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Abstract 
The ever-increasing needs of Internet of Things networks (IoTn) present 
considerable issues in computing complexity, security, trust, and authentica-
tion, among others. This gets increasingly more challenging as technology 
advances, and its use expands. As a consequence, boosting the capacity of 
these networks has garnered widespread attention. As a result, 5G, the next 
phase of cellular networks, is expected to be a game-changer, bringing with it 
faster data transmission rates, more capacity, improved service quality, and 
reduced latency. However, 5G networks continue to confront difficulties in 
establishing pervasive and dependable connections amongst high-speed IoT 
devices. Thus, to address the shortcomings in current recommendations, we 
present a unified architecture based on software-defined networks (SDNs) 
that provides 5G-enabled devices that must have complete secrecy. Through 
SDN, the architecture streamlines network administration while optimizing 
network communications. A mutual authentication protocol using elliptic curve 
cryptography is introduced for mutual authentication across certificate authori-
ties and clustered heads in IoT network deployments based on IoT. Again, a 
dimensionality reduction intrusion detection mechanism is introduced to de-
crease computational cost and identify possible network breaches. However, to 
leverage the method’s potential, the initial module’s security is reviewed. The 
second module is evaluated and compared to modern models. 
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1. Introduction 

Internet of Things (IoTs) network concerning the next generation is nearing the 
end of its development cycle, paving the way for large-scale global implemen-
tation. Smart and sustainable communications may profit from technical ad-
vancements in the technology sector, such as usage-based insurance and greater 
income through IoT data monetization. This includes IEEE 802.11p, long-term 
evolution (LTE), the 5G Narrowband Internet of Things (NB IoT) [1], and 
Wi-Fi [2]. These technologies, however, have challenges in terms of data rates, 
latency, dependability, and, more importantly, connectivity due to a scarcity of 
spectrum and a complex surrounding environment. Furthermore, with the ris-
ing resilience of connected IoT devices, the IoTs network faces many issues, in-
cluding high bandwidth requirements. The fifth generation (5G) networks were 
created to meet the stringent needs of IoT networks. Due to its spectrum cohe-
rence and energy economy, it is predicted to boost system capacity by 1000 
times, data rate by 10 - 100 times, battery life by ten times, and latency by five 
times compared to 4G [3]. As a result, 5G-based IoT Networks may overcome 
the issues posed by the enormous demands and data flow generated by con-
nected devices. Despite its various benefits, 5G networks confront challenges in 
offering ubiquitous and dependable IoT connections. As a result, a contempo-
rary network technology, software-defined network (SDN), has evolved to pro-
vide intelligence, resilience, and flow programmability into 5G IoT networks [4]. 
It enhances the capability of 5G networks while supporting the dynamic nature 
of IoTn. To conceptually concentrate the network state and intelligence in SDNs, 
data and the control plane are decoupled from each other [5]. On the data plane, 
all forwarding devices (FDs) are gateways, switches, and routers that use the 
OpenFlow (OF) protocol. The control plane is responsible for data routing and 
allocating resources. Executing SDN controller directives, the control plane is 
also instrumental in providing information on security, identity, authentication, 
and mobility to the network [6] [7]. SDN has been connected with VNs in some 
preliminary studies to improve their flexibility, programmability, and efficiency. 
For example, [8] presented an IoT architecture based on 5G and SDN, in the 
Hidden Pattern (THP), which combines A visible password and a digital chal-
lenge value are used together to guard against various kinds of authentication 
threats. Researchers in [9] integrated NFV and SDN management of IoT boot-
strapping for large networks. Finally, [10] discusses applications and domains of 
the Internet of Things It's simple to see rising patterns because of the standar-
dized IoT-SDN systems implemented between 2012 and 2016. IoT has two ma-
jor issues as a result of the intrinsic nature of wireless communications: security 
and privacy. A comprehensive and widespread communication architecture is 
thus essential to provide a reliable flow of information. Authentication plays a 
key role in this direction, offering a potential solution for future virtual net-
works. In the literature, authentication procedures include anything from hash- 
based techniques to pseudo-random number methods, as well as both private 
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and public key cryptology [11] [12]. Furthermore, potential security flaws in IoT 
networks could lead to attacks like black holes, selective forwarding, packet dup-
lication, wormholes, Sybil attacks and resource exhaustion. As a result, security 
must be built into such programs in order to preserve the data's integrity and 
ensure its correctness. Intrusion detection systems (IDSs) have demonstrated 
their effectiveness in detecting suspected events designed to disrupt network 
communication in this area [13] [14]. In order to solve security challenges in 
virtual networks, several IDSs have been developed in the literature [15] [16]. 
Despite the fact that numerous strategies for preserving IoTn’s data integrity and 
accuracy are still issues that haven’t been completely addressed in the literature, 
despite several proposals to this effect. Hence, we proposed a unified architec-
ture based on software-defined networks (SDNs) that provides 5G-enabled IoT 
networks, with complete confidentiality. 

