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Abstract 
Cone penetration testing (CPT) is a widely used geotechnical engineering 
in-situ test for mapping soil profiles and assessing soil properties. In CPT, a 
cone on the end of a series of rods is pushed into the ground at a constant 
rate and resistance to the cone tip is measured (qm). The qm values are utilized 
to characterize the soil profile. Unfortunately, the measured cone tip resis-
tance is blurred and/or averaged which can result in the distortion of the soil 
profile characterization and the inability to identify thin layers. This paper 
outlines a novel and highly effective algorithm for obtaining cone bearing es-
timates qt from averaged or smoothed qm measurements. This qt optimal filter 
estimation technique is referred to as the qtHMM-IFM algorithm and it im-
plements a hybrid hidden Markov model and iterative forward modelling 
technique. The mathematical details of the qtHMM-IFM algorithm are out-
lined in this paper along with the results from challenging test bed. The test bed 
simulations have demonstrated that the qtHMM-IFM algorithm can derive 
accurate qt values from challenging averaged qm profiles. This allows for 
greater soil resolution and the identification and quantification of thin layers 
in a soil profile.  
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1. Introduction 

Cone Penetration Test (CPT) [1] [2] [3] [4] is extensively used in geotechnical 
engineering to determine the in-situ subsurface stratigraphy and to estimate 
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geotechnical parameters of the soils present. Geotechnical engineers use CPT to 
characterize and quantify soil properties and groundwater conditions so that the 
infrastructure (e.g., bridges, roads, buildings) construction requirements can be 
determined. In CPT a cone penetration test rig pushes the steel cone vertically 
into the ground at a standard rate and data are recorded at regular intervals 
during penetration. The cone penetrometer has electronic sensors to measure 
penetration resistance at the tip (qm) and friction in the shaft (friction sleeve) 
during penetration. A CPT probe equipped with a pore-water pressure sensor is 
called a piezo-cones (CPTU cones). CPT penetrometers with other sensors such 
as a seismic sensor are also used for in-situ site characterization. Figure 1 illu-
strates a schematic and the associated terminology of a cone penetrometer. 

For piezo-cones with the filter element right behind the cone tip (i.e., the u2 
position), it is standard practice to correct the recorded tip resistance for the 
impact of the pore pressure on the back of the cone tip. This corrected cone tip 
resistance is normally referred to as qt, but in this paper, we focus on an addi-
tional correction that should be made to address the averaging that takes place 
when performing CPT to obtain the actual cone tip resistance values. 

Boulanger and DeJong [5] outlined the distortions which occur when obtain-
ing qm measurements and proposed an “inverse” algorithm where the results of 
the distortion could be optimally removed. In their work Boulanger and DeJong 
incorrectly described the distortions as a convolution operation (Equations (1), 
(2), (10), (12), (13), and (15)). In fact, the tip-bearing distortions are an averag-
ing process [2] [5] where cone tip values measured at a particular depth are af-
fected by values above and below the depth of interest. This averaging or 
smoothing results in the inability to identify thin layers which is critical for li-
quefaction assessment and the reduction in soil layer resolution. The averag-
ing/smoothing effect is subsequently described along with a proposed algorithm 
which combines the Bayesian recursive estimation Hidden Markov Model 
(HMM) filter with Iterative Forward Modelling (IFM) parameter estimation in a 
smoother formulation for optimal estimation of true qt cone bearing values. 
 

 
Figure 1. Schematic and terminology for cone penetrometer ([1]). 
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2. Mathematical Background 
2.1. Cone Penetration Testing Model 

When performing CPT the layers above and below the cone tip affect the meas-
ured tip resistance as illustrated in Figure 2. 

The measured cone penetration tip resistance qm can then be described as 

( ) ( ) ( ) ( )

( )
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where 
d: the cone depth; 
dc: the cone tip diameter;  
Δ: the qt sampling rate;  
qm(d): the measured cone penetration tip resistance; 
qt(d): the true cone penetration tip resistance; 
wc(d): the qt(d) averaging function; 
v(d): additive noise, generally taken to be white with a Gaussian pdf. 
In Equation (1) it is assumed that wc averages qt over 60 cone diameters cen-

tered at the cone tip. Boulanger and DeJong [5] outline how to calculate wc using 
the equations shown below (after correcting the equation for w1).  

The cone penetration averaging function wc for varying , , 0t z t zq q′ ′=  ratios is 
illustrated in Figure 3. As outlined out by Boulanger and DeJong [5], wc is high-
ly nonlinear and depth variant. This proves to be a significant challenge in ob-
taining the optimal estimates of qt but this can be addressed by applying a BRE 
filter which incorporates smoothing. 
 

