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Abstract 
Cone penetration testing (CPT) is a cost effective and popular tool for geo-
technical site characterization. CPT consists of pushing at a constant rate an 
electronic penetrometer into penetrable soils and recording cone bearing (qc), 
sleeve friction (fc) and dynamic pore pressure (u) with depth. The measured 
qc, fs and u values are utilized to estimate soil type and associated soil proper-
ties. A popular method to estimate soil type from CPT measurements is the 
Soil Behavior Type (SBT) chart. The SBT plots cone resistance vs friction ra-
tio, Rf [where: Rf = (fs/qc)100%]. There are distortions in the CPT measure-
ments which can result in erroneous SBT plots. Cone bearing measurements 
at a specific depth are blurred or averaged due to qc values being strongly in-
fluenced by soils within 10 to 30 cone diameters from the cone tip. The 
qcHMM algorithm was developed to address the qc blurring/averaging limita-
tion. This paper describes the distortions which occur when obtaining sleeve 
friction measurements which can in association with qc blurring result in sig-
nificant errors in the calculated Rf values. This paper outlines a novel and 
highly effective algorithm for obtaining accurate sleeve friction and friction 
ratio estimates. The fc optimal filter estimation technique is referred to as the 
OSFE-IFM algorithm. The mathematical details of the OSFE-IFM algorithm 
are outlined in this paper along with the results from a challenging test bed 
simulation. The test bed simulation demonstrates that the OSFE-IFM algo-
rithm derives accurate estimates of sleeve friction from measured values. Op-
timal estimates of cone bearing and sleeve friction result in accurate Rf values 
and subsequent accurate estimates of soil behavior type.  
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Forward Modelling (IFM), Soil Behavior Type (SBT) 

 

1. Introduction 

Cone penetration testing (CPT) is a widely used and extensively researched geo-
technical engineering in-situ test [1] [2] [3] [4] [5] for mapping soil profiles and 
assessing soil properties. CPT has significantly replaced the traditional methods 
of geotechnical site investigations such as sampling and drilling due to it being 
economical, repeatable, and relatively fast. The cone penetrometer has electronic 
sensors to measure penetration resistance at the tip and friction in the shaft 
(friction sleeve) during penetration. A CPT probe equipped with a pore-water 
pressure sensor is called a piezo-cone (CPTU cones). Figure 1 [6] illustrates the 
dimensions of the most commonly utilized penetrometers. Figure 2 [7] outlines 
the equations for obtaining sleeve friction and tip resistance where corrections 
are made for measured pore water pressures and differences in area (e.g., tip net 
area ratio and end area sleeve). 

One of the main applications of CPT is the identification of soil type and the 
determination of soil stratigraphy. This soil classification facilitates grouping 
soils according to their engineering behavior (i.e., Soil Behavior Type (SBT)) and 
is conventionally carried out in the laboratory where borehole samples are ana-
lyzed and classified. CPT soil classification is made by empirically relating 
measured qc, fs and u values to type of soil in SBT charts. A number of classifica-
tion methods have been utilized to predict soil type from either CPT or/both  
 

 

Figure 1. Standard 10 cm2 and 15 cm2 penetrometers [6]. 
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Figure 2. Determination of total cone resistance and total sleeve friction [7]. 
 
CPTu data. A very popular SBT chart was generated by Robertson et al. [2]. Ro-
bertson et al. [2] SBT chart is based on qt and friction ratio, Rf [where: Rf = 
(fs/qc)100%]. The SBT chart developed by Robertson et al. [2] identifies 12 soil 
types and is illustrated in Figure 3. For accurate CPT/CPTU soil classifications it 
is of paramount importance that cone bearing measurements of qc and fs with 
minimal distortions and added measurement errors are obtained. Unfortunately, 
both cone bearing and sleeve friction measurements obtain smoothed/averaged 
estimates of the true values.  

The focus of the work outlined in this paper was to develop an optimal esti-
mation algorithm for obtaining accurate sleeve friction and friction ratio esti-
mates. Accurate cone bearing, sleeve friction and friction ratio estimates are of 
paramount importance when estimating soil behavior type from CPT date. The 
fc optimal filter estimation technique (so-called OSFE-IFM algorithm) is subse-
quently outlined along with a very challenging test bed simulation. For com-
pleteness the qcHMM algorithm is also subsequently summarized.  

2. Mathematical Background 
2.1. Cone Penetration Testing Cone Bearing Sleeve Friction Model 

As previously outlined, CPT soil classifications are carried out by utilizing SBT 
charts where measured qc and fs values are empirically related to type of soil. The 
popular SBT chart developed by Robertson et al. [2] is based on qt and friction 
ratio, Rf. Measured cone bearing and sleeve values are blurred/averaged. It is re-
quired to apply optimal estimation algorithms so that the effect of blurring/av- 
eraging is minimized. 
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Figure 3. SBT chart by Robertson et al. [2] based on CPT cone resistance, qt, and friction 
ratio, Rf (where Rf = (fs/qc)100%). 

