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Abstract 
Measuring Terrestrial Water Transient Storage in its various components of 
Earth by orbiting sensors on satellites has been a quest for more than 40 
years. Not only in the Hydrology community but also Climatology and Me-
teorology, Geology, Geodesy, Geophysics and Oceanography have the chal-
lenge to attempt to first learn how to measure, then measure and assess the 
results. The importance is that Earth’s environments are changing and hu-
man communities, local and national governing bodies need ability to assess 
current hazards and to have predictive capabilities for society both local and 
international. So too the Gravity Recovery and Climate Experiment (GRACE) 
has joined the ongoing international space-based missions. There will be 
more after GRACE. For now is an important juncture in the effort to measure 
Terrestrial Water Transient Storage to ask, “What can GRACE measure and 
what is GRACE measuring”? Results of this investigation of the GRACE da-
tasets by spectral methods indicate the detection of the Chandler Wobble but 
the Annual Wobble is aliased and below significance. Therefore, interpreta-
tions of Terrestrial Water Transient Storage are failed. 
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1. Introduction 

To gain a predictive understanding of water in Earth’s changing environments, 
atmosphere-geology-hydrology and potential hazards to human communities, 
infrastructures and sustainable living, our ability to measure terrestrial water 
transient storage (a.k.a. changes of terrestrial water storage) must evolve. Earth 

How to cite this paper: Muskett, R.R. 
(2021) GRACE, the Chandler Wobble and 
Interpretations of Terrestrial Water Tran-
sient Storage. International Journal of Geos-
ciences, 12, 102-120. 
https://doi.org/10.4236/ijg.2021.122007 
 
Received: January 5, 2021 
Accepted: February 19, 2021 
Published: February 22, 2021 
 
Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/ijg
https://doi.org/10.4236/ijg.2021.122007
https://www.scirp.org/
https://doi.org/10.4236/ijg.2021.122007
http://creativecommons.org/licenses/by/4.0/


R. R. Muskett 
 

 

DOI: 10.4236/ijg.2021.122007 103 International Journal of Geosciences 
 

environment monitoring by satellite began with the NASA Earth Resources 
Technology Satellite launched in 1972 and lead to the joint NASA-USGS Land-
sat Program [1] [2]. Notions of terrestrial water transient storage, a component 
of the Earth’s energy and mass balance have been at the core of NASA’s Decadal 
Survey Global Cycles of Energy and Water and other governmental agencies 
both national and international starting with NASA’s Mission To Planet Earth 
(1989) for more than two decades [3] [4]. These notions have driven the devel-
opment of Electromagnetic-Optical sensors and satellites missions in attempts to 
measure and assess potential feedbacks, human and natural, in global and re-
gional meteorology and climatology of Earth. In particular feedbacks, which may 
be caused by human activities and potential run-away changes (amplification or 
reduction) of natural cycles have become the interest of many national and in-
ternational activist and governance organizations [5]-[11]. 

Our knowledge of climatology, the causes and workings of Earth’s past, 
present and possible future “climate” come directly from empirical observations 
of the Earth’s rocks, those exposed on the continents and islands and cores re-
covered from land and in the depths of ocean basins, i.e. Geology, spaning a 
history of 4.5 Ga. Examples include the Geological Sea Level curves, the Phane-
rozoic Eon atmosphere CO2 concentration, trangression and regressions on the 
continents and inferred surface continental temperature curves and the empiri-
cal linkage of the 405 Ky Malankovitch to radiometric-magnetostratigraphy of 
the last 215 million years of Earth history [12]-[21]. In these renderings, CO2 
concentration, sea level and land temperature are proxy-parameters that may be 
associated to “inferred climate” during the Eras of Earth’s history. 

With the advent of satellite technologies and sensor-systems in near-Earth orbit, 
and the growth of electronic computational methods and techniques, attempt to 
measure meteorological parameters and possibly “climate parameters” has been a 
growing enterprise fraught with many failures and miss-interpretations. The em-
phasis from the ideas of the 1950s was to use numerical machine codes, i.e. 
computer models, to ingest meteorological measurements and over a sufficiently 
long period of time, “climate” would emerge from the model output, i.e. both 
the match of current “climate” and a prediction of future “climate”. This leads to 
the creation of the United Nations sponsored World Meteorological Office, In-
ternational Panel on Climate Change and the Framework Convention on Cli-
mate Change. The term “Climate Change” and physical “climate” parameters are 
to this day still undefined (i.e. undiscovered), though meteorological parameters 
are assumed by necessity. Of note, the “satellite era” measurements currently 
cover less than 1 millionth of Earth’s history. 

