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Abstract 
In the case of reverse drag of normal faulting, the displacement and horizon-
tal extension are determined based on the established equations for the three 
mechanisms: rigid body, vertical shear and inclined shear. There are three 
sub-cases of basal detachment for the rigid body model: horizontal detach-
ment, antithetic detachment and synthetic detachment. For the rigid body 
model, the established equations indicate that the total displacement on the 
synthetic base (Dt2) is the largest, that on the horizontal base (Dt1) is mod-
erate, and that on the antithetic base (Dt3) is the smallest. On the other hand, 
the value of (Dt1) is larger than the displacement for the vertical shear (Dt4). 
The value of (Dt1) is larger than or less than the displacement for the inclined 
shear (Dt5) depending on the original fault dip δ0, bedding angle θ, and the 
angle of shear direction β. For all original parameters, the value of Dt5 is less 
than the value of Dt4. Also, by comparing three rotation mechanisms, we find 
that the inclined shear produces largest extension, the rigid body model with 
horizontal detachment produces the smallest extension, and the vertical shear 
model produces moderate extension.  
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1. Introduction 

Anderson’s model (1951) [1] predicts dips of normal faults larger than 45˚ [2] 
and could rotate down to 30˚ during continuous activity [3]. In other words, the 
normal faults develop progressively, diminishing their dip as the extension 
proceeds. Because of fault rotation, the beds in faulted blocks also rotate. Drag 
develops where a layer is oriented at an angle to the slip vector of the fault. Two 
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ways of bed rotation exist. One is the normal rotation, or normal drag, with beds 
on the hanging wall dipping in the same direction as that fault in the proximity 
of faults [4] (Figure 1(b)). Normal drag folds may form as a result of frictional 
drag [5], differential compaction [6], or due to fault-propagation [5] [7] [8]. 
Small normal drag folds may also form as a result of frictional drag along the fault 
surface [5]. For the normal drag, antiform is commonly found in the footwalls, 
whereas synform is observed in the hanging walls of normal faults. Another is the 
reverse rotation, or reverse drag, with beds on the hanging wall dipping in the op-
posite direction to the fault [9].  

Hamblin (1965) [4] listed several possible mechanisms of reverse drag in-
cluding multiple stages of deformation, elastic rebound, sagging, inversion of 
slip directions and differential compaction. The convexity of fault drags may be 
used to ascertain the sense of slip along faults [10]. Reches and Eidelman (1995) 
[11] showed by means of numerical modeling that the drag varies from reverse 
drag at the fault center to normal drag at the termination of the fault. However, 
Graseman et al. (2005) [12] indicated that both normal and reverse drag can de-
velop at the fault center depending on the angle between the markers and the 
fault; normal drag develops there for low angles (<30˚ - 40˚) and reverse drag for 
higher angles (Figure 1). Drag folds have a smaller wavelength than reverse-drag 
or rollover folds and may be superimposed on these larger structures [5]. 

Fault drag is common where there are ductile rocks in the faulted stratigraphy 
[13] [14] [15]. Drag folds are particularly important in hydrocarbon reservoirs 
where fault drag changes the communication path across a fault [16] [17] [18] 
[19]. Also, drag folds can provide useful information to assess earthquake ha-
zards [20]. In this paper, we calculate fault displacement and related extension 
based on the reverse rotation of normal faults. Its purpose is to compare dis-
placement and extension concerning the three mechanisms of reverse-drag flex-
ures in an effort to determine the origin and significance of this type of structur-
al deformation. 
 

 

Figure 1. (a) and (b) Fault drag of a central marker along normal faults. The Fault angle 
is the acute angle measured from the fault to the undeformed central marker (anticlock-
wise angles are positive). 
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2. Fault Total Displacement in the Case of Reverse Drag 
2.1. Rigid Body Rotation 

Reverse-drags are a result of the decrease in displacement with distance from the 
fault plane. There are three main explanations for bed tilting. One is based on 
the rigid body rotation model, which assumes that faults bound rigid blocks, the 
tilt angles of beds and faults are equal and there is no internal deformation within 
fault blocks (Figure 2(a) and Figure 2(b)). For this model, the angle of fault rota-
tion (γt1) is equal to bed tilt (θ),  
 t1 0 1γ δ δ θ= − =  (1) 

where δ0 is the original fault dip; δ1 is the present dip of the fault. 
For the rigid body rotation, any line between two faults is not altered, i.e. AB' 

= L0, where L0 is the original horizontal distance between the two faults. The to-
tal displacement AD' can be calculated from triangle AB'D' by the law of sines. 