2.2. Cone Bearing Model 

The cone tip resistance measured at a particular depth is affected by the values 
above and below the depth of interest which results in an averaging or blurring 
of the true values (qv) values [8] [9] [10] [11]. This phenomenon is especially of 
concern when mapping thin soil layers which is critical for liquefaction assess-
ment. Mathematically the measured cone tip resistance qc is described as [9] [10] 
[11]. 

( ) ( ) ( ) ( )
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dC

c c v qc
j

q d w j q j v d
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( ) , 30 c
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                 (1) 

where 
d: the cone depth  
dc: the cone tip diameter  
Δ: the qc sampling rate  
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qc(d): the measured cone penetration tip resistance 
qv(d): the true cone penetration tip resistance 
wc(d): the qv(d) averaging function 
v(d): additive noise, generally taken to be white with a Gaussian pdf 
In Equation (1) it assumed that wc averages qt over 60 cone diameters centered 

at the cone tip. Boulanger and DeJong [8] outline how to calculate wc below (af-
ter correcting the equation for w1 [9]): 
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where 
w1: accounts for the relative influence of any soil decreasing with increasing 

distance from the cone tip. 
w2: adjusts the relative influence that soils away from the cone tip will have on 

the penetration resistance based on whether those soils are stronger or weaker.  
z′ : the depth relative to the cone tip normalized by the cone diameter. 

50z′ : the normalized depth relative to the cone tip where w1 = 0.5C1. 
C1: equal to unity for points below the cone tip, and linearly reduces to a value 

of 0.5 for points located more than 4 cone diameters above the cone tip. 
mz: exponent that adjusts the variation of w1 with z′ . 

mq: exponent that adjusts the variation of w2 with ,

, 0

v z

v z

q
q

′

′=

 
  
 

.  

Boulanger and DeJong [9] provide a thorough outline and review on the set-
ting of the parameters given in Equation (2) based upon extensive research and 
modelling. In general terms, soils in front of the cone tip have a greater influence 
on penetration resistance than the soils behind the cone tip. In the subsequently 
outlined test bed simulations the parameters in Equation (2) are set identical to 
those outlined by Boulanger and DeJong. In this case, exponents mq = 2 and mz 
= 3.  

Baziw and Verbeek [9] [10] [11] developed an algorithm to optimally obtain 
true qv cone bearing estimates from blurred measurements qc. The initial algo-
rithm developed by Baziw and Verbeek [9] [10] (the so called qcHMM-IFM) 
combined a Bayesian recursive estimation (BRE) Hidden Markov Model (HMM) 
filter with Iterative Forward Modelling (IFM) parameter estimation in a smooth-
er formulation. In recent modifications and enhancements of the qcHMM [11] it 
was possible to drop the IFM portion of the algorithm. This was predominantly 
accomplished by refining the HMM filter parameters. 
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2.3. Sleeve Friction Model 

In CPT, sleeve friction is the measure of the average skin friction as the probe is 
advanced through the soil. Figure 4 outlines typical sleeve friction resistance and 
distribution generated by an algorithm (ABAQUS) which implements a Finite 
Element Model (FEM) designed for modelling large displacements such as those 
generated during CPT [12]. Figure 4(a) illustrates typical FEM sleeve friction 
resistance at the center of the sleeve. The high frequency fluctuations shown in 
Figure 4(a) are a type of measurement noise generated by the FEM algorithm 
due to the mesh size, the contact interface, and the parameter of soil and steel.  

Figure 4(b) illustrates the FEM distribution of resistance along the length of 
the sleeve. In Figure 4(b) the sleeve friction close to cone tip is nearly 0 MPa and 
gradually increases to the uniform value of 0.029 MPa at approximately 30 mm 
from the bottom of the shaft for the case ϕ = 34˚ and vo′σ  = 0.05 MPa. Susila 
and Hryciw [12] state that non-uniform sleeve friction distribution has been 
confirmed by Kiousis et al. [13]. Kiousis et al. state that there is a very thin sepa-
ration between soil and cone shaft for approximately 35 mm above the upper 
end of the cone tip.  

The sleeve friction distribution illustrated in Figure 4(b) can be thought of as 
a Sleeve Friction Weighting Function (SFWF) where various values of sleeve 
friction along the shaft (due to varying soils) are weighted to give a final meas-
ured value assumed to occur at the center of the shaft. The distribution illu-
strated in Figure 4(b) is mathematically approximated by Equation (3). Figure 5 
illustrates the implementation of Equation (3). 
 