In the 1980s various ideas were moving among researchers in academia and 
government agencies about employing gravity sensors, i.e. gravimeters, and mag-
netometers to measure any changes of the Earth’s gravity and magnetic fields 
from near-Earth orbit, using knowledge from exploration geophysics methods 
and techniques. Germany and the United States developed several missions. The 
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space agencies of both countries partnered in the mid-1990s to develop such a 
joint mission to measure the time-variable gravity field from near-Earth orbit. 
This became the Gravity Recovery and Climate Experiment (GRACE) program 
of Germany’s DLR and U.S.A.’s NASA. In both countries several universities 
and other national agencies partnered as well as those from France and Italy. 
GRACE was launched in March 2002 (end-of-mission March 2018) and GRACE 
Follow-On was launched in May 2018. 

This report gives details of: 1) A critical flaw in the GRACE and GRACE Fol-
low-On mission design; 2) The affect of the flaw on derived global datasets re-
garding Terrestrial Water Transient Storage interpretations; and 3) The Chand-
ler Wobble measured by GRACE and GRACE Follow-On. The purpose of the 
research is to assess 1, 2 and 3 and recommend a solution to re-compute the 
GRACE and GRACE Follow-On Datasets. 

2. Data, Methods and Techniques, and the GRACE Flaw 

Data for water equivalent mass change (i.e. terrestrial water transient storage) 
comes from Release-05 (R5) Level-3 products provided by the GRACE Science 
Team centers and Release-06 from GRACE Follow-On Science Team center. 
Previous releases R2 through R4 and R5 have been investigated [22]-[32]. Grids 
are produced at 1-arc-degree global coverage complete to degree and order 40. 
The GRACE solution to the gravity potential formulated as water equivalent 
mass change (length scale, Δh) can be expressed in the harmonic expansion giv-
en by 

( ) ( ) ( )
40

0 0

2 1
, , sin

1

l

l lm lm
l m l

l
h t W P f

k
λ ρ

= =

+
∆ ∅ = ∅ ∆

+∑∑             (1) 

with 

3
e e

w

a ρ
ρ

ρ
=                           (2) 

( )
( )

2

exp
4ln 2

e
l

lr a
W

 
 =
  

                      (3) 

( ) ( ) ( ) ( )cos sinlm lm lmf C t m S t mλ λ∆ = ∆ + ∆              (4) 

and coefficients Plm: Normalized Legendre polynomials, ΔClm(t), and ΔSlm(t): 
Normalized time-varying Stokes spherical harmonic geopotential coefficients, ae: 
Earth mean radius, r: spatial radius, kl: Love numbers, ρe: Earth mean density, ρw: 
fresh water density, t: time, and φ, λ are latitude and longitude [33]. Beyond de-
gree (order) 40 to 70, the inherent noise level in the mass change signal becomes 
significant [34]. Processing includes downward propagation and adjustments to 
remove the time-variable mass change effects from ocean tides, atmosphere va-
riance and mean variation (the GRACE geoid model). Low-order Stokes spheri-
cal harmonic geopotential coefficient derived by the International Lunar Rang-
ing Service (NASA-Goddard and International Earth Rotation Service) and In-
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ternational Terrestrial Reference Frame are used, Figure 1 [35] [36]. A norma-
lized Gaussian smoother filter mitigates striping artifacts produced by the orbit 
non-crossing and control-descent geometry [33] [34]. Differences in processing 
(de-aliasing) and error sources and products are attributable to differences in 
assumed zero-degree and order Stokes harmonics, tide (ocean) models and the 
modeled atmosphere mass change removal, respectively in decreasing order of 
magnitude [37] [38]. 

GRACE global coverage presented here is from August 2002 through Decem-
ber 2020. Glacial Isostatic Adjustment (GIA) is a global phenomenon by way of 
mantle flow following the decay of the Pleistocene ice sheets in North America 
and Euro-Scandinavia [39]. GIA is removed from the GRACE grids [40]. 

The GRACE satellites (A and B of GRACE and C and D of GRACE Fol-
low-On) cover their twin-orbit spheres in about 28-days (i.e. close to the Sidereal 
month). This global “measure-month” represents a periodic sampling signal (i.e. 
alias) that repeats every 12 months [41] [42] [43]. 