 
( )
0

t1 0
1 0

sinsinAD
sin sin

LD L θθ
δ δ θ

′= = =
−

 (2) 

The above calculation is based on the fact that the basal detachment is hori-
zontal. A more realistic case is that the basal detachment is inclined [21]. If the 
dip direction of the basal detachment is the same as that of faults, the detach-
ment is synthetic (Figure 2(c) and Figure 2(d)). If the dip direction of the basal 
detachment is opposite to that of faults, the detachment is antithetical (Figure 
2(e) and Figure 2(f)). Before rotation in the case of synthetic detachment, by 
using the law of sines for triangle ABC in Figure 2(c), we obtain  
 

 

Figure 2. Sketch showing the rigid body model. (a) and (b) The basal detachment is ho-
rizontal. (c) and (d) The basal detachment is synthetic. (e) and (f) The basal detachment 
is antithetical. 
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Figure 3. Sketch of vertical shear model. (a) The bedding is horizontal before rotation of 
normal fault. (b) The bedding is tilted after faulting. The fault dip becomes shallower. The 
horizontal distance between the footwall cutoff of one fault and the hanging-wall cutoff in 
the next fault does not change. (c) Given δ0 = 60˚, the value of λ3 = Dt4/Dt1 varies with the 
angle of θ. (d) Change of λ3 = Dt4/Dt1 with angle of δ0 for θ = 30˚. 
 

 ( )
( ) ( )

0 0 0
t 0

0 0

sin 180 sinAB
sin sin

LL L
δ δ

δ α δ α
−

= = =
− −

 (3)  

Likewise, by applying the law of sines to triangle AA'B after rotation in Figure 
2(d), the total displacement (AA') is determined by 

 
( ) ( ) ( ) ( )

0 0
2

2 0 0 0

sin sin sinsinAA
sin sin sin sin

t
t t

L LD L θ δ θθ
δ α δ θ α δ α δ α θ

′= = = =
− − − − − −

 (4) 

For this equation, the value of (α + θ) should be less than δ0, or the Dt2 is neg-
ative, which has no significance.  

To compare Dt1 and Dt2, let  

 ( )
( ) ( )

0 0
t2 t1

0 0
1

sin sin
sin sin

D D
δ δ θ

δ α δ θ α
λ

−
− −

= =
−

 (5) 

Because the value of (α + θ) is less than the value of δ0, sin(δ0) is larger than 
sin(δ0 − α) and sin(δ0 − θ) is larger than sin(δ0 − α − θ), which indicate that the 
value of λ1 is larger than 1. That is to say, for the same values of δ0 and θ, the 
synthetic basal detachment produce greater total displacement than the hori-
zontal basal detachment (Dt2 > Dt1).  

In the case of antithetic basal detachment, by using the law of sines for trian-
gle ABC in Figure 2(e), we obtain  

 ( )
( ) ( )

0 0 0
0

0 0

sin 180 sinAB
sin 180 sint

LL L
δ δ

δ α δ α
−

= = =
− − +

 (6) 

After rotation, by applying the law of sines to triangle AA'B in Figure 2(f), the 
total displacement (BB') is determined by 

 
( ) ( ) ( ) ( )

0 0
3

3 0 0 0

sin sin sinsinBB
sin sin sin sin

t
t t

L LD L θ δ θθ
δ α δ θ α δ α δ α θ

′= = = =
+ − + + + −

 (7) 

https://doi.org/10.4236/ijg.2024.151003


S. S. Xu et al. 
 

 

DOI: 10.4236/ijg.2024.151003 29 International Journal of Geosciences 
 

For this equation, the value of θ should be less than δ0 + α, or the Dt2 is nega-
tive, which has no significance for normal faults.  

To compare Dt1 and Dt3, let  

 ( )
( ) ( )

0 0
t3 t1

0 0
2

sin sin
sin sin

D D
δ δ θ

δ α δ θ α
λ

−
+ −

= =
+

 (8) 

If the angle of the basal detachment α is less than 20˚ and δ0 is equal to about 
60˚, then (δ0 + α) is less than 90˚. In this way sin (δ0) is less than sin(δ0 + α) and 
sin(δ0 − θ) is less than sin(δ0 + α − θ). This indicates that the value of λ2 is less 
than 1. In other words, for the same values of δ0 and θ, the antithetic basal de-
tachment produces smaller total displacement than the horizontal basal detach-
ment (Dt3 < Dt1).  