 

Figure 2. Schematic of thin layer effect for a sand layer embedded in a clay layer [5]. 
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Figure 3. Normalized cone penetration filter versus normalized depth from the cone tip 
( , , 0 0.01,0.10,10t z t zq q′ ′= =  and 100) [5]. 
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2.2. Bayesian Recursive Estimation 

Bayesian Recursive Estimation (BRE) is a filtering technique based on state-space, 
time-domain formulations of physical problems [6] [7]. Application of this filter 
type requires that the dynamics of the system and measurement model, which 
relates the noisy measurements to the system state equations, be describable in a 
mathematical representation and probabilistic form that uniquely define the 
system behaviour. The potentially nonlinear discrete stochastic equation de-
scribing the system dynamics is defined as follows: 

( ) ( )1 1 1 1, |k k k k k kx f x u p x x− − − −= ↔                (3) 

In Equation (3), the vector fk is a function of the state vector xk and the 
process or system noise uk. It is assumed that Equation (3) describes a Markov 
process of order one. The sampled potentially nonlinear measurement equation 
is given as 
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( ) ( ), |k k k k k kz h x v p z x= ↔                    (4) 

In Equation (4), hk depends upon the index k, the state xk, and the measure-
ment noise vk at each sampling time. The probabilistic state-space formulation 
described by Equation (3) and the requirement for updating the state vector es-
timate based upon the newly available measurements described by Equation (4) 
are ideally suited for the Bayesian approach to derive the optimal estimation. In 
this approach it is attempted to construct the posterior estimate of the state giv-
en all available measurements. In general terms, it is desired to obtain estimates 
of the discretized system equation states xk, based on all available measurements 
up to time k (denoted as z1:k) by constructing the posterior p(xk|z1:k). The post-
erior Probability Density Function (PDF) then allows the calculation of the con-
ditional mean estimate of the state (E(xk|z1:k)). 

BRE is a two step process consisting of prediction and update. In the predic-
tion step the system equation defined by Equation (3) is used to obtain the prior 
PDF of the state at time k using the Chapman-Kolmogorov equation, which is 
given as 

( ) ( ) ( )1: 1 1 1 1: 1 1| | | dk k k k k k kp x z p x x p x z x− − − − −= ∫             (5) 

The update step then computes the posterior PDF from the predicted PDF 
and the newly available measurement as follows: 
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The recurrence Equations (5) and (6) form the basis for the optimal Bayesian 
solution. The BRE of the posterior density can generate an exact solution when 
the state-space equations fit into a Kalman Filter (KF) formulation or a Hidden 
Markov Model (HMM). Otherwise, BRE will generate an estimation numerically 
using Particle Filters (PF) when deriving the posterior PDF. 

2.3. Hidden Markov Model (HMM) Filter 

The HMM filter (also termed a grid-based filter) has a discrete state-space re-
presentation and has a finite number of states. In the HMM filter the posterior 
PDF is represented by the delta function approximation as follows: 

( ) ( )1 1: 1 1\ 1 1 11| sN i i
k k k k k kip x z w x xδ− − − − − −=

= −∑             (7) 

where 1
i
kx −  and 1| 1

i
k kw − − , 1, , si N=  , represent the fixed discrete states and 

associated conditional probabilities, respectively, at time index k − 1, and Ns the 
number of particles utilized. The governing equations for the HMM filter are 
derived by substituting Equation (7) into Equations (5) and (6). This substitu-
tion results in the HMM prediction and update equations which are outlined in 
Table 1. 

2.4. Iterative Forward Modelling 

Iterative forward modeling (IFM) is a parameter estimation technique which is  
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Table 1. HMM governing equations. 

STEP Description Mathematical Representation Equation 

1 
Initialization (k = 0) – 

initialize particle weights. 
e.g., ~ 1i

k sw N , 1, , si N=  . (8) 
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3 Update—update the weights. 
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5 
Let k = k + 1 & 
iterate to step 2. 

  

In the above equations it is required that the likelihood pdf ( )| i
k kp z x  

and the transitional probabilities ( )1|i j
k kp x x −  be known and specified. 

 
based upon iteratively adjusting the parameters until a user specified cost func-
tion is minimized. The desired parameter estimates are defined as those which 
minimize the user specified cost function. The IFM technique which is utilized 
within the qt estimation algorithm is the downhill simplex method (DSM) origi-
nally developed by Nelder and Mead [8]. The DSM in multidimensions has the 
important property of not requiring derivatives of function evaluations and it 
can minimize nonlinear-functions of more than one independent variable. Al-
though it is not the most efficient optimization procedure, the DSM is versatile, 
robust and simple to implement. A simplex defines the most elementary geome-
tric figure of a given dimension: a line in one dimension, the triangle in two di-
mensions, the tetrahedron in three, etc; therefore, in an N-dimensional space, 
the simplex is a geometric figure that consists of N + 1 fully interconnected ver-
tices. For example, in determining the location of a seismic event, a three- 
dimensional space is searched, so the simplex is a tetrahedron with four vertices. 
The DSM has been used in a variety of scientific applications such as obtaining 
seismic source locations [9] [10]) tomographic imaging [9], and blind seismic 
deconvolution [11].  

