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Abstract 
South America’s climatic diversity is a product of its vast geographical ex-
panse, encompassing tropical to subtropical latitudes. The variations in pre-
cipitation and temperature across the region stem from the influence of dis-
tinct atmospheric systems. While some studies have characterized the pre-
vailing systems over South America, they often lacked the utilization of statis-
tical techniques for homogenization. On the other hand, other research has 
employed multivariate statistical methods to identify homogeneous regions 
regarding temperature and precipitation, but their focus has been limited to 
specific areas, such as the south, southeast, and northeast. Surprisingly, there 
is a lack of work that compares various multivariate statistical techniques to 
determine homogeneous regions across the entirety of South America con-
cerning temperature and precipitation. This paper aims to address this gap by 
comparing three such techniques: Cluster Analysis (K-means and Ward) and 
Self Organizing Maps, using data from different sources for temperature (ERA5, 
ERA5-Land, and CRU) and precipitation (ERA5, ERA5-Land, and CPC). Spa-
tial patterns and time series were generated for each region over the period 
1981-2010. The results from this analysis of spatially homogeneous regions 
concerning temperature and precipitation have the potential to significantly 
benefit climate analysis and forecasts. Moreover, they can offer valuable in-
sights for various climatological studies, guiding decision-making processes 
in diverse fields that rely on climate information, such as agriculture, disaster 
management, and water resources planning. 
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1. Introduction 

In various climate and meteorological studies, it is often essential to categorize 
data (observations or variables) into distinct subgroups containing elements that 
share similar characteristics. For instance, this separation can be used to create 
spatially homogeneous observations, either by utilizing weather stations or grid-
ded data, and considering different variables like temperature or precipitation. 
This allows for climate regionalization, aiding in understanding regional climate 
patterns. Additionally, data grouping based on different temporal scales, such as 
hours, days, or months, and various parameters, can be employed to identify pat-
terns, such as synoptic types. This facilitates the analysis of meteorological events 
and their underlying dynamics. Furthermore, for forecast analysis and evaluation, 
data grouping plays a crucial role. It enables the grouping of ensemble members, 
which can help in assessing the uncertainty and performance of forecasting mod-
els [1] [2] [3]. 

Cluster Analysis is a versatile technique that facilitates various types of studies. 
Its roots can be traced back to Tryon’s proposal in 1939 [4], where it was pri-
marily applied in biological taxonomy. However, it gained significant attention 
in the 1960s with the advent of faster computers, and by the 1970s, it began 
finding applications in diverse fields such as biology, sociology, and medicine 
[1]. Over the years, with the advancements in high-speed computers and data 
science, Cluster Analysis has evolved and is now classified as an unsupervised 
learning method [2]. This means that it can identify patterns and structures 
within data without the need for pre-labeled or labeled examples, making it a 
valuable tool in modern data analysis and exploration.  

Several studies have been conducted over South America to classify homoge-
neous regions based on climate variables, employing various clustering methods. 
These investigations are of significant importance, given the continent’s vast ter-
ritory and diverse climate patterns. The outcomes of such studies find valuable 
applications in multiple domains, including agriculture, natural disaster manage-
ment, understanding climate impacts, water resources management, and climate 
and weather forecasting [5]. 

In the study [6] gauge stations were used over Brazil to classify precipitation 
in six homogenenous regions using Ward Method. In [7] was performed a revi-
sion of precipitation regimes over South America and classify in eight homoge-
neous regions using a subjective analysis (graphics climatology analysis of me-
teorological stations data). [5] used a multivariate technique based on fuzzy theory 
to identify nine climate profiles (Grade of Membership) over Brazil using preci-
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pitation, relative humidity and maximum and minimum temperature from 1980- 
2013. [8] using K-Means Clustering Method and monthly precipitation data 
from ECMWF-SEAS5 and CPC for the period 1993-2016 found eight homoge-
neous regions. In addition to general studies across South America, specific re-
search focusing on particular regions has also been conducted. For instance, [9] 
utilized clustering analyses to investigate the distributions of anomalies of sea 
surface temperature (SST) and moisture sources in the South Atlantic Ocean 
during extreme dry events in southeastern Brazil throughout the austral autumn, 
winter, and spring. This targeted approach allows for a deeper understanding of 
the factors influencing such extreme events in the specified region, shedding 
light on the complex interactions between SST and moisture source patterns 
during these critical periods. The methodology of Cluster Analysis has also been 
employed at a regional scale in South America in numerous studies, primarily 
oriented towards the demarcation of homogeneous zones with respect to rainfall 
and temperature patterns [10] [11] [12]. Notably, investigations have extended 
to the utilization of such data in the context of grain production [13]. The versa-
tility inherent to Cluster Analysis methodology has facilitated its application in 
diverse contexts. Notably, it has been employed for the temporal characteriza-
tion of temperature variability [14], as well as for the delineation of large-scale 
meteorological patterns within the South American region [15]. 