The flaw in GRACE, illustrated in Figure 2, is that the harmonic expansion is 
an Earth-centric, i.e. Geocentric, field reference with mean radius, mean density 
and Love numbers pertaining to only the Earth. GRACE assumes a One-Body 
gravity field, not the real Two-Body gravity field. The Stokes harmonic field po-
tentials for the Moon had been estimated from early satellite tracking data and 
laser ranging up to the 1980s [44]. However, quality of the harmonics of degree 4 
and higher were considered low and many questions remained regarding the 

 

 
Figure 1. ITRF Stations. The ITRF combines multi-satellite-sensors and ground stations la-
ser measurements from the international services of the Global Navigation Satellite System, 
Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), Very-Long 
Baseline Interferometry (VLBI) [35] and the Lunar Ranging Service (LR) that was estab-
lished by Apollo Missions 11, 14 and 15 with Russian Space Missions Luna 17 and 21 [36]. 
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Figure 2. Barycenter-Geocenter Comparison. The illustration compares the gravity fields 
and orbit geometries of the Barycenter versus the Geocenter Systems (not to scale), with 
the GRACE and GRACE Follow on (A and B and C and D, respectively) managed geo-
centric orbits. Notation as follows: N-rotation axis, G-Geocenter, β-Barycenter, re-radius 
of earth, reβ-radius of Barycenter in earth’s mantle, β-Barycenter rotation axis and rβ-radius 
of Moon to Barycenter in Earth’s mantle. 

 
offset of the Moon’s gravity center to the center of figure, the topography and 
density variations of the farside and nearside [44]. Recall that the Moon is in a 
locked-orbit with Earth with mass concentrated on the nearside. Therefore dur-
ing the GRACE mission development the Stokes harmonic field potentials of the 
Moon were not used. 

Consider the following thought experiment. Assume the Earth is a perfect 
and homogenous sphere (no internal mass variation, not visco-elastic) and 
there is no Moon. As the GRACE satellites orbit at about 400 km above the 
Earth, their path is a geodesic (Earth-centered) defined by their angular mo-
mentum. As the GRACE satellites range their intra-satellite distance (by KBR), 
there is no variation with the exception of electronic-system induced errors. In-
troduce a mass, the Moon, at a distance (ellipsoidal orbit) of roughly 240,000 km 
away from Earth with a mass of about 1/81 Earth mass. The gravity field in this 
case is no longer Geocentric it is Barycentric. The GRACE satellite’s orbits are 
maintained Geocentric. The KBR-measured intra-satellite range varies, because 
the GRACE satellite orbits cross Barydesics, equipotentials of the Barycentric 
Earth-Moon gravity field [45]. In this case the perfect Earth and Moon co-orbit 
the Barycenter, 1650 km within the perfect Earth (about 4728 km outward along 
the Earth’s radius) on a Sidereal monthly rate of 27.32 days [46]. If the GRACE 
satellites as they are ranging by KBR the intra-satellite distance could cover the 
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perfect Earth in their orbits within about 1 hour, the principle harmonics they 
would “measure” would be 1 hour, 24 hours, one Sidereal month and one Side-
real year, repeated over the mission life time. Yet, as the GRACE satellite’s KBR’s 
measure the inter-satellite distance, the GRACE orbits are crossing Barydesic 
equipotentials, causing apparent accelerations and decelerations caused by the 
maintained-Geocentric orbits. Sampling errors, i.e. aliases (by way of the Shan-
non-Nyquist theorem), are not geophysical signals. 

3. Discussion 

The Chandle Wobble (CW) is an excited resonance and the Annual Wobble 
(AW) a forced resonance of the Earth’s rotation axis [47]. Both are recognized as 
periodic variations of Polar Motion [48]. Polar motion, a.k.a. the “variation lati-
tude” and the variation of star zeniths (local plumb line from observer to star), 
have been known since antiquity by astrometry. L. Euler mathematically solved 
the problem of polar motion in 1765. His analytical Free-unforced nutation of 
the rotation axis solution gave a period of 305 days and would dissipate in 68 
years [47] [48]. The empirical measurement and physical cause remained elusive 
until F. Küster in 1888 and S. Chandler in 1891 produced the first accurate mea-
surements, 428 days (Chandler, 1891/92, with Free and Forced-annual compo-
nents), and a hypothesis [47] [48]. 