The DSM starts at N + 1 vertices that form the initial simplex. The initial 
simplex vertices are chosen so that the simplex occupies a good portion of the 
solution space. In addition, it is also required that a scalar cost function be speci-
fied at each vertex of the simplex. The general idea of the minimization is to 
keep the minimum within the simplex during the optimization, at the same time 
decreasing the volume of the simplex. The DSM searches for the minimum of 
the costs function by taking a series of steps, each time moving a point in the 
simplex away from where the cost function is largest. The simplex moves in 
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space by variously reflecting, expanding, contracting, or shrinking. The simplex 
size is continuously changed and mostly diminished, so that finally it is small 
enough to contain the minimum with the desired accuracy. The DSM incorpo-
rates the following basic steps:  

1) Specify initial simplex vertices. 
2) Specify the cost function at each vertex of the simplex.  
3) Compare the cost function for each vertex and determine the lowest error 

“best” and highest error “worst” vertices. 
4) Sequentially locating first the reflected, then if necessary, the expanded, and 

then if necessary, the contracted vertices, and calculating for each the corres-
ponding cost function and comparing it to the worst vertex; if at any step the 
cost function of the new trial point is less than the value at the worst vertex; then 
this vertex is substituted as a vertex in place of the current worst vertex. 

5) If the process in step 4 does not yield a lower error value than the previous 
worst, then the other vertices are shrunken towards the best vertex.  

6) At each stage of shrinking, the distances between vertices are calculated and 
compared to a set tolerance value to check if the simplex has become sufficiently 
small for termination of the estimation; when the test criterion is reached, the 
previous best vertex becomes the solution. 

7) At each stage of shrinking, the cost function values at the vertices is com-
pared to a set minimum value to check if the error residual has become suffi-
ciently small for termination of the estimation; when the test criterion is 
reached, the previous best vertex becomes the solution.  

3. qtHMM-IFM Algorithm 

The qt optimal filter estimation technique is referred to as the qtHMM-IFM al-
gorithm and it consist of a BRE smoother and an IFM component.  

3.1. qtHMM Algorithm Formulation 

The HMM portion of the qtHMM-IFM algorithm (so called qtHMM algorithm) 
implements a BRE smoothing filter. BRE smoothing is a non-real time filter that 
uses all measurements available to estimate the state of a system at a certain time 
or depth in the qt estimation case [6] [7]. The qtHMM algorithm smoother con-
sists of two parts: the forward and the backward formulation. The forward-depth 
filter ( ˆF

kq ) processes measurement data (qm) above the cone tip ( 1j =  to  

30 cd × ∆ 
 in (1)). Next a backward-depth formulation ( ˆB

kq ) is implemented, 

where the filter recurses through the data below the cone tip ( 30 cd
j  = × ∆ 

 to 

60 cd × ∆ 
 in (1)) starting at the final qm value. The optimal estimate for qt is 

then defined as 

( )ˆ ˆ ˆ 2t F B
k k kq q q= +                          (12) 
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Since the structure of the backward-depth qtHMM filter is similar to that of 
the forward-depth qtHMM filter only the forward-depth formulation is outlined. 
In this case a HMM filter is utilized where a bank of discrete qt values (i = 1 to 
N) varying from low (qtL) to high (qtH) (e.g., 0 MPa to 120 MPa) and a corres-
ponding qt resolution qtR (e.g., 0.2 MPa) are specified. The required number of 
fixed grid HMM states is given as NS = (qtH − qtL)/qtR. In Table 1 the notation of 
the states xi is mapped to qi to reflect the bank of qt values. The measurement 
equation given by Equation (1) is modified as outlined below for the for-
ward-depth case:  

( ) ( )

( )

30

1

, 30

cd

i i
k c k qt k

j

c
qt wc wc

z w j q j v

d
d

 × ∆ 

=

= × ∆ + +

 ∆ = − ∆ ∆ = × ∆ 

∑
                 (13) 