The following are the major contributions of this research: 1) Authentication 
and intrusion detection is used in a composite architecture to enable end-to-end 
encryption in 5G-SDIoTN deployments. By demanding joint authentication 
amid the involved organizations before data transmission can commence, the 
former helps to identify any breaches in the underlying network. 

2) It is the ECC concatenation, one-way hash, XOR and multiplication opera-
tions that underlie the authentication module's effectiveness. Furthermore, it is 
unique in that the certificate authority (CA), cluster head (CH), and IoT devices 
are all mutually authenticated. 

3) Our suggested intrusion detection scheme takes advantage of pre-processing 
the raw dataset, tensor-based dimensionality reduction, with a Fuzzy C-means 
(FCM) clustered to detect intrusions. Our subsystem is unique in that it handles 
the clustering issue effectively using multi-objective dynamic programming with 
decomposition (MOEA/D). The proposed intrusion detection scheme’s perfor-
mance is also improved by reducing the dimensions using tensor-based. 

The following is the structure of the rest of the manuscript: Section 2 discusses 
the relevant work. In Section 3, the suggested scheme’s system model in the 
context of IoTNs backed by SDN and 5G is presented. Section 4 examines the 
developed authentication module, followed by Section 5 intrusion detection sys-
tem (IDS). In Section 6, the corresponding simulation output is plotted against 
the current state of technology. Section 7 wraps up summarizes the results and 
makes suggestions for more investigation. 

2. Related Work 

In this segment, we will provide a quick overview of the relevant work presented 
by the scholars along certain areas. The existing techniques have been divided 
into two categories for clarity’s sake: authentication of protocols in SDNs and 
models for detecting intrusion for IoT networks. 

[17] presented a secure SDN deployed across a network of nodes architecture 
for IoT using the blockchain technique (DistBlockNet). The researchers stated that 
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their proposed model follows the requirements when it comes to creating a net-
work architecture that is both safe and scalable. In the DistBlockNet IoT architec-
tural concept, SDN and blockchains combine their benefits. Although the re-
searchers claim their model outperformed the existing schemes, their model failed 
to include authentication protocols concerning the IoT networks. In [18], com-
munication with or without the infrastructure known as an SDN domain is now 
possible, according to researchers. There was a single domain in their concept that 
had a wired, a wireless, and Ad-Hoc network. Border Controllers are used to faci-
litate communication across domains in their suggested approach. In the event of 
a failure, the Border Controllers must work together in a novel distributed way to 
ensure that each domain remains independent. The researchers claim their pro-
posed model ensure the network’s reliability as a whole. However, their model 
failed to tackle the computational cost and authenticate the protocols involved. 

[19] proposes the use of edge computing to allow an external service provider 
to offer scalability for a Blockchain as a Service (BaaS) to address the additional 
attack vectors provided by an increasing number of linked susceptible devices 
connected to the network, along with a severance between the control and data 
planes of SDN By using an efficient, edge-distributed blockchain system, the sug-
gested approach validates the added flows. Their results demonstrated the sug-
gested algorithm’s potential to optimize the combined earnings of BaaS plus SDN 
operators in relation to IoT networks. However, the researchers indicated that 
they would consider the numerous flow conformance rules that might be applied 
in a smart contract for future use. The authors [20] proposed IoT network in-
trusion detection and prevention system (IDPS) based on software-defined 
networking (SDN). An IoT network and collocated fog computing are at the heart 
of their design, which gives the proposed IDPS the ability to detect numerous 
attack types in near real-time and neutralize them with SDN-controlled effi-
ciency. The researchers claim their model is more effective than the traditional 
techniques of IDPS in IoT networks. However, the model also failed to tackle the 
computational and scalability of the intrusion system. 

