × 1 kernel size, padding of 0 and stride of 1. For FC
layers with small weight parameter size, such strategy is acceptable. However, FC
layers in VGG-16 bring in enormous amount of weight parameter, and using
this strategy would result in extensively increasing data access time. Thus, another
special technique is used and will be narrated in the rest of paper.

3.3. Novel Designed On-Chip Buffers

For embedded implementation of DNN models, on-chip memory resources are
usually quite limited. In addition to the on-chip memory intensity, data access

https://doi.org/10.4236/ijis.2021.112005

H. Jia, X. C. Zou

DOI: 10.4236/ijis.2021.112005 63 International Journal of Intelligence Science

Figure 5. Row data reuse strategy.

between on-chip memory and external memory consumes great amount of
energy, which is orders of magnitude greater than energy consumed by MAC
operations [5]. Thus, data reuse techniques are frequently utilized to solve these
problems [6]. For a certain layer, two ideal reuse situations exist: store all input
feature map data on-chip; store all weight parameters on-chip.

In VGG-16 network model, Proportion of weight parameter and image data
greatly varies among different convolutional layers. As Figure 6 presents, do-
minant parameter changes from image data to weight parameter as layers go
deeper.

According to the two ideal reuse strategies mentioned above, all weight para-
meters or input image data only need a one-time load. For implementation
platform with sufficient on-chip memory resource, implement such strategies
can be quite ideal. However, in most cases, especially for VGG-16 network mod-
el with great amount of parameters, on-chip memory resources are insufficient.
Therefore, as Figure 7 shows, the proposed work allocates limited on-chip
memory resources into image buffer, weight buffer, temporary buffer and special
function buffer.

Based on the property of VGG-16 network model mentioned above, by allo-
cating the temporary buffer to image buffer or weight buffer, the proposed work
flexibly selects whether to load input image data or weight parameter as much as
possible. Specifically, for shallower layers where input image data occupies much
greater amount, weight parameter will be loaded on chip for the best possibility;
while for deep layers where amount of weight parameters is much greater, strat-
egy is to load input image data on chip. Off-chip data access can be greatly les-
sened with this strategy combining the data reuse strategy proposed above.
There surely exist circumstances that none of these ideal reuse situations can be
implemented. For such instances, parameter with less proportion will be chosen
and split to load on-chip. This inevitably leads to data reload and extra energy
consumption.

With the implementation of special function buffer, special functional opera-
tions such as Pooling, Average-pooling [13] and Eltwise [14] are conducted

https://doi.org/10.4236/ijis.2021.112005

H. Jia, X. C. Zou

DOI: 10.4236/ijis.2021.112005 64 International Journal of Intelligence Science

Figure 6. Parameter proportion of different convolutional layers in VGG-16.

Figure 7. On-chip buffer allocation.

within on-chip buffer. This design helps the proposed accelerator solution rea-
lizes complete DNN acceleration except for convolution acceleration.

3.4. Optimizing Technique Using Sparse Prosperity

Based on previous researches, proportion of zero value in input feature map
rises as the layers go deeper in VGG-16 network model. Figure 8 explains this
property in detail. The introduction of ReLU activation leads to this sparse
prosperity [13] [14]. Hence, a novel optimization strategy is introduced based on
the sparsity, and both convolutional layers and FC layers are taken into consid-
eration.

In the proposed work, for the convolutional layers, when input image data of
the multiplier is “0”, multiplication operation is skipped. Utilizing such strategy
helps reduce great amount of multiplication operations, and further leads to sig-
nificant reduction of on-chip energy cost.

Except for the convolutional layers, sparseness also occupies a great portion in
FC layers. What’s more, weight parameters take great proportion in FC layers.
As Figure 9 shows, weight parameter proportion can be up to 89.9%. Thus,
loading weight parameter of FC layers leads to long loading time and high ener-
gy consumption. In most common cases, to compress amount of parameters, FC
layers are usually pruned. In the proposed work, through combining the sparse
prosperity of VGG-16, a novel optimization strategy is introduced for the FC
layers.

https://doi.org/10.4236/ijis.2021.112005

H. Jia, X. C. Zou

DOI: 10.4236/ijis.2021.112005 65 International Journal of Intelligence Science

Figure 8. Sparseness of the input feature map of each layer in VGG-16.