The transitional probabilities (i.e., ( )1|i j
k kp x x −  or ( )1|i j

k kp q q − ) for each 
HMM state (i.e., discrete cone tip, q,i) is set equal due to the fact that there is 
equal probability of moving from a current cone tip value to any other value 
between the range qtL to qtH. The likelihood PDF ( )| i

k kp z q  in the HMM filter 
outlined in Table 1 is calculated based upon an assumed Gaussian measurement 
error as follows: 

( )
( )

221| e
2

i
m kq d z

i
k kp z q σ

σ

 −
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 
 =

π
                  (14) 

where σ2 is the variance of the measurement noise. The HMM forward-depth es-
timated qtHMM cone tip values ( ˆF

kq ) are calculated as follows:  

|1
ˆ sNF i i

k k k ki w qq
=

= ∑                         (15) 

3.2. qtHMM Test Bed Example 

The previously outlined qtHMM algorithm was subjected to extensive test bed 
simulations. Unfortunately, it was concluded that this formulation would not 
work due to the significant challenges in estimating the unknown qt values below 
the cone tip (e.g., 54 unknown qt values for the case of a 10 cm2 cone tip (dc = 
0.0357 m) and a sampling rate of 0.02 m (∆ = 0.02) for the forward-depth 
qtHMM Formulation. The same obviously applied for the backward-depth 
qtHMM Formulation, but in that case the 54 unknown qt values are above the 
cone tip. It should be noted, however, that with this qtHMM Formulation it was 
nearly possible to duplicate the results of Boulanger and DeJong shown in Fig-
ure 4. In this case, the forward-depth formulation was utilized and the maxi-
mum qt value was not allowed to exceed 100. This is illustrated below for the 
case outlined in Figure 4(b) and Hsand/dc = 20. 

Figure 5 illustrates values of qm and the forward-depth qt estimates for vary-
ing maximum qt values specified for the case outlined in Figure 4(b) and 
Hsand/dc = 20. As is shown in Figure 5(a) the estimated qt values closely match  
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Figure 4. Values of qt, qm and qinv (estimated qt value) for idealize profiles with interlayers of a strong soil with qt = 100 embedded 
in a weaker soil with: (a) qt = 1, (b) qt = 10, and (c) qt = 50. Note that qinv almost perfectly overlays qt [5]. 
 

 

Figure 5. Values of qm (black series) and qtHMM feed-forward qt (red series) estimates for varying qt maximum values specified 
for the case outlined in Figure 4(b) and Hsand/dc = 20. (a) qt maximum = 100, (b) qt maximum = 90, (c) qt maximum = 120 and (d) 
qt maximum = 250. 

 
those of the true qt values (i.e. 100) if the specified maximum is 100. However, if 
the specified maximum value is changed to 250 the results (as illustrated in Fig-
ure 5(d)) are far from impressive. This clearly suggests that the good correlation 
achieved in Figure 5(a) is due to the restrictions placed upon the maximum al-
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lowable qt value and not a demonstration of algorithm performance. It should be 
noted that the output is shown in Figure 5(d) is similar to the results of Bou-
langer and DeJong illustrated in Figure 6. This figure illustrates the significant 
instability in the estimates of qt when Boulanger and DeJong used their inversion 
estimation algorithm for a situation where soil layers with a qt value of 12 were 
embedded in a uniform deposit with a qt value of 10. This instability caused 
Boulanger and DeJong to incorporate an ad-hoc smoothing filter followed by a 
low-pass spatial filter into their algorithm.  

3.3. Incorporation of IFM into the qtHMM Algorithm 

IFM is incorporated into the qtHMM algorithm to address the poor test bed re-
sults. In this case, initial estimates for qt are derived utilizing IFM. Instead of at-
tempting to estimate all the unknown qt values (below the cone depth for the 
forward-depth analysis, and above the cone for the backward-depth analysis) 
IFM is utilized where only a fraction of the qt values are required to be estimated. 
In this process constant layer qt values and their corresponding depth extents are 
estimated for a maximum number of layers (specified by the user) within the 
next wc window. 
 

 

Figure 6. Significant instability in the estimates of qt when using the Boulanger and De-
Jong inversion estimation algorithm [5].  
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As an example, assuming that a 10 cm2 cone is utilized for the sounding (with 
a diameter of 36 mm), then the extent of the wc averaging window (equal to 60 
cone diameters) is approximately 2 m and the depth interval below the cone for 
the forward-depth analysis is approximately 1 m. Assuming that a maximum of 
three possible layers exist within this depth interval, then only values for d1, d2, 
q2 and q3 have to be estimated, as the value of q1 is estimated with forward-depth 
formulation of the qtHMM-IFM algorithm where HMM filter transitional prob-
abilities are taken into account. This is only 4 parameters as opposed to 54 qt 
values without the incorporation of IFM into qtHMM estimation algorithm. The 
initial estimates derived with IFM are then used as the base line for subsequent 
iterations using Equation (12). The process is then repeated until a desired error 
residual is obtained or until a prespecified number of iterations has been reached 
(Figure 7).  