In [21], an SDN-based autonomous security architecture based on blockchain 
technology is given for the IoT environment. This research intends to reduce 
current problems and identify assaults more effectively. It makes use of block-
chain technology to dynamically update the threat detection framework and re-
ward fog nodes based on “Proof-of-Work.” However, their work did not take 
into concentration the authentication of the protocols involved. [22] propose a 
blockchain-based controller to protect against fraudulent flow rule injection, with 
an emphasis on SDN controller authentication. Although their proposed model 
effectively authenticated the SDN controller, the scalability of their model is in 
question, and their model could not resolve the problem with intrusions. 

[23] introduce a new system to eliminate the need for recurrent re-authentication 
across heterogeneous cells in 5G, a new authentication handover using block-
chain in an SDN-based 5G network is proposed. The researchers claim their model 
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outperformed the existing traditional models but failed to include the aspect of 
the intrusion detection system. Qiu et al. investigate the Industrial Internet of 
Things paradigm with several SDN controllers. To gather and synchronize net-
work-wide views across multiple SDN controllers, a blockchain-based consensus 
system is described. The Q-learning approach is used in this study to simulta-
neously optimize view modification, access selection, and computing resources. 
Although their model was effective, it failed to address SDIIoT nodes and control-
lers’ trustworthiness may be assessed in a number of ways. The researchers stated 
the limitations of measuring the trust features in their future work. 

Although the above-related literature effectively performed its task they failed 
to resolve the above limitations as stated, hence, we propose a composite archi-
tecture that combines two sets of security modules to enable end-to-end security 
in 5G-SDIoTN deployments. 

3. System Model 

This section discusses the VN that is considered in SDN configurations that is 
5G technology-enabled. The envisioned IoTN is supposed to be guarded with 
cutting-edge 5G and SDN technologies. A more comprehensive version of the 
scheme is seen in the concept [7]. The control plane’s SDN takes responsibility 
to enforce global rules such as intrusion detection, routing, authentication, and 
mobility management; whereas the data plane is composed of base stations/access 
points (BSs/APs) that execute the controller’s logic. Additionally, the participat-
ing IoT devices form clusters depending on their speed, direction of travel, and 
other parameters. Additionally, a cluster head (CH) is selected from inside be-
fore executing the control layer’s logic. 

The following facts concerning SDN and BS are related: 
Base Stations (BS): In the arrangement discussed, each assumption is that BS 

hasan implementation function and a database (Local Database (LODB)) server. 
It holds data about the IoT devices in their local proximity (sometimes called 
their cell), as in their unique identification numbers, geographical coordinates, 
traffic demands, and transmission regulations. The LoDB is updated whenever 
IoT devices are active with regard to the BS. The SDN controllers make a deter-
mination on how authentication and intrusion detection should be implemented 
making use of the information acquired with regard to the LoDBs. 
• Controller for SDN: The basic utility of an SDN is the control plane, which is 

in charge of managing the network configuration. The LoDB collects data 
from the underlying IoT devices and BS and makes authentication decisions 
for the cluster head and IoT devices. Additionally, the controller is expected 
should be configured with the two modules listed in the proposed configuration: 

• AuthenticationModule: This module is run in part at the CA (the one asso-
ciated with the controller) and in part at the CH (chosen from a range of IoT 
devices). The scheme contributes to the validation of the CA, IoT devices, 
and CHs. Our developed authentication procedure is divided into three parts 
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with offers security protection for mutual or shared authentication, anti- 
replay, confidentiality, and secrecy, among other things. The following Sec-
tion 4 has a full explanation of this module. 

• Detection of Intrusion System: This system is controlled at the control and 
data planes of SDNs and is in charge of defending the insider attacks on the 
network or intruders that surpass the first layer of protection, namely au-
thentication. Section 5 describes it in-depth and consists of three phases: 1) 
data preparation 2) dimensionality reduction with tensor-based and 3) FCM 
Clustering by MOEA/D. 