Figure 9. Weight parameter proportion of each layer in VGG-16.

For FC layers, Equation (1) can be utilized for the calculation.

[]0 1 0 0,0 0, 1 1 1,0 1, 1, , m m n n n mR R I W W I W W− − − − − − = ∗ + + ∗    ���� (1)

With Equation (1), one row of weight will be loaded to be multiplied by Ii and
get corresponding result Ri in the implementation. To utilize the sparseness of
VGG-16, for “0” valued input, corresponding row of weight parameter will not
be loaded. Data access can be significantly reduced with this method.

Thus, a comprehensive optimizing technique using sparse prosperity of VGG-
16 is introduced and implemented. Amount of data transmission between on-
chip buffer and external memory can be greatly lessened.

4. Experimental Results and Analysis

To verify the performance of the proposed resource-saving DNN accelerator, the
accelerator is implemented on Xilinx Zynq ZC706 platform.

https://doi.org/10.4236/ijis.2021.112005

H. Jia, X. C. Zou

DOI: 10.4236/ijis.2021.112005 66 International Journal of Intelligence Science

As shown in Figure 10, AXI bus based on the chosen FPGA platform is em-
ployed for data exchange among programming logic (PL) and processing system
(PS). When the system starts operation, PS sends the address of configuration
instruction stored in DDR to the accelerator, and follows with a start signal. Uti-
lizing DMA engine, the accelerator located in PL side then reads configurations
and sets all hardware modules into corresponding status. And the accelerator
then gets into working status by following the instructions. When the work
progress comes to an end, a finished signal is sent from PL side to PS Side. In the
last step, PS side reads the inference result from specific DDR address. As men-
tioned above, image data stored in the image buffer is organized as two-dimensional
mode, thus the proposed work utilize a transfer buffer to change the one-dimensional
data stored in DDR to two-dimensional data. Accordingly, the image buffer,
weight buffer, and special function buffer are equipped with double-buffers op-
erating in ping-pong mode, to overlap data transmission time with calculating
time.

Details of accelerator architecture are shown in Table 1. And Table 2 intro-
duces detailed parameter for the PE array to deal with different filter sizes in
VGG-16.

Table 1. Accelerator parameter details.

Parameter Value

Number of PE in PE array 16

Number of image buffer banks 18

Number of temporary buffer banks 18

Number of special function buffer banks 16

Figure 10. Accelerator implementation.

https://doi.org/10.4236/ijis.2021.112005

H. Jia, X. C. Zou

DOI: 10.4236/ijis.2021.112005 67 International Journal of Intelligence Science

To evaluate the performance of the proposed architecture, performance den-
sity is employed to acquire relatively fair comparison between different archi-
tectures based on different FPGA platforms. For hardware accelerator imple-
mentations, throughput density (TD) works as performance density and is ex-
pressed as shown in Equation (2)

TD Throughput clock Multiplier Number= ∗ (2)

In Equation (2), multiplier number is usually decided by the number of used
DSP, while in some cases, one DSP can be taken as two multipliers. And the
throughput can be calculated using Equation (3)

Throughput Total operation number Run time= (3)

Compared to other state-of-the-art FPGA-based accelerators, performance of
proposed architecture on VGG-16 is shown in Table 3.

As the results above shows, compared to existing state-of-the-art accelerators,
the proposed DNN accelerator solution achieves competitive performance. More-
over, the proposed work only consumes about one quarter of computation re-
source comparing to other researches. Good flexibility is also exhibited in the
comparison due to its ability to deal with different kernel sizes. Thus, the pro-
posed work contains great scalability for further research to cope with different
network models. Specifically, work of Meloni’s [9] shows good flexibility, how-
ever, the proposed work achieved better PD with significantly less calculation

Table 2. PE array parameter details.