But these studies used only one preview choiced method. A comparison be-
tween methods was performed from few studies for other regions. [1] highlight 
the importance of the intercomparison of different clustering techniques using 
geophysical data in comparison with synthetic data. The knowledge of the me-
thod skill it is only possible with the application on real data. [16] compared 
four hierarquical methods using tropical rainfall stations, showing that there is 
no significant difference between methods performance. [1] found that nonhie-
rarquical methods outperformed hierarquical for central-eastern North Ameri-
ca. [3] found that K-Means clustering method produced stable cluster bounda-
ries compared to other methods for Ethiopia precipitation. [17] regionalize an-
nual precipitation for Iran using K-Means and Self Organizing Maps methods 
and show that K-means has better performance (using Silhouette Coefficient, 
Dunn index and Davis Bouldin index). [18] found that K-Means presents better 
results (using Calinski-Harabasz and Davies-Bouldin measures) than Ward and 
Self Organizing Maps methods for clustering precipitation over southeastern 
Brazil. 

Regarding the entire South America continent there was no founded studies 
using Self Organizing Maps (SOM) for clustering regionalization. Furthermore, 
there are no studies comparing different methodologies for clustering regionali-
zation in climatology. Facing this lack of investigation, the objective of this study 
is to perform a review of different methodologies for clustering (Ward, K-means 
and SOM) and the metrics for its evaluation (Silhouette value, Calinski-Harabasz 
index, Davies-Bouldin Index, Elbow Method and Modified Elbow Method). This 
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study also presents a comparison between different reanalysis temperature (ERA5, 
ERA5-Land and CRU) and precipitation data (ERA5, ERA5-Land and CPC). An 
application of cluster methods and the metrics for its evaluation for precipitation 
and temperature were performed over South America only for ERA5-Land data 
to create spatial homogeneous groups of these climate variables.  

2. Clustering Methods 

According to [19], clusters are regions in the attribute space that contain a high 
density of patterns and are separated from each other by regions of low density. 
The central idea of clustering methods is to divide a data set into groups (clus-
ters) such that similar elements are found into each group at the same time these 
elements show a distinct behavior concerning elements found into other groups. 
The literature on cluster analysis is very extensive, and its applications span from 
signal processing to psychology, archaeology, and linguistics [20]. 

We can express a clustering method as function g: I→G, where I X⊆  is a set 
of m observed examples/objects [ ]1, , nx xx =   defined on the attribute space 
X, and { }1, , cG GG =   is a partition of I into c subsets. It is of utmost impor-
tance to emphasize that there is no prior knowledge about the labels of the ex-
amples contained in I. According to a general overview presented by [21], clus-
tering methods can be categorized into: hierarchical methods, based on cost func-
tion optimization (non-hierarchical), and others, including neural network-based 
methods. In the following sections are discussed remarkable clustering methods 
according these categories. 

2.1. Hierarchical Methods 

Hierarchical methods are commonly used to synthesize the organizational struc-
ture of how the elements are related to each other. A representation based on a 
dendrogram, exemplified in Figure 1, supports the mentioned structure under-
standing. A dendrogram is a diagram that shows the hierarchical relationship 
between objects, with its main use is to work out the best way to allocate objects 
to clusters [2]. Through dissimilarity values, the existence of subdivisions be-
comes evident with respect to a given threshold τi. These subdivisions naturally 
determine the configuration of the clusters. In the dendrogram in Figure 1, the 
height of the dendrogram indicates the order in which the clusters were joined. 
In Figure 1, we can see that x4 and x5 are most similar, as the height of the link 
that joins them together is the smallest. The next two most similar objects are x3 
and x6. 