 

Figure 4. (a) FEM typical sleeve friction of cone sleeve during penetration. (b) FEM typical 
distribution of friction resistance along the sleeve (ϕ = 34˚ and vo′σ  = 0.05 MPa) [12]. 
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Figure 5. Mathematically modelling the sleeve distribution illustrated in Figure 4(b). 
 

( )* *SFWF 1 for 30 mmz z= >                 (3a) 

( ) ( )3* * 3SFWF 30 30 for 30 mmz abs z z′= − ≤          (3b) 

where 
*z  = the distance from bottom of sleeve 

SFWF = Sleeve Friction Weighting Function 
The weighting of the true sleeve friction values by the SFWF coupled with 

blurring of the qv values can result in significant distortions in the calculated 
friction ratio Rf. Figure 6 illustrates a simulation of cone bearing, sleeve friction 
and friction ratio (it assumed that both qc and fc have been corrected for pore 
pressure). In Figure 6, the true values of qv, fv and Rfv are red traces while the 
corresponding measured values are the black traces. Table 1 outlines the cor-
responding soil behavior types (based on the SBT chart of Figure 3) for the test 
bed simulation illustrated in Figure 6. 

The sleeve friction measurements ft were generated from the true sleeve fric-
tion values fv by implementing Equation (4) outlined below.  
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Figure 6. (a) Simulated cone bearing data qt (measured—black trace) and qv (true—red trace). (b) Simulated sleeve friction data ft 
(measured—black trace) and fv fv (true—red trace). (c) Simulated cone friction ratio Rft = 100 * ft/qt (measured—black trace) and 
Rfv = 100 * fv/qv (true—red trace). 

 
Table 1. Corresponding SBTs for test bed simulation illustrated in Figure 6. 

qv [MPA] fv [MPa] Rfv [%] Soil Behavior Type 

5 0.3 6 Sand to silty sand 

18 0.63 3.5 Sand 

3 0.15 5 Sensitive fine grained 

28 0.63 0.9 Gravely sand to sand 

 

( ) ( ) ( )*
*

1SFWFL
t vjf i j f i l j

=
= × − +∑               (4) 

where 
Δ: sleeve friction sampling rate  
L: sleeve friction shaft length weaker 
L*: L/Δ 
l: l/2 
l*: l/Δ 
When implementing Equation (4), Δ is initially set to a 1 mm sampling rate. 

The simulated date sets are then obtained by extracting data from the 1 mm 
sampling rate data sets at the user specified rate. This is done so that the true 
in-situ measurement conditions are simulated.  

As is illustrated in Figure 6(c) there are significant distortions in the simu-
lated measured friction ratios based upon the measured cone bearing and sleeve 
friction values. This leads to uncertainties in soil classifications. This paper out-
lines an optimal sleeve friction estimation algorithm. The sleeve friction optimal 
estimation implemented in conjunction with the qcHMM algorithm facilitates 
obtaining accurate soil classification estimates. 
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3. OSFE-IFM Algorithm 

The fv optimal filter estimation technique is referred to as the OSFE-IFM algo-
rithm. The OSFE-IFM algorithm utilizes a posteriori information from the qcHMM 
algorithm and implements Iteration Forward Modelling (IFM).  

3.1. OSFE-IFM Algorithm Formulation 

The OSFE-HMM algorithm utilizes a posteriori information from the qcHMM 
algorithm so that the solution space is reduced. The qcHMM algorithm facilities 
quantifying the soil layering (i.e., layer interfaces). This soil layering information 
is inputted into the OSFE-HMM algorithm. Soil layering can readily be quanti-
fied based upon estimated qv values. Figure 7 illustrates Figure 6(a) where the 
soil layers (L1 to LN) are identified by blue lines and were determined from the 
output from the qcHMM algorithm (red lines). Each of these soil layers has an 
associated sleeve friction values fv1 to fvN which needs to be estimated. 

The second component of the OSFE-HMM algorithm implements Iterative 
Forward Modelling (IFM) to estimate the sleeve friction values fv1 to fvN. IFM is a 
parameter estimation technique which is based upon iteratively adjusting the 
parameters until a user specified cost function is minimized. The desired para-
meter estimates are defined as those which minimize the user specified cost 
function. The IFM technique which is utilized within the OSFE-HMM algorithm 
is the downhill simplex method (DSM) originally developed by Nelder and Mead  
 

 

Figure 7. Illustration Figure 6(a) with estimated soil layers identified by blue lines. 
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[14]. The DSM in multidimensions has the important property of not requiring 
derivatives of function evaluations and it can minimize nonlinear-functions of 
more than one independent variable. A simplex defines the most elementary 
geometric figure of a given dimension: a line in one dimension, the triangle in 
two dimensions, the tetrahedron in three, etc.; therefore, in an N-dimensional 
space, the simplex is a geometric figure that consists of N + 1 fully intercon-
nected vertices. The DSM has been used in a variety of scientific applications 
such as obtaining seismic source locations [15] and blind seismic deconvolution 
[16].  