 

 

4. Proposed System 

This section contains background knowledge on ECC as well as how it has been 
incorporated into the proposed mutual authentication arrangement between the 
devices or networks involved. The readers are urged to consult [24] for more in-
formation about ECC. The mutual authentication process amongst the partici-
pating entities, namely CA, CH, and IoT devices, has been divided into three 
sections: 

4.1. Preliminary Generation of Key 

It refers to the initial stage of the authentication procedure. It includes the crea-
tion of keys for all units, including the CA, CH, and IoT devices. The CA is in 
charge of this phase. The CA sets the general parameters linked G, p and the 
other ECC members, a, b, to produce the keys. Using these settings, random num-
ber extraction and ECC multiplication are used to produce the CA’s public (K) 
as well as private (k) key pairs. The same procedure is used for the IoT devices, 
with K and k denoting their public and private keys, respectively. Each IoT de-
vice is also assigned an individual ID (IDj). The information about all of the IoT 
device public and private keys is communicated to each device via a secure con-
nection. In Figure 1, detailed procedure was shown. The value of TKCH is ob-
tained by performing a multiplication operation concerning X and Li. CH pro-
duces the corresponding value of its ID (IDi) using this value and the value of A. 
The equivalence concerning IDi and IDi is then verified by CH. If they are deemed 
to be comparable, the authentication process continues; otherwise, the connection  
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Figure 1. The architecture of the proposed model. 

 
is severed. The intermediate tokens TK3 and TK4, as well as the corresponding 
authentication token AuthCA, are subsequently computed by CH. If the values 
of the received AuthCA and computed AuthCA match, the CH understands the 
information came from the legitimate CA and continues. 
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4.2. Process of Authentication between CA and CH 

Table 1 depicts the authentication procedure with the CA and the CHs. The fol-
lowing steps will help you understand the procedure in detail: 

Step 1: The CH creates a randomly generated number r1 in the domain of Zp 
to start the authentication procedure. The corresponding random number 
equivalent R1 is then computed using ECC multiplication, as well as the hash of 
where CH is right now (Loci) to the CA, i.e. Li. The R1, IDi, Li values are subse-
quently relayed to the CA by the CH. 

Step 2: The CA responds by taking the actions below. CA first creates a ran-
dom integer xZp and then uses the multiplication method to generate its cor-
responding counterpart X. The value of Y is then computed using the approach 
of summing up Li and G. The value of TKCA is calculated using the values of X 
and Y. The XOR operation is then performed on TKCA and IDi, and the result is 
stored in A. Then, using the hash operation over IDi, R1.k, and CAś current 
time-stamp TSCA, the intermediatevaluesoftokensTK1, TK2, and TK3 are esti-
mated. 

Finally, utilizing CA performs concatenation and encryption operations on 
the interim tokens to provide an authentication token for CH to validate (Auth-
CA). Following that, the CA generates a random number r2 Zp, which is multip-
lied by G to get R2. This step’s final responsibility is to provide the values to the 
following CH: A, X, AuthCA, T SCA, R2. 

Step 3: When CH receives the above-mentioned tokens (A, X, AuthCA, T 
SCA, R2), it validates the time stamp TSCA and processes the following steps if it 
falls within the acceptable range; otherwise, it tears down the connection. The 
authentication token AuthCA is then created for CA to validate using TK3, TK5, 
and TSi (the ith CH generates a time-stamp). Furthermore, The value of X is 
generated by multiplying a random integer x by G, which is generated by the 
CH. The CH then creates the value of TKCH using these parameters and the 
value of Li. It also uses the XOR technique to construct A from T KCH and IDi. 
Finally, the CA receives the following set of tokens: A, X, AuthCH, TSi. 

Step 4: The CA then uses the processes below to verify CH’s legitimacy. It va-
lidates the received time-stamp TSi in the first run. The value of IDi is then used 
to execute the second step of validation. Finally, the authentication token Auth is 
used to verify CH’s legitimacy. If the parties are confirmed to be similar, mutual 
authentication is established between them, followed by the CA generating a 
group ID for the ith cluster (GI D4i). Finally, this GI Di is forwarded to CH for 
further correspondence. 