2.2. Vertical Shear Model 

The second model of rotation is the vertical shear mechanism proposed by Wes-
taway and Kusznir (1993) [22], who argued that the internal deformation within 
a block bounded by faults is due to vertical shear (Figure 3(a) and Figure 3(b)). 
According to the vertical shear model of Westaway and Kusznir (1993) [22], if 
the bed tilt (θ), and present dip of the fault (δ4) are known, the original fault dip 
(δ0) are calculated by 

 0 4tan tan tanδ θ δ= +  (9) 

Therefore, the fault rotation is 

 ( )t2 0 4 4 4arctan tan tanγ δ δ θ δ δ= − = + −  (10) 

The vertical simple shear causes the initially horizontal surface between faults 
to be progressively tilted by an angle θ. Thus, the final length (Lb) of a bed is AB'. 
Using trigonometry,  

 b 0AB cosL L θ′= =  (11) 

Then, according to the law of sines the total displacement (Dt4) is 

 4 0
4

sinAD
sin costD L θ

δ θ
′= =  (12)  

Combining Equations (2) and (12), we define  

 
( )

( )
01

3 t4 t1
4 0

sinsin
sin cos sin arctan tan tan cos

D D
δ θδ

λ
δ θ δ θ θ

−
= = =

 − 
 (13)  

This Equation (13) indicates that the value of Dt4/Dt1 is dependent on the 
original fault dip δ0 and bedding angle θ. For given value of δ0, the value of λ3 is 
negatively related to the value of θ (Figure 3(c)). For a given value of θ, the curve 
of λ3 shows an up convex (Figure 3(d)). In all cases, the value of λ3 is less than 1, 
which indicates the value of Dt4 is smaller than Dt1 (Dt4 < Dt1).  

2.3. Inclined Shear Model  

The third model of rotation is the inclined shear model [23] [24], which propos-
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es that the internal deformation within blocks is due to arbitrary oblique shear. 
To compare this model with the other two models, we first determine the rela-
tionship between the final dip and original dip of the fault. The geometrical con-
figuration is shown in Figure 4. The original normal fault is expressed by the 
equation: 

 z ax b= +  (14)  

For this equation tan(δ0) = −a.  
The relationship between fault and bed tilting by ideal inclined shear in the limit 

of infinitesimal distance from the fault is shown in Figure 4(c). In this condition, 
the fault is assumed to remain planar, with local dip δ5. After extension (Figure 
4(b)) the initially horizontal marker has equation: 

 2y cx d= +  (15) 

where c = tanθ. An adjacent point D on the fault is now located in point A. Now 
the vertical coordinate u along DB is  
 DBu z= +  (16)  

For right triangle ACD, AC = y, and ∠CAD = β, which is the angle of inclined 
shear direction, then AD = y/cosβ. By applying the law of sines to triangle ADB, 
we obtain that 

 ( )
( )

( ) ( )ADsin 90 cos
DB 1 tan tan

sin 90 cos cos
y

y
θ β θ β

θ β
θ θ β

− − +
= = = −

+
 (17)  

Substituting DB into Equation (17) gives 

 
( )( )

( )( ) ( )
2

2

DB 1 tan tan

1 tan tan 1 tan tan

u z ax b cx d

a c x b d

θ β

θ β θ β

= + = + + + −

= + − + + −
 (18) 

After the inclined shear, the fault dip δ5 will satisfy that tan(δ5) = −(a + c(1 - 
tanθtanβ)). Substituting for a and c gives:  
 

 

Figure 4. Sketch showing inclined shear. (a) In the initial state, the fault line is assumed 
to be in the form: z = ax + b. (b) After faulting, the bedding near the fault plane has equa-
tion y = cx + d1 and y = cx + d2, respectively. (c) A point D near the fault plane moved to 
point A after faulting. The angle of β is measured from the vertical line to the shear direc-
tion. (d) Geometrical configuration for the inclined shear. The heave is different from 
that for the vertical shear in Figure 3(b). 
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 ( )5 0tan tan tan 1 tan tanδ δ θ θ β= − − , (19) 

Thus,  

 ( )0 5tan tan tan 1 tan tanδ δ θ θ β= + −  (20) 

For β = 0, this equation is the same as Equation (9), which indicates that the 
vertical shear is the case of end member of the inclined shear. Compare this Eq-
uation (20) with Equation (9) that assumes vertical shear, we can see that for the 
same present fault dip (δ5 = δ4) and bedding tilt θ, the calculated original fault 
dip for inclined shear is smaller than that for the vertical shear. The difference of 
initial fault dips between the two shear models (Δδ) is 

 ( )2arctan tan tanδ θ β∆ =  (21) 

This equation indicates that the value of Δδ is positively related to the bedding 
tilt θ and the angle of inclined shear (β). The effects of the bedding tilt θ and the 
angle of inclined shear β are shown in Figure 5.  