The different algorithms proposed in the literature lead to the construction of 
a hierarchical relationship among the data. Agglomerative hierarchical approaches 
derive this relationship through consecutive clustering steps on the dataset until 
a single cluster is obtained at the end. Conversely, a divisive hierarchical algo-
rithm starts with a single cluster composed of all the data involved in the problem 
and undergoes successive subdivisions until clusters composed of a single exam-
ple are obtained. 
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Figure 1. Example of dendrogram. The hierarchical structure depicted in terms of dissi-
milarity shows how the data is clustered. 

 
Conveniently and in a generic way, we denote by ( ),i kd x x  the dissimilarity 

between the objects ix  and kx , where :d ∗
+× →   . According to this 

measure, ( ),i kd x x →∞  indicates a higher dissimilarity between input pat-
terns, and conversely, greater similarity is observed as ( ), 0i kd x x → . Further-
more, we can denote ( ),jD G G



 as the observed dissimilarity between clusters 

jG  and G


. 
Based on the above-presented concepts of dissimilarity, the hierarchical me-

thod of Ward clusters the data ensuring the minimum internal variability within 
the clusters by adopting the dissimilarity measure defined in Equation (1). Ac-
cording to this measure, the dissimilarity between G



 and a given cluster, re-
sulting from grouping jG  and kG , is recursively computed. Initially, each 
element in the dataset defines a cluster and, in this case, the dissimilarity  
( ) ( ), ,i j i jD G G d= x x  stands for the Euclidean distance between ix  and jx . 
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2.2. K-Means 

Clustering methods based on “function optimization” persist in defining a parti-
tion for the dataset such that the internal variability of the clusters is minimized 
while the separation between clusters is maximized. The K-Means algorithm is 
an extensively known algorithm that is based on such concept [22]. Aiming to 
achieve the objective of partition a given dataset I into k clusters, the following 
objective function should be minimized: 

1

2

, 1, , 1

1min
i j

k

i jj k j x
x

mµ
µ

= = ∈

−∑ ∑
 

                     (2) 

Two main and straightforward steps characterize this algorithm: 1) assigning 
elements to clusters based on the smallest dissimilarity, expressed in terms of 
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Euclidean distance, between a given pattern and the mean vector of the cluster, 
represented by the cluster’s centroids jµ , 1, ,j k=  ; 2) update the centroid vec-
tor that represents each cluster according to the average vector computed through 
the elements assigned in the previous step. 

These two described steps are performed iteratively until convergence is reached. 
Commonly adopted convergence criteria include the absence of changes in ele-
ment assignments between clusters and/or no alteration in the internal variabil-
ity of the clusters. 

2.3. Self-Organizing Maps 

Self-Organizing Maps (SOM) comprises a neural network-based model for data 
clustering. In this model, neurons are represented by topologically organized 
maps where the location/coordinate of these neurons expresses a specific feature 
of the input data [23]. 

Conveniently, a map of neurons is represented by a matrix M  of size 

1 2L L n× × , where L1 and L2 defines the neuron map dimensions and n stands for 
the dimension of the attribute space  . For a given neuron inserted in this 
map, at coordinates (u, v), it is denoted by [ ]1, ,uv uv uvnw w w=   as the asso-
ciated weight vector. Thus, for a given object [ ]1, , nx x= x , it is possible to as-
sess its similarity to each neuron in the network and make adjustments to their 
respective associated weights when necessary. This relationship is summarized 
in Figure 2, where the attributes of an object are compared to each neuron in 
this network through a weight associated with the neuron. 

During the execution of such a neural network, three main processes are in-
volved: competition, cooperation, and adaptation. The competitive process con-
sists of determining the neuron in the network that has the minimum dissimi-
larity to the presented object. The neuron selection according to the minimum 
object-neuron dissimilarity is expressed by: 

 

 
Figure 2. The SOM architecture. Each input data is compared to each neuron according 
the respective components and weights. 
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[ ]
1
2

1, ,
1, ,

arg min i ju L
v L

uv x µ
=
=

= −




                      (3) 

Once the neuron at coordinates (u, v) demonstrates the highest similarity (i.e., 
lowest dissimilarity) to the pattern x, corrections must be made to all other neu-
rons in the network based on the configuration of the identified neuron and the 
presented pattern. Such corrections are conducted to benefit the neurons located 
in the neighborhood of (u, v), thus characterizing a cooperative process. 

