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Abstract 
With the development of computer vision researches, due to the state-of-the- 
art performance on image and video processing tasks, deep neural network 
(DNN) has been widely applied in various applications (autonomous vehicles, 
weather forecasting, counter-terrorism, surveillance, traffic management, 
etc.). However, to achieve such performance, DNN models have become in-
creasingly complicated and deeper, and result in heavy computational stress. 
Thus, it is not sufficient for the general central processing unit (CPU) pro-
cessors to meet the real-time application requirements. To deal with this bot-
tleneck, research based on hardware acceleration solution for DNN attracts 
great attention. Specifically, to meet various real-life applications, DNN acce-
leration solutions mainly focus on issue of hardware acceleration with intense 
memory and calculation resource. In this paper, a novel resource-saving ar-
chitecture based on Field Programmable Gate Array (FPGA) is proposed. 
Due to the novel designed processing element (PE), the proposed architecture 
achieves good performance with the extremely limited calculating resource. 
The on-chip buffer allocation helps enhance resource-saving performance 
on memory. Moreover, the accelerator improves its performance by ex-
ploiting the sparsity property of the input feature map. Compared to other 
state-of-the-art solutions based on FPGA, our architecture achieves good 
performance, with quite limited resource consumption, thus fully meet the 
requirement of real-time applications. 
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1. Introduction 

To meet the demands of computer vision applications (e.g., object recognition 
and classification), numerous deep convolutional neural network models have 
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emerged and achieved overwhelming performance [1] [2] [3]. Along with the 
development of deep learning algorithms, a broad variety of applications in the 
Internet of Things (IoT) rise. However, state-of-the-art DNNs based on deep 
network models put forward requests for enormous computation and memory 
access, which lead to great latency and computation resource consumption. Hence, 
hardware acceleration solutions with real-time processing become an increa-
singly urgent demand. Due to the intensive computation and huge external data 
access for the DNN algorithm, CPU processors are unable to meet real-time de-
mands. Thus, the specialized accelerator for DNN model algorithms arouses 
great research interest. The DNN algorithm can be accelerated during both the 
training and inference phases. In this paper, we focus on the inference phase, 
which is widely used in embedded vision system. 

Enormous multiply and accumulate (MAC) operations and a great number of 
parameters are the two main bottlenecks for DNN acceleration solutions. To 
solve this, researchers have been focused on application and specific integrated 
circuits (ASIC) [4] [5] [6] and FPGA [7] [8] [9] [10] [11]. Most researches have 
been mainly focused on instruction flow and data flow architectures. Among the 
researches, data flow architecture has become a key research area due to its high 
parallelism property. Several recent hardware accelerating solutions have achieved 
great performance. For example, tensor processing unit (TPU) [5] is a typical 
data flow based architecture, which accelerates the convolutional operations 
by utilizing systolic matrix multipliers. Compared to contemporary Graphics 
Processing Unit (GPU) and CPU, TPU achieves approximately 15× - 30× spee-
dup. Apart from TPU, Eyeriss [4] exploits reuse strategy of input feature map 
and weight filters by proposing the row stationary (RS) data flow, which helps 
minimize energy consumption caused by the on-chip data movement and achieves 
high energy efficiency. Based on above excellent researches, data flow architec-
ture shows great potential in DNN acceleration. In this paper, the proposed ar-
chitecture also concentrates on data flow architecture.  

Main target of this paper is to deal with computation and memory resource 
limitations in real-life applications, further reduce resource consumption com-
paring to existing works is the main research point, along with applying data 
reuse technique as the acceleration method. 

In this paper, a novel resource-saving architecture is proposed to deal with 
acceleration demands of DNN model, and limited calculating resource con-
sumption is also the main research point for further real-life applications such as 
IoT devices. Compared to previous research works, PE array of the proposed 
architecture can be reused to implement 1 × 1 or 3 × 3 convolution operations, 
thus resource consumption can be greatly reduced. On-chip buffer allocation 
strategy and corresponding data reuse technique is proposed, to reduce the data 
access between the on-chip buffer and double data rate (DDR). What’s more, by 
utilizing the sparsity property of DNN, an effective utilization method is also in-
troduced. Thus, a high-performance accelerator solution with limited resource 
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consumption is designed. This paper is organized as follows. Section 2 introduc-
es the targeted network model. The proposed novel resource-saving DNN acce-
lerator solution is presented in Section 3. Section 4 gives out the experimental 
results on FPGA with targeted DNN model and compares with state-of-the-art 
architectures. Section 5 gives a conclusion. 