The value of β is negative if measured from vertical line to shear direction 
(Figure 4(c)). As shown in Figure 4(d), DB' is the initial length of bedding (L0). 
Based on the law of sinces for triangle ADB', the present length (Lb = AB') of the 
bedding is:  

 ( )
( ) ( )

0 0sin 90 cosAB
sin 90 cosb
L LL

β β
β θ β θ
+

′= = =
− − +

 (22)  

By applying the law of sines to triangle AD'B', the total displacement AD' can 
be deduced as  

 
( )

( ){ } ( )

t5 0
5

0

0

sin cosAD
sin cos

sin cos
sin arctan tan tan 1 tan tan cos

D L

L

θ β
δ β θ

θ β
δ θ θ β β θ

′= =
+

=
− − +  

 (23)  

To compare Dt5 with Dt1, let λ4 = Dt5/Dt1. Combining Equations (2) and (23), 
we obtain 

 
( )

( )( ) ( )
0

4 t5 t1
0

cos sin
sin arctan tan tan 1 tan tan cos

D D
β δ θ

λ
δ θ θ β β θ

−
= =

 − − + 
 (24) 

 

 

Figure 5. The curve of Δδ = arctan (tan2θtanβ) for given θ = 30˚ in (a) and β = 20˚ in (b), 
respectively. 
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Equation (24) shows that the value of Dt5/Dt1 is dependent on the original fault 
dip δ0 and bedding angle θ, and the angle of shear direction β. Generally, the 
value of λ4 can be either less than or larger than 1 (Figure 6), which indicates Dt5 
< Dt1 or Dt5 > Dt1. For given values of δ0 and θ, the value of λ4 is positively related 
to the value of β (Figure 6(a)). For given values of δ0 and β, there are negative 
relationship between the value of λ4 and the value of θ (Figure 6(b)). Finally, for 
given values of θ and β, the value of λ4 is also negatively related to the value of δ0 
(Figure 6(c)).  

Let λ5 = Dt5/Dt4 to compare the value of Dt5 with Dt4. Based on Equations (12) 
and (23), we have 

 
( )

( )( ) ( )
0

5 t5 t4
0

cos cos sin arctan tan tan

sin arctan tan tan 1 tan tan cos
D D

β θ δ θ
λ

δ θ θ β β θ

 − = =
 − − + 

 (25) 

There are three variables in this equation: the original fault dip δ0, the bedding 
angle θ, and the angle of shear direction β. For any combination of these three 
variables, the value of λ5 is always smaller than 1 (Figure 7). This indicates that 
for same condition, the inclined shear produces less displacement than the ver-
tical shear. The original fault dip δ0 does not strongly affect the value of λ5 
(Figure 7(a)). When the value of δ0 varies from 70˚ to 30˚, the difference of λ5 is 
only equal to 0.04 changing from 0.72 to 0.78. On the other hand, the value of λ5 
is negatively related to the value of θ, and is positively related to the value of β 
(Figure 7(b) and Figure 7(c)). 
 

 

Figure 6. The change of λ4 = Dt5/Dt1 for given conditions. The value of λ4 can be either larger than or 
smaller than 1. 

https://doi.org/10.4236/ijg.2024.151003


S. S. Xu et al. 
 

 

DOI: 10.4236/ijg.2024.151003 33 International Journal of Geosciences 
 

 

Figure 7. The value of λ5 = Dt5/Dt4 varies with δ0 in (a), θ in (b), and β in (c), respectively. 