For this purpose, “topological neighborhood functions” are used. Among diff-  

erent proposals in the literature, the Gaussian function ( )
2

22, ; eV σσ
−

−
=

a b

a b  is  

widely used for this purpose, where 2, ∈a b  represent a spatial coordinate 
pair, and σ ∗

+∈  controls the range of the neighborhood. 
Lastly, the adaptive process is responsible for adjusting the weights of the 

neurons as patterns are presented to the neural network. Assuming that the 
neuron at coordinates (u, v) was identified during the competitive process, and 
( ) 1 2,i j L L∈ ×  represents the coordinates of the neurons in M , the adaptive 
process is defined as: 

( ) ( )( ) ( ), , ,: ,ij ij ijV u v i jη σ+ ⋅ −=w w x w               (4) 

where η +∈  represents a learning rate. 
In general, the training process is iteratively executed until convergence is 

achieved in the weight adjustment process. Once convergence is detected, the 
final configuration of the neurons, with their adjusted weights, provides a flat 
representation of the analyzed object features and, consequently, allows groups 
the data assigned to specific regions of the neuron map. 

3. Cluster Evaluation and Number of Clusters 

The cluster evaluation can be performed using some index that allows the com-
parison between the methods for different number of groups. Silhouette Value 
[24], Calinski-Harabasz [25] and Davies-Bouldin [26] are some of these methods 
for clustering assessment. For Silhouette Values (SL) each cluster is represented 
by a silhouette, and is a comparison of its tightness and separation (how similar 
an element is to other in the same cluster, compared to points of other clusters) 
[24]. The Silhouette values are calculated by: 

( )
,

1 ik
i

i k

d
SL k

δ −

= −                           (5) 

where ikd  is the average intra-cluster distance between station i and all other 
stations associated with medoid k and ,i kδ −  is the smallest average distance 
between station i and all other stations associated with a medoid different from 
k. The values of ( )iSL k  are in interval [ ]1,1− , and ( ) 1is k ≈  indicates better 
results (intra-cluster distance is much smaller than the inter-cluster distance). 

Calinski-Harabasz index (CH) also called as Variance Ratio Criterion is cal-
culated by: 
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1
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−
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−
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where: 

2

1

k

B i i
i

SS n m m
=

= −∑                        (7) 

is the overall between-cluster variance. And the overall within-cluster variance 
is: 

2

1 i

k

w i
i x c

SS x m
= ∈

= −∑∑                        (8) 

with in  being the number of observations in cluster i, im  the centroid of 
cluster i, m the overall mean of the sample data, x a data point, ic  the ith clus-
ter, k the number of clusters, and N the number of observations. The values of 
CHk are in interval [ )0,∞ , and highest CHk indicates better data partition, large 
between-cluster variance SSB and a small within-cluster variance SSw [25]. 

The Davies-Bouldin criterion (DB) is based on a ratio of within-cluster and 
between-cluster distances, defined by: 

{ },
1

1 max
k

j i i j
i

DB D
k ≠

=

= ∑                      (9) 

where ,i jD  is the within-to-between cluster distance ratio for the ith and jth 
clusters. The values of DB are in interval [ )0,∞ , and lowest DB indicates op-
timal clustering solution [26]. 

The choice of the number of clusters is a key point on cluster analysis and al-
though all analysis performed on methods been objectives, the determination of 
the number of groups presents some subjectivity [2] [3]. 

For hierarquical clustering methods, the choice of k can be performed with a 
traditional subjective approach inspecting the plot of the distances between 
merged clusters as a function of the stage of the analysis. The stage where the 
difference between the distances is bigger (a big jump between points occurs) 
indicates that these elements are not so closed, and the process can be stopped 
just before these distances become large [2]. 

Another approach to determine the number of clusters is by utilizing objective 
methods. The evaluation techniques introduced for assessing cluster methods 
can also be applied to make the selection of “k” (as presented in Table 1). 

Elbow Method can also be used to the choice of the number of clusters for 
nonhierarquical methods. It consists in a graph analysis of within-cluster sum of  
 
Table 1. Objective methods to choose the number of cluster and evaluation. 

METHOD ABBREVIATION 
INTERVAL 

VALUES 
BEST VALUES 
FOR k CHOICE 

REFERENCE 

Silhouette SL values [−1, 1] Higher values [24] 

Calinski-Harabasz CH index [0, ∞) Higher values [25] 

Davies-Bouldin DB index [0, ∞) Lowest values [26] 
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square errors (WSS) for different k values (searching for an elbow), defined by 
[3]: 

( )2k

g j
j g j

WSS t t
∈

= −∑∑                       (10) 

where WSS is the sum of the squared errors between the time series in each grid 
cell g (tg) in cluster j ( g j∈ ) and the average time series in cluster j ( jt  is the 
centroid) and then summed over all k clusters. 