2. Targeted Network-VGG16 

K. Simonyan and A. Zisserman from the University of Oxford proposed 
VGG-16 in the paper “Very Deep Convolutional Networks for Large-Scale Im-
age Recognition” [12]. VGG-16 is a DNN model which achieves 92.7% top-5 test 
accuracy in ImageNet, an extremely challenging dataset consists of over 14 mil-
lion images belonging to 1000 classes. Due to its state-of-the-art performance in 
various datasets, VGG-16 has become one of the most famous and widely stu-
died models. Compared with AlexNet, another classic network model, VGG-16 
makes great improvement by replacing large kernel-sized filters (11 × 11 and 5 × 
5 in the first and second convolutional layer, respectively) with multiple 3 × 3 
kernel-sized filters one after another. Training progress of VGG-16 takes weeks 
utilizing NVIDIA Titan Black GPU’s. The architecture of VGG-16 is depicted 
below in Figure 1.  

The input of VGG-16 to Conv1 layer is of fixed size 224 × 224 RGB image. 
The image is processed through a stack of convolutional layers, where the filters 
are with a very small 3 × 3 receptive field. Stride of convolutional layers is fixed 
to 1. To preserve spatial resolution after convolution operations, spatial padding 
is applied to convolutional layer input. For 3 × 3 convolutional layers utilized by 
VGG-16, padding is set to 1 pixel. In VGG-16, five max-pooling layers are in-
troduced and follow some of the convolutional layers (not all the convolutional 
layers are followed by max-pooling). Max-pooling of VGG-16 is performed over 
a 2 × 2 kernel, with stride of 2. 

At the end of convolutional layers follows three fully-connected (FC) layers. 
First two FC layers have 4096 channels each, and the third one with 1000. The 
final layer is a soft-max layer and then outputs the final result. 

Rectified linear unit (ReLU) is implemented with all hidden layers as activa-
tion function to realize non-linearity. It is noticeable that Local Response Nor-
malisation (LRN) is not included, as it leads to memory consumption and com-
putation time increase, with quite limited performance improvement. 
 

 
Figure 1. VGG-16 network architecture. 
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It has been demonstrated that the representation depth is beneficial for the 
classification accuracy. Utilizing conventional convolutional network architec-
ture with substantially increased depth, state-of-the-art performance on the 
challenging ImageNet dataset can be achieved. Thus, VGG-16 network is a quite 
classic architecture for image classification. However, along with the benefits 
brought by deeper network architecture, comes with great amount of parameter 
and MAC operations. Moreover, utilization of FC layers also brings in enormous 
amount of parameters. Hence, hardware acceleration solution for VGG-16 is 
quite urgent for the implementation. Luckily, the single-column structure and 
simple kernel size variation make VGG-16 friendly for hardware implementa-
tion. Therefore, VGG-16 network model is widely used for evaluation of FPGA- 
based accelerators solutions. The proposed work is also based on VGG-16 net-
work architecture. 

3. Novel Resource-Saving DNN Accelerator Architecture 
3.1. Architecture Overview 

The proposed data flow based resource-saving architecture is shown in Figure 2. 
Convolutional operations are conducted in special designed PE array, which can 
be reused for 1 × 1 and 3 × 3 convolution. In the proposed architecture, the im-
age buffers and weight buffers are directly linked to the PE. Computational re-
sults of PE array are streamed into the special function buffer. 

The batch normalization (BN), activation and pooling operations are streamed 
and conducted in the special function buffer, and hence minimize data access 
between on-chip buffer and DDR. The special function buffer is composed of 
many static random-access memory (SRAM) banks, which allows it to receive 
computed results from the PE array in parallel. 

3.2. Reusable PE Array 

According to previous researches, PE architecture plays crucial role in DNN  
 

 
Figure 2. Resource-saving accelerator architecture. 
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hardware accelerator, as it determines resource consumption and throughput of 
the entire architecture. Most recent works are based on two types of PE archi-
tectures to realize convolutional operations: spatial 2D-PE array, and systolic 
matrix. Research work of TPU has demonstrated that systolic matrix is not 
highly efficient dealing with small layer size [5], while the spatial 2D-PE array 
performs much better. Hence, making the tradeoff between throughput, com-
plexity and resource consumption, a novel spatial 2D-PE array is designed. 