3. Horizontal Extension in the Case of Reverse Drag 

For any model of block rotation, the horizontal extension is defined as  

 ( )f 0 0L L Lε = −  (26) 

where Lf is the final horizontal length of the fault block after faulting, and L0 is 
the initial horizontal length. For the rigid body mechanism on the horizontal 
base (Figure 2(a) and Figure 2(b)), the fault heave is h1 = Dt1cosδ1 = Dt1cos(δ0 − 
θ). Substituting for Dt1 from Equation (2), we have h1 = L0ctan(δ0 − θ)sinθ. Then, 
the final length is Lf1 = h1 + DB' = L0[cot(δ1)sin(θ) + cos(θ)]. In this way, the ex-
tension is expressed as  

 ( ) ( )1 f1 0 0 0ctan sin cos 1L L Lε δ θ θ θ= − = − + −  (27) 

For the vertical shear, the horizontal distance between the footwall cutoff of 
one fault and the hanging-wall cutoff in the next fault will remain constant over 
time, having its initial value (L0 in Figure 3(b)). In this way, we have DB' = L0 
and the heave is h2 = D'D = Dt4cosδ4. The value of Dt4 is substituted into this eq-
uation, we have h2 = L0ctanδ4tanθ, then Lf4 = DB' + D'D = L0(ctanδ4tanθ + 1) = 
L0(ctan(arctan(tanδ0 − tanθ))tanθ + 1) = L0(tanθ/(tanδ0 − tanθ) + 1). Therefore, 
the horizontal extension is  

 ( ) ( )4 f4 0 0 0tan tan tanL L Lε θ δ θ= − = −  (28) 

To compare the value of ε4 with ε1, let ρ1 = ε4/ε1. From Equations (27) and 
(28), we deduce  

 
( ) ( )( )1 4 1

0 0

tan
tan tan ctan sin cos 1

θρ ε ε
δ θ δ θ θ θ

= =
− − + −

 (29) 

This equation indicates that the value of ε2/ε1 is dependent on the original 
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fault dip δ0 and bedding angle θ. For given values of δ0, the value of ρ1 is nega-
tively related to the value of θ (Figure 8(a)). For given value of θ, the value of ρ1 
is also negatively related to the value of δ0 (Figure 8(b)). For all combinations of 
fault dip δ0 and bedding angle θ, the value of ρ1 is less than 1, which indicates the 
value of ε4 is smaller than ε1 (ε4 < ε1). Note that for the same values of fault dip δ0 
and bedding angle θ, the value of ρ1 is not equal to λ3, that is, ε4/ε1 ≠ Dt4/Dt1. For 
example, given δ0 = 60˚ and θ = 20˚, ρ3 = 0.766, whereas λ3 = 0.847.  

Now we consider the inclined shear in Figure 4(d), the value of final length 
Lf5 = D'D + DB' = D'C + CD + L0. Because D'C = Dt5cosδ5 and CD = ACtanβ = 
D'Ctanδ5tanβ, Lf5 = Dt5cosδ5(1 + tanδ5tanβ) + L0. Substituting for Dt5 gives 

 
( )

( )
5

f5 0
5

sin cos 1 tan tan
1

tan cos
L L

θ β δ β
δ β θ

 +
= +  + 

 (30) 

Thus, the extension is 

 ( )
( )

5 0 5
5

0 5

sin cos 1 tan tan
tan cos

fL L
L

θ β δ β
ε

δ β θ
− +

= =
+

 (31) 

Apply the equation cos(β + θ) = cosβcosθ − sinβsinθ to Equation (31) and 
rearrange it, we obtain 

 ( )
( )

5
5

5

tan 1 tan tan
tan 1 tan tan

θ δ β
ε

δ θ β
+

=
−

 (32)  

where tanδ5 is calculated by Equation (19), which depends on the values of δ0 
and β. We define ρ2 = ε5/ε1, the expression of ρ2 is 

 
( ) ( )( )

5
2

5 0

tan (1 tan tan )
tan 1 tan tan tan sin cos 1c

θ δ β
ρ

δ θ β δ θ θ θ
+

=
− − + +

 (33)  

For all combinations of fault dip δ0, the angle of inclined shear β, and bedding 
angle θ, the value of ρ2 can be less than or greater than 1 (Figure 9). For given 
value of θ, the value of ρ2 is negatively related to the value of δ0 (Figure 9(a)). 
On the other hand, the value of ρ2 is positively related to the value of θ and β 
(Figure 9(b) and Figure 9(c)). Compare Figure 8 with Figures 10(a)-(c), there 
are two differences between ρ2 and λ4. First, the range of ρ2 is larger than that of 
λ4. The value of λ4 is less than 2, whereas the value of ρ2 can be greater than 10. 
Second, the curves of ρ2 and λ4 have opposite tendency related to δ0, θ and β.  
 