During the 20th century refinements by way of advances in instrumentation 
and ground networks (including the Lunar Ranging sites on the Moon) have fo-
cused analysis on the components (prograde and retrograde) and variability 
(amplitude and period) of the CW and AW of Polar Motion [47] [48]. Recent 
measurements have shown the instantaneous periods of the CW and AW (pro-
grade) are 392 to 441 days and 359 to 370 days, respectively [47]. Interestingly, 
the amplitude of CW has varied from 43 to 287 mas (milli-arc seconds) and is 
following a decreasing trend since 1995 [47]. The amplitude of AW (prograde) 
has varied from 65 to 180 mas and is following a decreasing trend since 2010 
(the AW retrograde component has been oscillating since 1960) [47]. 

Chandler (1893) followed his discovery of the CW and AW components of 
Polar Motion as observed by star zeneth variations, i.e. the “latitude variation”, 
with his hypothesis that the CW was caused by the “Free nutation motion” of the 
rotation axis within the Earth [48] [49]. However, a “Free nutation” of the rotation 
axis would quickly dissipate as Euler (1765) analytically calculated [47] [48]. Inves-
tigations in the first half of the 20th century proposed hypotheses for AW as “logi-
cally evident” but untestable such as mantle anelasticity, inner and outer core va-
riable rotations, tectonic motions of convecting-mantle and outer core mantle-jets, 
i.e. hot-spot plumes, solar and jupiter-saturn planetary gravitational torques, elec-
tromagnetic torques generated by the liquid outer core producing interference with 
the lower mantle magnetic field, and perturbations by large magnitude earthquakes 
[50] [51]. Late 20th and early 21st century investigations looked to causative inter-
pretations of AW by variations of atmospheric mass, glacial-eustacy, ocean bottom 
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pressure and terrestrial water transient storage [47] [51]. However, as testable 
hypotheses and valid measurements remain elusive, such interpretations partic-
ularly with regard to terrestrial water transient storage are suspect 

3.1. A Test of GRACE 

A question now arises regarding the GRACE mission. Other than the KBR meas-
ured inter-satellite range and range rate, what physical property of the Earth can 
the GRACE satellites possibly measure? To evaluate this question three test re-
gions of Earth have been selected for investigation: the Alaska North Slope, 
Amazon River Basin and Qinghai-Tibet Plateau. These regions have unique en-
vironments, geology-tectonics, hydrology and topography against which the 
GRACE R06 (described earlier) will be evaluated for regionalized spectral power 
and harmonic content, Figure 3. 

 

 
Figure 3. Global Test Regions. Seismicity, Holocene volcanos and tectonic plate boun-
dries coutersy of UNAVCO (EarthScope GEON, NSF, NASA) and USGS illustrated in 
Google Earth. 
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3.2. Alaska North Slope 

The Alaska North Slope is the most extensive arctic environment region of the 
United States. The surface from the Brooks Range to the Chukchi and Beaufort 
Sea coasts is one of continuous permafrost up to 600 meters thick, tundra vege-
tation and extensive rivers that is home to indigenous peoples, Caribou and 
Muskox herds, summer wetlands supporting wild fowl and extensive winter 
thaw lakes [52] [53] [54] [55] [56]. Beneath the Holocene-Pleistocene permafrost 
(gravels, silts and ground ice) is a vast Permian-to-Miocene foreland fault/fold 
orogen structurally connected to the Paleozoic-Mesozoic formations of the 
Brooks Range [57]-[63]. At depths of in excess of 600 meters, the geologic 
structures are sources of gas and oil that support operational productions as at 
Purdue Bay and exploration activates [58] [63] [64]. Petroleum reserves make 
this region one of America’s largest and of National strategic and world impor-
tance [65]. Since the Quaternary the Alaska North Slope has been a passive con-
tinental margin of the North American Plate. The ocean portion of the North 
American plate meets the divergent boundary at the Gakkel Ridge (spreading 
rift) in the Arctic Ocean basin, Figure 4(A) [66] [67]. North Slope earthquake 
activity is typically in the 1 to 3-magnitude range and at depths to 33 kilometers 
occurs daily distributed mostly in the Brooks Range and elsewhere [68] [69]. 