Different from other normal PE designs employed by recent research works 
that contain only one multiplier per PE [5] [6], the proposed PE consists of nine 
multipliers. Such novel design explores the reuse technique of PE array to con-
duct 1 × 1 and 3 × 3 convolution, which perfectly suits the VGG-16 network ar-
chitecture. Figure 3 exhibits the proposed PE structure. 

Apart from the nine multipliers, nine weight registers and nine image registers 
are linked to the multipliers. It is worth noting that the image registers are de-
signed and connected in shift register mode, and transmits image data between 
PEs. Besides, enable signals are linked to multipliers to decide work status of 
them, to reduce energy consumption. Multipliers’ outputs are set to zero for 
those are disabled. 

With the special design above, two types of results can be outputted from one 
PE: sum of nine multipliers results, or nine separate results. Therefore, either 
one 3 × 3 convolution or nine 1 × 1 convolution operations can be conducted in 
the proposed PE structure. Moreover, with multiple PEs, bigger kernel size con-
volutions (Such as 5 × 5, 7 × 7, even 11 × 11) can be implemented with this ar-
chitecture, hence improves the flexibility and scalability of the proposed archi-
tecture, more works to deal with various model architecture will be done in the 
future. Implementation of 5 × 5 and 7 × 7 convolution operations is shown in 
Figure 4. Peak multiplier utilization of proposed PE array when conducting 1 × 1  
 

 
Figure 3. Reusable PE structure. 
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Figure 4. Convolutional operation configuration. (a) 5 × 5; (b) 7 × 7. 

 
and 3 × 3 convolution operations are 100%, which ensures the full implementa-
tion efficiency of computation resources. For larger size kernels, certain percen-
tage of multipliers are idle during calculation, however, such operations only 
occupy small portion of whole network, the waste can be considered tolerable, 
more details will not be discussed in this paper. 

In the research work of Eyeriss, to reduce on-chip & off-chip data access, 
reuse technique of input feature map rows is introduced. By exploiting this reuse 
technique, on-chip energy cost is greatly lessened. During the computation of 
convolution operations, there are two vital parameters: stride and padding. For 
stride, it exhibits horizontally or vertically slides range of kernel. And padding is 
to add certain number of pixels with zero value at input images’ edges. Accord-
ing to kernel size and input feature map size, different strategies that using pad-
ding or not can be utilized. 

For the proposed architecture, similar row-reused method is implemented as 
shown in Figure 5, as 3 × 3 convolutional kernel with stride of 1 occupies most 
of VGG-16 convolution operation. As Figure 5 presents, input data stored 
within on-chip buffer are organized in two-dimensional mode, and each row of 
input data can be reused multiple times. For instance, Row1 is reused twice, 
other rows such as Row2 can be reused even three times. Apart from image row 
data reuse, number of SRAM banks can be significantly reduced with the pro-
posed technique, thus lessen complexity of the design work. 

In the VGG-16 network model, three FC layers are employed apart from the 
convolutional layers. FC layers can be taken as special convolutional layers, with 
1 × 1 input feature map, 1 × 1 kernel size, padding of 0 and stride of 1. For FC 
layers with small weight parameter size, such strategy is acceptable. However, FC 
layers in VGG-16 bring in enormous amount of weight parameter, and using 
this strategy would result in extensively increasing data access time. Thus, another 
special technique is used and will be narrated in the rest of paper. 

3.3. Novel Designed On-Chip Buffers 

For embedded implementation of DNN models, on-chip memory resources are 
usually quite limited. In addition to the on-chip memory intensity, data access  
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Figure 5. Row data reuse strategy. 
 
between on-chip memory and external memory consumes great amount of 
energy, which is orders of magnitude greater than energy consumed by MAC 
operations [5]. Thus, data reuse techniques are frequently utilized to solve these 
problems [6]. For a certain layer, two ideal reuse situations exist: store all input 
feature map data on-chip; store all weight parameters on-chip. 

In VGG-16 network model, Proportion of weight parameter and image data 
greatly varies among different convolutional layers. As Figure 6 presents, do-
minant parameter changes from image data to weight parameter as layers go 
deeper. 