Although, Elbow method may be problematic mainly when there are a large 
number of elements to be clustered in a small number of groups (graph is 
smoothed and an elbow is not clear), as the case of a large number of grid points 
to found climate patterns [3]. In this sense, [3] proposed the analysis of a mod-
ified Elbow Method based on the analysis of the differences between ( )1kWSS −  
and ( )kWSS , that present more apparent elbow in these cases. 

4. Cluster Analysis Application South America 

We utilized three distinct sources of monthly reanalysis data for precipitation 
and temperature: ERA5 [27] and ERA5-Land [28] for both temperature and pre-
cipitation, CRU [29] exclusively for temperature, and CPC [30] solely for preci-
pitation. Detailed descriptions of each data source are in Table 2. To facilitate 
intercomparison, all the data were interpolated onto a common grid with a res-
olution of 0.5˚ × 0.5˚. 

The seasonal temperature patterns in South America are well captured by 
the three reanalyses. ERA5 generally exhibits higher temperatures compared to 
ERA5-Land across most of South America, except for specific areas like nor-
theastern Argentina, central Brazil, and the far north of the continent. These 
differences are generally within 2˚C (both positive and negative). Similarly, 
when comparing CRU with ERA5 and ERA5-Land, they display similar temper-
ature patterns. CRU tends to be warmer in the majority of the continent, except  
 
Table 2. Reanalysis data used to comparison for temperature and precipitation for South 
America. 

DATA 
ESPACIAL 

RESOLUTION 
CENTER REFERENCE 

ERA5 
(precipitation and 

temperature) 
0.25˚ × 0.25˚ 

European Center for  
Medium-Range Weather Forecast 

(ECMWF) 
[27] 

ERA5 – Land  
(precipitation and 

temperature) 
0.1˚ × 0.1˚ 

European Center for  
Medium-Range Weather Forecast 

(ECMWF) 
[28] 

CRU 
(temperature) 

0.5˚ × 0.5˚ 
National Center for Atmospheric 

Research (NCAR) 
[29] 

CPC 
(precipitation) 

0.5˚ × 0.5˚ 
National Oceanic and Atmospheric 

Administration (NOAA) 
[30] 
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for regions like Southern Argentina and the Andes. In winter, ERA5 and ERA5- 
Land appear warmer in the center and northeast of Brazil, with differences 
usually within 4˚C (both positive and negative). 

Concerning precipitation patterns, the three reanalyses provide a reliable re-
presentation, reflecting the seasonality that is largely influenced by atmospheric 
systems in the region and the impact of sea surface temperature anomalies in the 
Atlantic and Pacific Oceans [7]. Both ERA5 and ERA5-Land exhibit a compara-
ble precipitation pattern, with only minor punctual discrepancies possibly attri-
buted to spatial resolution and differences in surface representation between the 
two datasets. On the other hand, when comparing CPC with ERA5 and ERA5- 
Land, substantial differences arise for some regions (up to 100 mm/month), par-
ticularly accentuated during the summer and in the northern part of the conti-
nent. 

Given the superior representation of ERA5-Land (regridded) over the conti-
nent, it was chosen for conducting the cluster analysis in South America. A 
summary of all the steps involved in the cluster analysis and evaluation is de-
picted in Figure 3. Notably, as there is a high number of grid points (6148), 
dendrograms for hierarchical methods will not be presented. 

5. Results 

Within this section, we present the outcomes acquired through the methodolo-
gies delineated earlier, and proceed to analyze the diverse models thus identified. 

5.1. Temperature Clustering Over South America 

Figure 4 depicts the Cluster analysis applied to temperature patterns across the 
South American region. This analysis incorporates the employment of SL Val-
ues, CH Index, and DB Index, encompassing clustering scenarios ranging from k 
= 1 to 50. The dashed lines within the figure represent the methodological aver-
ages of Ward (depicted in blue), K-means (represented in red), and SOM (illu-
strated in green). It is noteworthy that the most favorable outcomes are observed 
in the case of K-means clustering, wherein higher SL values and CH index aver-
ages are evident, coupled with the attainment of the lowest DB index average. 