4.3. Authentication Process between CH and IoT Devices 

Table 2 depicts the authentication procedure between the ith CH and the jth IoT 
device. The following steps will help you understand the procedure in detail: 
Step 1: The IoT device generates its Locj and communicates it to its CH to begin 
the authentication procedure. 
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Step 2: Using the geographical information data, the CH determines whether 
the devices belong to its cluster. If the connection is verified to be legitimate, it 
continues; otherwise, the connection has been disrupted. It then creates a ran-
dom number r2 in the domain of Zp and uses ECC multiplication to compute 
the associated R2. It also generates TSi, a time-stamp token, and sends R2 and TSi 
to the device. 

Step 3: After receiving the above-mentioned tokens, the device validates the 
time stamp TSi and, if it falls within the permissible range, proceeds to the next 
step: if not, tears down the line of communication. The device then uses its re-
spective time-stamp TSj to compute the intermediate tokens TK7 and TK8, as 
well as the related authentication token Authveh. It also generates a random 
number r3 Zp and uses the multiplication method to obtain its corresponding 
counterpart R3. Finally, the CH receives the parameters Authveh, R3, and TSj for 
authentication.  

Step 4: The CH responds by taking the following actions. It first verifies the 
received time-stamp. Then, using hash operations over IDi, r2, Kj, and CHś cur-
rent time-stamp TSj, the intermediate values of tokens TK8 and TK9 are esti-
mated. Finally, concatenation and hashing of intermediary tokens is used by CH 
to create an authentication token (Authveh) to verify the device’s legitimacy. Fi-
nally, the authentication tokens are compared for equivalency; if they are deter-
mined to be identical, the jth device’s legitimacy is verified, and the procedure 
continues. The CH then creates an authentication token (AuthCH) for the de-
vice to authenticate using a time stamp TSi and tokens (TK8 and TK10). It also 
produces a second token, GCH, for verification purposes. Finally, the device 
receives the following set of tokens: AuthCH, IDj, GCH, TSi. 

Step 5: The device then uses the processes below to verify CHś legitimacy. It 
validates the received time-stamp TSi in the first run. The value of TK7, TK11, 
and TSi are then used to accomplish the final level of validation. If the parties are 
confirmed to be similar, mutual authentication is established between them, fol-
lowed by the CA generating a group ID for the ith cluster (GIDi). Finally, the de-
vice stores this GIDi for future communication. 

5. Intrusion Detection System 

This section describes the intended intrusion detection system (IDS) in the 
perspective of VNs in detail. The suggested method detects attack vectors such 
as preferential forwarding, black hole, packet duplication, resource depletion, 
wormhole, and Sybil attacks in VN traffic. It is divided into three stages: 

5.1. Phase I: Pre-Processing of Data 

The existence of missing values in the IoT traffic dataset has a significant impact 
on the model’s learning, inference, and prediction capabilities. Transmitter con-
nections are unreliable due to the failure of the OBU, cluster overlapping, or un-
announced system maintenance can all cause inconsistencies in such data. In the 
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literature, there are several approaches for estimating faulty and missing measure-
ments. Methods such as ignoring, substituting, interpolating, and using the clos-
est neighbor are the most prevalent. However, interpolating approaches outper-
form other methods in terms of accuracy [25]. As a result, the interpolation ap-
proach is used to evaluate missing values in this study. Required information is 
first validated to ensure that it correctly reflects the situation being studied. Fol-
lowing that, interpolation was employed to check that the data was correct and 
to restore the missing or incorrect values. The goal of this method is to interpo-
late unknown values using neighboring known values. It’s calculated like this: 

( )
1 1

1 1

1 1

if , ,
2

0 if , or ,
if ,

i i
i a i i a

i
i a i i a

i i a

d d
d N N d d N N

f d d N N d d N N
d d N N

− +
− +

− +

+ ∈ ∉=  ∈ ∉
 ∉

         (1) 

where id  is the number of data instances in IoT device traffic over time. NaN is 
used to represent id  if it is not equal to any value or is non-numeric. If id  is 
NAN and the neighboring values: 

1 1

2
i id d− ++

 
are not NAN, ( )if d  takes the value of 1id −  and 1id + . If id  is NAN, ( )if d  
returns zero, but if 1id −  or 1id +  is NAN, ( )if d  returns zero. Finally, if id  
is not NAN, ( )if d  is identical to id . Next that, the preparation of data is 
subjected to reducing dimensionalities using tensors, as explained in the section 
as follows. 