3.3. Qinghai-Tibet Plateau 

The Hindu Kush-Karakoram-Himalayas, Tian Shan Mountains with the Qing-
hai-Tibet Plateau and Tarim Basin form a region of more than 3.4 million square 
kilometers [22]-[28] [68]. Home to numerous large lakes and tarns (glacier 
lakes), and to more than 50,000 glaciers and high-elevation snowfields, conti-
nuous permafrost and the Taklimakan desert this region is the source of the In-
dus, Ganga, Brahmaputra, and Yamuna Rivers, the Indo-Gangetic River system 
[70] [71] [72]. The Himalayan Mountains and associated ranges create a boun-
dary separating westerly continental air masses and southerly marine air masses 
of the summer South Asian monsoon [73] [74]. The long-term seasonal statio-
narity of these air masses against the high mountains gives rise to anomalous 
atmospheric mass variations with abundant precipitation [75]. The mean eleva-
tion of the plateau is about 4500 meters above mean sea level, which affects 
broadband solar and infrared-thermal fluxes of the atmosphere above the pla-
teau [76]. The broad plateau high elevation is due to the subduction of the India 
plate beneath the Eurasia plate from about 55 million years ago (Late Creta-
ceous) and is on going, Figure 4(B) [77] [73]. With more than 30-years of GPS 
and recently GNSS (GPS and GLONASS) geodetic measurements it is know that 
the plateau is rising at about 8 mm per year, on average, and which in southern 
Tibet becomes about 17 to 22 mm/yr [78] [79] [80]. However, failure to account 
for the anomalous atmospheric mass variations and the mantle mass transport 
has given rise to many dubious conclusions raised in poorly researched scientific 
papers [27]. 
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Figure 4. Geologic-Plate Tectonic cross-sections of the Alaska North Slope, Qinghai-Tibet 
Plateau and the Amazon Basin (South American Plate). 

3.4. Amazon Basin 

The Amazon basin, the Amazon River and tributaries, drains an area in excess of 
35% of the continent of South America the land portion of the South American 
Plate [81] [82]. Its area is estimated at 6,300,000 km2. From the high elevation 
Andes Mountains, the result of subduction of the Fallon (former) and Nazca 
Plates in the west, the modern Amazon spans to the Atlantic Ocean in the east 
where the ocean portion of the plate continues to the boundary with the 
Mid-Atlantic Ridge, Figure 4(C) [83] [84] [85]. 

The Amazon rainforest and transcontinental river system are the largest on 
Earth [82]. Many of the flora and fauna of modern Amazonia date from lineages 
as old as Late Cretaceous to Paleogene, 100 to 23 million years ago, coeval with 
the subduction of the India Plate with the Eurasia Plate and the rising of the 
Himalayas and Qinghai Plateau. The main geological events associated with 
stream capture that formed the modern transcontinental rives system are esti-
mated to have occurred in the Neogene. While much of the present day topo-
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graphy of basins and mountains can be explained by Plate Tectonics there is 
mounting evidence that viscous flow within the mantle, a transient mass, plays a 
significant role in the topography of river systems such as the Amazon, the 
Brahmaputra and others [86]. 

3.5. Tests by Regional Power Sectral Density 

Figure 5 shows the GRACE water equivalent mass change time-series, Periodo-
grams and Power Spectral Density of the test regions from August 2002 through 
January 2017. The time-series are the regionalized (volumes) for the Alaska 
North Slope, Qinghai-Tibet Plateau and Amazon, respectively. Inspection of the 
time-series, periodograms and power spectra reveals remarkable similarities! 
The Periodogram and Powe Spectral Density are Red-Noise on each of the Test 
Regions. The reader will note the magnitude (Periodogram score and Power dB) 
of the changes rise as the area of regionalization (area) increases, from Alaska 
North Slope to Amazon. The Power Spectral Density of the time-series black line 
and the estimate of significance (90%) using Chi-square χ2 process red line with 
the time-series covariance shows very low significance except for the 12 sideral 
month signal. The 12-month signal may be an alias of the Chandler Wobble 
(14.23-month period) [50] [51] [87] [88]. 

4. Results 
4.1. Results: Alaska North Slope 

The highest Periodogram scores occur near the 2-month (Sideral Months) start 
of the series: an artifact of GRACE orbit sampling. Two components at 11.636 
and 12.190 months have low scores 75.703 and 25.476 (at 0.082 and 0.086 fre-
quency), respectively. Power Spectral Density of these two components is 19.912 
and 21.285 dB, and above the model-noise level (significance better than 90%). 
These components are not the AW. Components where CW should be in the 
Periodogram at 14.222 sideral months has a very low score of 0.478 and in the 
Power Density Spectrum at 0.070 frequency has 14.823 dB of low significance, 
Figure 5(A). 