 

 
Figure 3. Summary of all steps for cluster analysis and evaluation. 
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Figure 4. Clustering assessment for temperature over South America based on (a) Silhouette Value; (b) CH Index and (c) DB 
Index and number of clusters. 

 
The application of these metrics also lends itself to the determination of the 

optimal cluster count. In the case of the Ward Method, an optimal selection for 
the number of temperature clusters emerges at k = 10. At this point, the SL val-
ues and CH index ascend to their zenith prior to encountering a decline (occur-
ring at k = 11), concomitantly with a decline in the DB index, which attains its 
nadir. Meanwhile, in the context of K-means clustering, an appropriate choice 
for the number of temperature clusters is discerned at k = 8. Here, the SL values 
and CH index exhibit a peak before undergoing a precipitous descent (com-
mencing at k = 9), while the DB index experiences a descent followed by an as-
cent (at k = 9). Conversely, in the case of SOM, the metrics do not converge on a 
unanimous optimal value for k. Specifically, the SL values indicate k = 8, the CH 
index suggests k = 10 (with both metrics showcasing an ascending pattern before 
declining at this point), and the DB index demonstrates its lowest value at k = 7. 
In light of these considerations, a prudent selection could be made at k = 8. 

Regarding the non-hierarchical K-means method, supplementary approaches 
such as the Elbow Method and the Changed Elbow method can be employed. 
Nevertheless, discerning the optimal number of clusters remains a formidable 
task within this framework. Figure 5 elucidates an inflection point observable at 
k = 5 and k = 6. However, given the dimension of the South American region, 
these cluster counts prove to be relatively modest, inadequately addressing the 
multifaceted nature of temperature variations across the region. Emphasizing 
the imperative consideration that the mathematical outcome must align with  
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Figure 5. Metrics to the choice of the number of clusters for temperature over South America with K-Means method (a) Tradi-
tional Elbow method (WSS) and (b) Changed Elbow Method ( ( ) ( )1k kWSS WSS− − ). 

 
physical significance, it is crucial to underscore that the determination of the 
cluster count, even when facilitated by metrics, entails a degree of subjectivity. 

Considering the best choice for each method spatial maps were made to verify 
the temperature spatial distribution of the groups (Figure 6). It can be observed 
that the methods yield models characterized by relatively distinct group distri-
butions, a result that aligns with anticipated expectations. However, certain 
clusters exhibit a degree of proximity across all three methods. Noteworthy ex-
amples include the clusters encompassing the Amazon basin and a portion of 
northeastern Brazil. Another instance pertains to the northern coastal region of 
Argentina, extending inland to approximate proximity with the Chilean border 
and southward until nearly reaching a latitude of −45˚. Furthermore, the Chi-
lean coastline demonstrates a congruent cluster distribution across all three cas-
es. Regrettably, no extant studies pertaining to temperature clustering analysis 
have been identified that could serve as comparative benchmarks against the 
findings delineated within this article. 

5.2. Precipitation Clustering Over South America 

The evaluation of clustering with regard to precipitation patterns across the 
South American expanse is depicted in Figure 7, leveraging the utilization of SL 
Values, CH Index, and DB Index for cluster counts spanning from k = 1 to 50. 
The dashed lines within the figure correspond to methodological averages asso-
ciated with Ward (represented in blue), K-means (illustrated in red), and SOM 
(depicted in green). The most promising outcomes manifest within the domain  
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Figure 6. Spatial results for cluster analysis over South America for temperature using (a) Ward (k = 10); (b) K-means (k = 8); (c) 
SOM (k = 8) methods. Where k is the number of groups. 

 

 
Figure 7. Clustering assessment for precipitation over South America based on (a) Silhouette Value; (b) CH Index and (c) DB 
Index and number of clusters. 

 
of K-means clustering, as evident from the utilization of SL values and CH in-
dex, wherein elevated average values are attained. Conversely, the DB index re-
veals that SOM offers the most favorable performance, substantiated by the ob-
servation of lower average values, signifying enhanced effectiveness. 
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These metrics also serve a pivotal role in guiding the determination of an op-
timal cluster count. Within the framework of the Ward Method, an apt selection 
for the number of precipitation clusters emerges at k = 11, where both SL values 
and the CH index culminate in their peak values before undergoing a decline 
(manifesting at k = 12), concomitant with the DB index exhibiting a decline and 
attaining its nadir. In the context of K-means clustering, a judicious choice for 
the number of precipitation clusters is discerned at k = 12 for SL values and k = 
11 for the CH index. In both cases, these values are characterized by an ascent to 
higher values prior to a subsequent decline. Furthermore, the DB index indicates 
an optimal selection at k = 12, corresponding to its lowest value. When consi-
dering SOM, congruence between SL values and DB index is observed at k = 12, 
while the CH index advocates for k = 14 as an optimal choice. Taking these fac-
tors into account, a judicious selection could indeed be made at k = 12. 