Kernel
Size

Stride
PE array parameter SRAM

Banks Feature Map Number Channel Number Image Rows

1 × 1 1 8 8 2 16

3 × 3
1

1 1 18 18

1 2 10 10

2 1 2 17 17

Table 3. Performance comparison.

 Qiu [8] Meloni [9] Venieris [10] Proposed Work

Platform
Xilinx Zynq

Z-7045
Xilinx Zynq

Z-7045
Xilinx Zynq

Z-7045
Xilinx Zynq

Z-7045

Clock (Mhz) 150 140 125 140

Precision 16-bit fixed 16-bit fixed 16-bit fixed 16-bit fixed

DSP 780 864 855 172

Throughput
(GOP/s)

Conv 187.89 169.7 155.81 35.43

Full 136.97 122.58 - 28.31

Throughput
Density

Conv 1.61 × 10−3 1.40 × 10−3 1.45 × 10−3 1.44 × 10−3

Full 1.17 × 10−3 1.01 × 10−3 - 1.15 × 10−3

Flexibility Low High Low High

https://doi.org/10.4236/ijis.2021.112005

H. Jia, X. C. Zou

DOI: 10.4236/ijis.2021.112005 68 International Journal of Intelligence Science

resources consumption. For the other two researches with limited flexibility:
Works of Qiu [8] and Venieri [10], they achieve high performance due to their
specific design for VGG-16 model, their flexibility is limited as re-designing of
code needs to be done when dealing with different kernel sizes. Especially for
Qiu’s architecture, it exhibits state-of-the-art performance. Comparing to these
high performance architectures, the proposed work still has competitive perfor-
mance on PD, and consume significantly less computation resource.

5. Conclusion

This paper introduces a novel solution for DNN model acceleration with re-
source-saving method. A novel reusable PE structure is designed to deal with li-
mitation of computational and memory resource in real-life applications, and
achieves competitive performance with only one quarter of DSP consumption
compared to existing work. In addition to the PE, on-chip buffer allocation is
specially designed and significantly lessens data access between on-chip buffer
and off-chip memory. Experimental results suggest such strategy and design
help further enhance performance of the accelerator. Moreover, through com-
bining sparsity of input feature map and weight proportion property of VGG-16,
a novel comprehensive optimization strategy that takes both convolutional lay-
ers and FC layers into consideration is introduced. Through implementing the
proposed architecture on FPGA platform, and comparing with existing state-of-
the-art architectures based on FPGA, the proposed work achieves good perfor-
mance and significant resource-saving prosperity in the meantime. For future
works, due to high flexibility of the proposed architecture, implement different
network models with enhanced accelerator architecture based on this work will
be done.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Jiang, X., et al. (2020) Attention Scaling for Crowd Counting. 2020 IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13-19
June 2020, 4705-4714. https://doi.org/10.1109/CVPR42600.2020.00476

[2] He, K., Gkioxari, G., Dollár, P. and Girshick, R. (2020) Mask R-CNN. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 42, 386-397.
https://doi.org/10.1109/TPAMI.2018.2844175

[3] Zhang, Y., Zhou, D., Chen, S., Gao, S. and Ma, Y. (2016) Single-Image Crowd
Counting via Multi-Column Convolutional Neural Network. 2016 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30
June 2016, 589-597. https://doi.org/10.1109/CVPR.2016.70

[4] Chen, Y., Yang, T., Emer, J. and Sze, V. (2019) Eyeriss v2: A Flexible Accelerator for
Emerging Deep Neural Networks on Mobile Devices. IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, 9, 292-308.

https://doi.org/10.4236/ijis.2021.112005
https://doi.org/10.1109/CVPR42600.2020.00476
https://doi.org/10.1109/TPAMI.2018.2844175
https://doi.org/10.1109/CVPR.2016.70