The DSM starts at N + 1 vertices that form the initial simplex. The initial 
simplex vertices are chosen so that the simplex occupies a good portion of the 
solution space. In addition, it is also required that a scalar cost function be speci-
fied at each vertex of the simplex. The DSM searches for the minimum of the 
costs function by taking a series of steps, each time moving a point in the simp-
lex away from where the cost function is largest. The simplex moves in space by 
variously reflecting, expanding, contracting, or shrinking. The simplex size is 
continuously changed and mostly diminished, so that finally it is small enough 
to contain the minimum with the desired accuracy. 

For the OSFE-HMM algorithm, the IFM cost function to be minimized is the 
RMS difference between the measured sleeve friction values and synthetic sleeve 
friction measurements generated by implementing Equation (4) with the esti-
mated sleeve friction values fv1 to fvN used as input. As with the test bed simula-
tion, when implementing Equation (4) in OSFE-HMM algorithm, Δ is initially 
set to a 1 mm sampling rate. The synthetic sleeve friction measurements are then 
obtained by extracting data from the 1 mm sampling rate data sets at the user 
specified rate. This is done so that the true in-situ measurement conditions are 
replicated. 

3.2. OSFE-IFM Test Bed Example 

The performance of the OSFE-IFM algorithm was evaluated by processing the 
challenging test bed simulation illustrated in Figure 6. Figure 6 illustrates a 
highly variable CPT profile where it assumed that both the measured qc and fc 
have been corrected for pore pressure. In Figure 6, the true values of qv, fv and 
Rfv are red traces while the corresponding measured values are the black traces.  

Figure 8 illustrates the output from the qcHMM algorithm. In Figure 8, it is 
shown the test bed specified true qv values (red line), derived measured qt values 
(black line) and estimated vq′  values from the qcHMM algorithm (blue line). 
As is illustrated in Figure 8, the estimated vq′  values are nearly identical to the 
true qv values. 

Figure 9 illustrates the output from the OSFE-IFM algorithm after processing 
the measured ft sleeve values shown in Figure 6(b). In Figure 9, it is shown the 
test bed specified true fv values (red line), derived measured ft values (black line) 
and estimated vf ′  values from the OSFE-IFM algorithm (blue line). As is illu-
strated in Figure 9, the estimated vf ′  values are very close to the true fv values. 
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Figure 8. Specified qv values (red line), measured qt values (black line) and estimated vq′  
values obtained from implementing the qcHMM algorithm (blue line). 
 

 

Figure 9. Specified fv values (red line), measured ft values (black line) and estimated vf ′  
values obtained from implementing the OSFE-IFM algorithm (blue line). 
 

Figure 10 illustrates the friction ratio output obtained from implementation 
of the qcHMM and OSFE-IFM algorithms where fvR′  values are derived from 

vq′  and vf ′  estimates. In Figure 10 the test bed specified Rfv values, measured  
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Figure 10. Specified Rfv values (red line), measured Rft values (black line) and estimated 

fvR′  values obtained from implementing the qcHMM and OSFE-IFM algorithm (blue 

line). 
 
Rft values and estimated fvR′  values are identified by red, black and blue lines, 
respectively. As is illustrated in Figure 10, the estimated fvR′  values are very 
close to the true Rfv values. 

4. Conclusion 

The cone penetration test (CPT) records cone bearing (qc), sleeve friction (fc) 
and dynamic pore pressure (u) with depth. A popular method to estimate soil 
type from CPT qc, fc and u measurements is the Soil Behavior Type (SBT) chart. 
The SBT plots cone resistance vs friction ratio, Rf [where: Rf = (fs/qc)100%]. 
There are distortions in the CPT qc and fs measurements which can result in sig-
nificant erroneous SBT plots. The qcHMM algorithm was developed to address 
the qc blurring/averaging. The sleeve friction measurements are also averaged 
along the cone sleeve shaft. This paper has outlined an algorithm (so called 
OSFE-HMM algorithm) which utilizes a posteriori information from the cone 
bearing qcHMM estimation algorithm (i.e., soil layering interfaces) and imple-
ments iteration forward modelling for obtaining optimal estimates of sleeve fric-
tion values. A challenging test bed simulation outlined in this paper has clearly 
shown that the OSFE-HMM algorithm can be implemented so that optimal 
sleeve friction estimates are obtained from measured values. Implementation of 
the qcHMM and OSFE-IFM algorithms facilitates obtaining optimal friction ra-
tio estimates. Accurate estimates of qc, fc and Rf are paramount for identifying 
soil behavior types from CPT data.  
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