3.4. qtHMM-IFM Test Bed Example 

The performance of the qtHMM-IFM algorithm was evaluated by carrying out 
challenging test bed simulations. This section outlines two of these challenging 
test bed simulations. The first test bed simulation of which is illustrated in Fig-
ure 8. A soil profile was defined through qt values (light grey line in Figure 8(a)) 
and the resulting qm values were then calculated (black line in Figure 8(a)). Us-
ing the qtHMM-IFM algorithm the qt values were then estimated based on the 
qm values (black dotted line in Figure 8(a)). It shall be obvious that the algo-
rithm performed well as the derived qt values closely matched the originally spe-
cified qt values (with the percentage difference shown by the black line in Figure 
8(b)). Interesting to note in this simulation is that the layering identified by the 
black oval (i.e., variation in qt between 84 and 96) has been lost, and that when 
focusing on qm values thin soil layers are completely overlooked. In addition in-
serting these thin layers also results in large differences between the measured 
and the true tip resistance values for the entire interval where these thin layers 
occur, as shown by the black dotted line in Figure 8(b). 

A second test bed simulation of the performance of the qtHMM-IFM algo-
rithm is shown in Figure 9. In Figure 9 a soil profile was defined through qt 
values (grey line in Figure 9(a)) and the resulting qm values were then calculated  
 

 

Figure 7. S Schematic outlining proposed IFM portion of the qtHMM-IFM algorithm 
parameters to be estimated. Parameters q1, q2, and q3 denote the cone bearing values for 
soil layers 1, 2 and 3, respectively. Parameters d1, d2, and d3 denote the depths of soil lay-
ers 1, 2 and 3, respectively. 
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(a) 

 
(b) 

Figure 8. TEST BED 1 (a) Specified qt values (grey line), derived qm values (black line) 
and estimated qt values based on qm values (black dotted line). (b) Percent differences 
between specified and estimated qt values (black line) and qm values and estimated qt val-
ues (black dotted line). 
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(a) 

 
(b) 

Figure 9. TEST BED 2 (a) Specified qt values (grey line), derived qm values (black line) 
and estimated qt values based on qm values (black dotted line). (b) Percent differences 
between specified and estimated qt values (black line) and qm values and estimated qt val-
ues (black dotted line). 
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(black line in Figure 9(a)). Using the qtHMM-IFM algorithm the qt values were 
then estimated based on the qm values (black dotted line in Figure 9(a)). It shall 
be obvious that the algorithm performed well as the derived qt values closely 
matched the originally specified qt values (with the percentage difference shown 
by the black line in Figure 9(b)). Similar to test bed 1, the layering identified by 
the black oval has been lost and that when focusing on qm values thin soil layers 
are completely overlooked. The light grey ovals in Figure 9(a) clearly illustrate 
that by applying qm values the actual tip resistance values are masked and 
blurred. In addition inserting these thin layers also results in large differences 
between the measured and the true tip resistance values for the entire interval 
where these thin layers occur, as shown by the back dotted line in Figure 9(b). 

4. Conclusions 

Cone penetrometer testing (CPT) is an effective, fast and relatively inexpensive 
system for determining the in-situ subsurface stratigraphy and estimating geo-
technical parameters of the soils present. When performing CPT the layers 
above and below the cone tip affect the measured tip resistance. The extent of 
this issue can be significant and is dependent upon variable in-situ soil proper-
ties (i.e., it is site specific). As a result, a specific soil (with a specific qt value) can 
generate significantly different tip resistance readings (qm value) based upon the 
properties of the bounding soils, especially in soil profiles with thin soil layers. 
For this reason, it is recommended that an algorithm is implemented to generate 
the actual qt value from recorded qm values. 

This paper has outlined an algorithm which utilizes a hybrid HMM and IFM 
filter for the purpose of obtaining CPT true cone tip bearing values from meas-
ured blurred measured values. The qt estimation algorithm is referred to as qtHMM- 
IFM. Challenging test bed simulations have demonstrated that the qtHMM-IFM 
algorithm can derive accurate qt values from a qm profile. This allows for the iden-
tification and quantification of thin layers in a soil profile. The authors will carry 
out further test bed simulations and subsequently apply the qtHMM-IFM algo-
rithm on real data sets. 
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