H. Jia, X. C. Zou

DOI: 10.4236/ijis.2021.112005 69 International Journal of Intelligence Science

https://doi.org/10.1109/JETCAS.2019.2910232

[5] Jouppi, N.P., Young, C., et al. (2017) In-Datacenter Performance Analysis of a Ten-
sor Processing Unit. Proceeding of 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture, Toronto, ON, Canada, 24-28 June 2017, 12 p.
https://doi.org/10.1145/3079856.3080246

[6] Shin, D., Lee, J., Lee, J., Lee, J. and Yoo, H.-J. (2018) DNPU: An Energy-Efficient
Deep-Learning Processor with Heterogeneous Multi-Core Architecture. IEEE Mi-
cro, 38, 85-93. https://doi.org/10.1109/MM.2018.053631145

[7] Zhang, C., et al. (2015) Optimizing FPGA-Based Accelerator Design for Deep Con-
volutional Neural Networks. Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, New York, NY, USA, February
2015, 161-170. https://doi.org/10.1145/2684746.2689060

[8] Qiu, J., Wang, J., Yao, S., Guo, K.Y., et al. (2016) Going Deeper with Embedded
FPGA Platform for Convolutional Neural Network. Proceedings of the 2016 ACM/
SIGDA International Symposium on Field-Programmable Gate Arrays, New York,
NY, USA, February 2016, 26-35. https://doi.org/10.1145/2847263.2847265

[9] Meloni, P., Capotondi, A., et al. (2018) NEURAghe: Exploiting CPU-FPGA
Synergies for Efficient and Flexible CNN Inference Acceleration on Zynq SoCs.
ACM Transactions on Reconfigurable Technology and Systems, 11, 24 p.
https://doi.org/10.1145/3284357

[10] Venieris, S.I. and Bouganis, C. (2018) fpgaConvNet: Mapping Regular and Irregular
Convolutional Neural Networks on FPGAs. IEEE Transactions on Neural Networks
and Learning Systems, 30, 326-342. https://doi.org/10.1109/TNNLS.2018.2844093

[11] Qu, X., Huang, Z.H., Mao, N., Xu, Y. Cai, G. and Fang, Z. (2019) A Grain-Adaptive
Computing Structure for FPGA CNN Acceleration. IEEE 13th International Confe-
rence on ASIC, Chongqing, China, 2019, 1-4.
https://doi.org/10.1109/ASICON47005.2019.8983480

[12] Simonyan, K. and Zisserman, A. (2014) Very Deep Convolutional Networks for
Large-Scale Image Recognition. arXiv:1409.1556. https://arxiv.org/abs/1409.1556v6

[13] Howard, A.G., et al. (2017) MobileNets: Efficient Convolutional Neural Networks
for Mobile Vision Applications. arXiv:1704.04861. https://arxiv.org/abs/1704.04861

[14] He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep Residual Learning for Image
Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition,
Las Vegas, NV, USA, 27-30 June 2016, 770-778.
https://doi.org/10.1109/CVPR.2016.90

https://doi.org/10.4236/ijis.2021.112005
https://doi.org/10.1109/JETCAS.2019.2910232
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/MM.2018.053631145
https://doi.org/10.1145/2684746.2689060
https://doi.org/10.1145/2847263.2847265
https://doi.org/10.1145/3284357
https://doi.org/10.1109/TNNLS.2018.2844093
https://doi.org/10.1109/ASICON47005.2019.8983480
https://arxiv.org/abs/1409.1556v6
https://arxiv.org/abs/1704.04861
https://doi.org/10.1109/CVPR.2016.90

	An FPGA-Based Resource-Saving Hardware Accelerator for Deep Neural Network
	Abstract
	Keywords
	1. Introduction
	2. Targeted Network-VGG16
	3. Novel Resource-Saving DNN Accelerator Architecture
	3.1. Architecture Overview
	3.2. Reusable PE Array
	3.3. Novel Designed On-Chip Buffers
	3.4. Optimizing Technique Using Sparse Prosperity

	4. Experimental Results and Analysis
	5. Conclusion
	Conflicts of Interest
	References