According to the two ideal reuse strategies mentioned above, all weight para-
meters or input image data only need a one-time load. For implementation 
platform with sufficient on-chip memory resource, implement such strategies 
can be quite ideal. However, in most cases, especially for VGG-16 network mod-
el with great amount of parameters, on-chip memory resources are insufficient. 
Therefore, as Figure 7 shows, the proposed work allocates limited on-chip 
memory resources into image buffer, weight buffer, temporary buffer and special 
function buffer. 

Based on the property of VGG-16 network model mentioned above, by allo-
cating the temporary buffer to image buffer or weight buffer, the proposed work 
flexibly selects whether to load input image data or weight parameter as much as 
possible. Specifically, for shallower layers where input image data occupies much 
greater amount, weight parameter will be loaded on chip for the best possibility; 
while for deep layers where amount of weight parameters is much greater, strat-
egy is to load input image data on chip. Off-chip data access can be greatly les-
sened with this strategy combining the data reuse strategy proposed above. 
There surely exist circumstances that none of these ideal reuse situations can be 
implemented. For such instances, parameter with less proportion will be chosen 
and split to load on-chip. This inevitably leads to data reload and extra energy 
consumption. 

With the implementation of special function buffer, special functional opera-
tions such as Pooling, Average-pooling [13] and Eltwise [14] are conducted  
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Figure 6. Parameter proportion of different convolutional layers in VGG-16. 
 

 
Figure 7. On-chip buffer allocation. 
 
within on-chip buffer. This design helps the proposed accelerator solution rea-
lizes complete DNN acceleration except for convolution acceleration. 

3.4. Optimizing Technique Using Sparse Prosperity 

Based on previous researches, proportion of zero value in input feature map 
rises as the layers go deeper in VGG-16 network model. Figure 8 explains this 
property in detail. The introduction of ReLU activation leads to this sparse 
prosperity [13] [14]. Hence, a novel optimization strategy is introduced based on 
the sparsity, and both convolutional layers and FC layers are taken into consid-
eration. 

In the proposed work, for the convolutional layers, when input image data of 
the multiplier is “0”, multiplication operation is skipped. Utilizing such strategy 
helps reduce great amount of multiplication operations, and further leads to sig-
nificant reduction of on-chip energy cost. 

Except for the convolutional layers, sparseness also occupies a great portion in 
FC layers. What’s more, weight parameters take great proportion in FC layers. 
As Figure 9 shows, weight parameter proportion can be up to 89.9%. Thus, 
loading weight parameter of FC layers leads to long loading time and high ener-
gy consumption. In most common cases, to compress amount of parameters, FC 
layers are usually pruned. In the proposed work, through combining the sparse 
prosperity of VGG-16, a novel optimization strategy is introduced for the FC 
layers. 
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Figure 8. Sparseness of the input feature map of each layer in VGG-16. 
 

 
Figure 9. Weight parameter proportion of each layer in VGG-16. 
 

For FC layers, Equation (1) can be utilized for the calculation. 

[ ]0 1 0 0,0 0, 1 1 1,0 1, 1, , m m n n n mR R I W W I W W− − − − − − = ∗ + + ∗    ����      (1) 

With Equation (1), one row of weight will be loaded to be multiplied by Ii and 
get corresponding result Ri in the implementation. To utilize the sparseness of 
VGG-16, for “0” valued input, corresponding row of weight parameter will not 
be loaded. Data access can be significantly reduced with this method. 

Thus, a comprehensive optimizing technique using sparse prosperity of VGG- 
16 is introduced and implemented. Amount of data transmission between on- 
chip buffer and external memory can be greatly lessened. 

4. Experimental Results and Analysis 

To verify the performance of the proposed resource-saving DNN accelerator, the 
accelerator is implemented on Xilinx Zynq ZC706 platform. 
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As shown in Figure 10, AXI bus based on the chosen FPGA platform is em-
ployed for data exchange among programming logic (PL) and processing system 
(PS). When the system starts operation, PS sends the address of configuration 
instruction stored in DDR to the accelerator, and follows with a start signal. Uti-
lizing DMA engine, the accelerator located in PL side then reads configurations 
and sets all hardware modules into corresponding status. And the accelerator 
then gets into working status by following the instructions. When the work 
progress comes to an end, a finished signal is sent from PL side to PS Side. In the 
last step, PS side reads the inference result from specific DDR address. As men-
tioned above, image data stored in the image buffer is organized as two-dimensional 
mode, thus the proposed work utilize a transfer buffer to change the one-dimensional 
data stored in DDR to two-dimensional data. Accordingly, the image buffer, 
weight buffer, and special function buffer are equipped with double-buffers op-
erating in ping-pong mode, to overlap data transmission time with calculating 
time. 