 

Figure 8. The change of ρ1 = ε4/ε1 for given δ0 = 60˚ in (a) and θ = 30˚ in (b). The value of 
ρ1 is always smaller than 1. 
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Figure 9. The change of ρ2 = ε5/ε1 and ρ3 = ε5/ε4 for given conditions. The value of ρ2 can 
be either larger than or smaller than 1 depending on combination of δ0, θ, α and β. For 
arbitrary combination of δ0, θ, α and β, the value of ρ3 is always larger than 1. 
 

 

Figure 10. Estimation of the amount of extension using different methods across a listric 
fault in the Norwegian margin (a) and the Gulf Coast (b) (modified from [25]). 
 

On the other hand, we define ρ3 = ε5/ε4, the expression of ρ3 is 

 ( )( )
( )

0 5
3

5

tan tan 1 tan tan
tan 1 tan tan
δ θ δ β

ρ
δ θ β
− +

=
−

 (34) 

There are three variables in this equation: the original fault dip δ0, the bedding 
angle θ, and the angle of shear direction β. For any combination of these three 

https://doi.org/10.4236/ijg.2024.151003


S. S. Xu et al. 
 

 

DOI: 10.4236/ijg.2024.151003 36 International Journal of Geosciences 
 

variables, the value of ρ3 is always larger than 1 (Figures 9(d)-(f)). This indicates 
that for same condition, the inclined shear produces larger extension than the 
vertical shear. On the other hand, the value of ρ3 is positively related to the value 
of β and δ0 (Figure 9(d) and Figure 9(f)). For given value of β and δ0, the curve 
of ρ3 shows a down convex curve (Figure 9(e)). Compare Figure 7 and Figures 
9(d)-(f), one can see the curve of λ5 and ρ3 show different tendency. The values 
of λ5 and ρ3 are quite different: λ5 < 1, whereas ρ3 > 1. This indicates although the 
displacement caused by the inclined shear is smaller than that by the vertical 
shear, the extension from the inclined shear is larger than from the vertical 
shear.  

4. Discussion 

The rigid body model indicates that there is no internal deformation within the 
blocks. The simple shear models represent internal deformation. For listric normal 
faults, there are some other techniques to estimate horizontal extension. Exception 
for the simple shear method, Poblet and Bulnes (2005) [25] discussed six geome-
tric mechanisms to estimate horizontal extension in simple listric normal faults. 
They are: 1) unfolding sinuous bed lengths, e = structural width-folded bed 
length; 2) equal-area calculation, e = dropped area/detachment depth; 3) heave, e 
= heave; 4) maximum displacement on the fault, e = displacement on the fault; 
5) extensional fault-bend folding, e = distance between hanging-wall active and 
inactive axial surfaces along the lower flat; and 6) lost-area diagram, e = slop of 
best-fit line across area versus depth of several horizons to a reference level. By 
physical experiments, they showed that the estimated extension from different 
methods yield different magnitudes. Although the maximum displacement me-
thod and the extensional fault-bend folding method yield the best estimates of the 
amount of horizontal extension, all estimated extensions are less than the true 
values. These results indicate that hidden extensions may occur on faults below 
the smaller scale during progressive deformation [26].  

Estimation of extension of field examples from the Norwegian margin fault 
and the Gulf Coast fault are shown in Figure 10. Different methods yield evident 
different results. In both examples, the maximum displacement and inclined 
shear methods have the largest amounts of extension. Here, the values of fault 
shear used to apply the inclined shear are 40˚ for the Norwegian margin fault, 
and 20˚ for Gulf Coast fault. These results are different from the results of phys-
ical experiments [25]. 

5. Conclusions 

For reverse drags, three mechanisms were considered in our analysis: rigid body 
rotation, vertical shear, and inclined shear. The results allow us to obtain the 
following conclusions. 

The established equations show that among the three subcases of rigid body 
model, the total displacement in the case of the synthetic base (Dt2) is the largest, 
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that in the case of the horizontal base (Dt1) is moderate, and that in the case of 
the antithetic base (Dt3) is the smallest based on the same original parameters. 
Also, it is shown that the value of (Dt1) is larger than the displacement for the 
vertical shear (Dt4). the displacement for the inclined shear (Dt5) can be either 
larger than or less than the value of (Dt1) depending on combination among the 
original fault dip δ0, bedding angle θ, and the angle of shear direction β. For all 
original parameters, the value of Dt5 is less than the value of Dt4. As for horizon-
tal extension due to normal faulting, we find that the inclined shear produces 
largest value, the rigid body model with horizontal detachment produces the 
smallest value, and the vertical shear model produces moderate value. 
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