In the context of the non-hierarchical K-means method, additional approach-
es such as the Elbow Method and the Changed Elbow method can be employed. 
However, in this instance, the task of determining the optimal cluster count is 
notably intricate due to the absence of a distinctly discernible inflection point 
(Figure 8). 

The determination of the most suitable option for each methodology prompted 
the creation of spatial maps aimed at scrutinizing the geographical distribution 
of precipitation within the identified groups. Evidently, within the SOM frame-
work, a pronounced large-scale cluster emerges (Figure 9(c)), accompanied by 
several smaller clusters located in the northern expanse of the continent. In the  
 

 
Figure 8. Metrics to the choice of the number of clusters for precipitation over South America with K-Means method (a) Tradi-
tional Elbow method (WSS) and (b) Changed Elbow Method ( ( ) ( )1k kWSS WSS− − ). 

https://doi.org/10.4236/ijg.2023.149047


L. A. Pampuch et al. 
 

 

DOI: 10.4236/ijg.2023.149047 891 International Journal of Geosciences 
 

 
Figure 9. Spatial results for cluster analysis over South America for precipitation using (a) Ward (k = 11); (b) K-means (k = 12); 
(c) SOM (k = 12) methods. Where k is the number of groups. 

 
context of the Ward method (Figure 9(a)) and K-means approach (Figure 
9(b)), disparities surface, primarily attributable to the variation in the number of 
clusters within the southwestern, northern, and northeastern sectors of the con-
tinent. Subsequent to attaining the optimum outcomes as deduced by the K-means 
approach, a thorough examination of the spatial distribution of precipitation 
patterns across South America was conducted. In light of the indices signifying 
the efficacy of K-means and SOM, it becomes evident that the spatial distribu-
tion evinced by the latter does not align with physical reality. Conversely, with 
regard to precipitation patterns, a notable inclination is observed in favor of the 
K-means methodology. Upon juxtaposing the findings of K-means (k = 12) with 
the study conducted by [8], which also employed the K-means technique albeit 
with a distinct dataset (k = 8), semblances in the distribution patterns across 
certain regions become apparent despite disparities in the number of clusters, an 
aspect that contributes to segmenting the groups. The salient distinctions stem 
from the omission of data pertaining to the western geographic sector of the 
continent. 

6. Conclusions 

The analysis of clustering holds a pivotal role in climatic studies, facilitating the 
discernment of intricate structures within climatological datasets. A notable ob-
servation pertains to the scarcity of comparative endeavors across distinct me-
thodologies within the context of South America’s climatic investigation. Ad-
dressing this gap, this study has introduced three distinct clustering methodolo-
gies—Ward, K-means, and Self-Organizing Maps (SOM)—while elucidating the 
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processes encompassing method assessment, selection, and cluster count deter-
mination. 

Silhouette Value, CH Index, and DB Index have emerged as indispensable 
tools for cluster validation and the judicious determination of cluster counts. It 
is imperative to acknowledge that conventional approaches, such as the Elbow 
Method and the Changed Elbow Method employed within non-hierarchical 
frameworks for cluster count selection, yield challenges that compound the deci-
sion-making process. 

In relation to temperature patterns, K-means has showcased superior perfor-
mance, leading to the formation of 8 distinct clusters across the South American 
expanse. Conversely, for precipitation, the most favorable outcomes have been 
achieved through K-means clustering, resulting in the identification of 12 dis-
tinct clusters across the same region. Consequently, K-means emerges as a ro-
bust method for the climatic regionalization of both temperature and precipita-
tion patterns across the South American landscape. 

In conclusion, this study not only serves as a valuable reference for the explo-
ration of climatic clustering methodologies but also lays the foundation for fu-
ture investigations focused on the continent’s climatic intricacies. 
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