Details of accelerator architecture are shown in Table 1. And Table 2 intro-
duces detailed parameter for the PE array to deal with different filter sizes in 
VGG-16. 
 
Table 1. Accelerator parameter details. 

Parameter Value 

Number of PE in PE array 16 

Number of image buffer banks 18 

Number of temporary buffer banks 18 

Number of special function buffer banks 16 

 

 
Figure 10. Accelerator implementation. 
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To evaluate the performance of the proposed architecture, performance den-
sity is employed to acquire relatively fair comparison between different archi-
tectures based on different FPGA platforms. For hardware accelerator imple-
mentations, throughput density (TD) works as performance density and is ex-
pressed as shown in Equation (2) 

TD Throughput clock Multiplier Number= ∗              (2) 

In Equation (2), multiplier number is usually decided by the number of used 
DSP, while in some cases, one DSP can be taken as two multipliers. And the 
throughput can be calculated using Equation (3) 

Throughput Total operation number Run time=            (3) 

Compared to other state-of-the-art FPGA-based accelerators, performance of 
proposed architecture on VGG-16 is shown in Table 3. 

As the results above shows, compared to existing state-of-the-art accelerators, 
the proposed DNN accelerator solution achieves competitive performance. More-
over, the proposed work only consumes about one quarter of computation re-
source comparing to other researches. Good flexibility is also exhibited in the 
comparison due to its ability to deal with different kernel sizes. Thus, the pro-
posed work contains great scalability for further research to cope with different 
network models. Specifically, work of Meloni’s [9] shows good flexibility, how-
ever, the proposed work achieved better PD with significantly less calculation  
 
Table 2. PE array parameter details. 

Kernel 
Size 

Stride 
PE array parameter SRAM 

Banks Feature Map Number Channel Number Image Rows 

1 × 1 1 8 8 2 16 

3 × 3 
1 

1 1 18 18 

1 2 10 10 

2 1 2 17 17 

 
Table 3. Performance comparison. 

 Qiu [8] Meloni [9] Venieris [10] Proposed Work 

Platform 
Xilinx Zynq 

Z-7045 
Xilinx Zynq 

Z-7045 
Xilinx Zynq 

Z-7045 
Xilinx Zynq 

Z-7045 

Clock (Mhz) 150 140 125 140 

Precision 16-bit fixed 16-bit fixed 16-bit fixed 16-bit fixed 

DSP 780 864 855 172 

Throughput 
(GOP/s) 

Conv 187.89 169.7 155.81 35.43 

Full 136.97 122.58 - 28.31 

Throughput 
Density 

Conv 1.61 × 10−3 1.40 × 10−3 1.45 × 10−3 1.44 × 10−3 

Full 1.17 × 10−3 1.01 × 10−3 - 1.15 × 10−3 

Flexibility Low High Low High 
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resources consumption. For the other two researches with limited flexibility: 
Works of Qiu [8] and Venieri [10], they achieve high performance due to their 
specific design for VGG-16 model, their flexibility is limited as re-designing of 
code needs to be done when dealing with different kernel sizes. Especially for 
Qiu’s architecture, it exhibits state-of-the-art performance. Comparing to these 
high performance architectures, the proposed work still has competitive perfor-
mance on PD, and consume significantly less computation resource. 

5. Conclusion 

This paper introduces a novel solution for DNN model acceleration with re-
source-saving method. A novel reusable PE structure is designed to deal with li-
mitation of computational and memory resource in real-life applications, and 
achieves competitive performance with only one quarter of DSP consumption 
compared to existing work. In addition to the PE, on-chip buffer allocation is 
specially designed and significantly lessens data access between on-chip buffer 
and off-chip memory. Experimental results suggest such strategy and design 
help further enhance performance of the accelerator. Moreover, through com-
bining sparsity of input feature map and weight proportion property of VGG-16, 
a novel comprehensive optimization strategy that takes both convolutional lay-
ers and FC layers into consideration is introduced. Through implementing the 
proposed architecture on FPGA platform, and comparing with existing state-of- 
the-art architectures based on FPGA, the proposed work achieves good perfor-
mance and significant resource-saving prosperity in the meantime. For future 
works, due to high flexibility of the proposed architecture, implement different 
network models with enhanced accelerator architecture based on this work will 
be done.  
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