4.2. Results: Qinghai-Tibet Plateau 

Components in the Periodogram at 2 and 2.032 Siderial months have score of 
4.5E5 and 8.5E5, respectively. Power Spectral Density at 0 and 0.012 frequen-
cy is 37.285 and 34.801 dB, respectively. These components are aliases pro-
duced by the GRACE orbital sampling. Where the AW should be in the Peri-
odogram at 11.326 and 12.190 Siderial months have scores of 2.0E7 and 1.6E7, 
respectively. Power Spectral Density of these components is 39.23 and 39.35 
dB (at 0.082 and 0.086 frequency), respectively. In the Periodogram where the 
CW should be at 14.222 Siderial months the component has a score of 4.7E4. 
In Power Spectral Density at corresponding frequency 0.070 the power is 
31.473 dB, Figure 5(B). 
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Figure 5. GRACE Regional Time Series, Periodogram and Power Spectral Density of the Test Regions Alaska North Slope, 
Qinghai-Tibet Plateau and Amazon Basin. The Red-series in the Power Spectral Density represents the Chi-Square (χ2) 
red-noise significance estimate (90%) based on the covariance of the regional time series. For processing, the GRACE time 
series are zero-padded to 256 (28) to satisfy the Discrete Fast Fourier Transform requirement. 
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4.3. Results: Amazon Basin 

Components in the Periodogram at 2 and 2.016 Sidereal months have score of 
4.9E4 and 2.3E5, respectively. Power Spectral Density at 0 and 0.004 frequency is 
41.311 and 40.300 dB, respectively. As with the Qinghai-Tibet Plateau, these 
components are aliases produced by the GRACE orbital sampling. Where the 
AW should be in the Periodogram at 11.326 and 12.190 Siderial months have 
scores of 2.0E7 and 5.7E7, respectively. Power Spectral Density of these compo-
nents is 49.317 and 47.049 dB (at 0.082 and 0.086 frequency), respectively. In the 
Periodogram where the CW should be at 14.222 Sidereal months the component 
has a score of 6.6E4. In Power Spectral Density at corresponding frequency 0.070 
the power is 39.899 dB, Figure 5(C). 

4.4. Summary of Results 

The actual physical dissimilarities of the regions are stark: two regions, the 
Alaska North Slope and the Qinghai Plateau have minimal vegetation and sub-
stantial permafrost and snow cover whereas the Amazon region has no perma-
frost, almost no snow cover except for the high elevations and very substantial 
vegetation! Furthermore, the near-surface and crustal geology of each region is 
very different, and they reside on different tectonic plates with very different ve-
locity fields! 

The only physical property of Earth that is the same in the three test regions 
that GRACE can measure is the Chandler Wobble, the variation of Earth’s rota-
tional axis, excited and forced, from torques primarily in the Earth’s mantle and 
gravity fields (primarily the Barycenter field). The AW is unfortunately not re-
solvable, i.e. separately from the CW, by GRACE due to aliasing (the GRACE 
Flaw) and not significant in comparison to inherent noise (Figure 5). 

5. Conclusions 

This report assesses the GRACE flaw in the GRACE and GRACE Follow-On 
mission design, the CW and the aliased AW (Polar Motion components) and 
their effects on the current global GRACE datasets. Furthermore, at present the 
only physical property of the Earth that GRACE can possibly measure the 
Chandler Wobble, though at this time it is not measured accurately. From the 
analysis presented here of the GRACE satellite orbits and spectral analysis of the 
datasets, our main conclusion is that the annual harmonic component, Figure 5, 
is not the AW of Polar Motion, but rather an alias artifact of orbital sampling 
from the KBR measurements (i.e. orbital mechanics and instrument ranging 
sampling rates). By deduction, we must conclude that interpretations of terre-
strial water transient storage derived from GRACE are currently wrong. 

Therefore, to correct the GRACE Flaw, a new two-body Barycentric field solu-
tion and two-body harmonic expansion are called for. It is proposed that such is 
achievable using the Moon Stokes coefficients and parameters derived from the 
Gravity Recovery Interior Laboratory (GRAIL) mission [89]. Furthermore, this 
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will resolve the GRACE Flaw in the original GRACE missions and allow for the 
refinement of the CW and resolution of the AW in GRACE datasets following 
the works of Lambeck [50] [51], Xie and Kopeikin [45], Adhikari and Ivins [87] 
and Lambert and Sottili [88]. 
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