5.2. Phase II: Tensor-Based Dimensionality Reduction 

The overall dimensionality of the dataset is decreased using the tensor-based tech-
nique at this phase before it can be analyzed for any potential invasions. During the 
data analytics phase, higher-dimensional data causes complex processing chal-
lenges such as over-fitting, under-fitting, and poor model interoperability [26]. 
By improving accuracy, searching speed, storage, and computational cost, lo-
wering the dimensions of incoming data helps to ease and speed up the intrusion 
investigation process. Essentially, a tensor is a multi-way array that is used to 
represent higher-dimensional data with multiple attributes. These tensors de-
note different types of datasets namely unstructured (Dus), semi-structured 
(Dss) and structured (Ds). A particular tensor of n-order is expressed as [27] 
[28]: 

1 1 nT Rα α α×∈                           (2) 

where 1 1 nα α α× × ×  refer to the data dimensions. Moreover, the dataset can 
be expressed using the following equation: 

[ ] 1 1
1 2

n
nE x x x Rα α α×⊗ ⊗ ⊗ = 

                  (3) 

In the above equation, the variables 1 2, , , nx x x  denote the different attributes 
of the dataset. Thus, the acquired heterogeneous dataset can also be represented 
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using sub-tensor (Tus, Tss, Ts) formulations as depicted below [28]: 

; ;us us ss ss s sD T D T D T→ → →                    (4) 

The union operation is also used on the sub-tensors to make a single tensor. 
This is done to get rid of redundant and redundant transactions throughout the 
collected dataset. “Unified data tensorization” is the name given to this proce-
dure. Following that, unified tensors’ dimensionality is lowered by reducing 
them to lower-order tensors (also called reduced tensors). The steps below are 
used to do this. The nth ordering tensor is first turned into n matrix, a process 
known as “tensor unfolding or matricization” [27] [28]. A complex-valued ma-
trix may then be factorized using the singular value decomposition (SVD) me-
thod. SVD is iteratively deployed to all mode-i matrices (Mi) that have been un-
folded, which are expressed using the following equation: 

*
i i i iM U S V=                          (5) 

U and V signify the set of unitary matrices that are orthogonal to each other 
in the above equation. The diagonal matrix S is used here, and V ∗  is the con-
jugate transpose of V. Then, for each Mis, the rank computation process is run, 
and the undesirable values are deleted to generate reduced tensors. These re-
duced tensors have fewer dimensions, yet they nonetheless provide the same 
useful information as the original tensor. To detect potential intrusions, the ac-
quired dataset is fed into the FCM Clustering method. 

5.3. Phase III: Fuzzy C-Means (FCM) Clustering 

Data items are organized by constructing cluster centers and measuring the de-
gree of membership between data samples and the generated cluster centers. 
When a distance function is used to specify the cluster membership function, the 
degree of membership reflects the proximity of data to clustered centers. FCM 
divides a dataset into clusters based on the number k where { } 1

n
i i

D d
=

=  of n 
objects into { } 1

k
j j

C c
=

=  fuzzy cluster centers of size k by minimizing the fol-
lowing objective function [29]: 

( ) ( ) 2

1 1
, where 1

n k
m

m ij i j
i j

J U V U d c m
= =

= − ≤ ≥ ∞∑∑           (6) 

1
1

k

ij
j

U
=

=∑
 

Here, ( ),mJ U V  is the sum of squared errors for the fuzzy clusters, m is the 
weighting exponent, greater than 1, that governs the influence of membership 
grades, ijU u =    denotes a fuzzy membership matrix where [ ]0,1iju ∈  is the 
membership grade of the jth cluster center to the ith data point, V corresponds 
to the associated set of cluster centers and metric 

2
i jd c−  measures the 

weighted sum of distances between cluster centers cj and data elements di in a 
corresponding fuzzy cluster. Now, an iterative update of the membership grade 
uij and the cluster centers cj is performed to reach the minimum of ( ),mJ U V  
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as: 

( ) 12 1

1
,

m
k i j

ij
l i k

d c
U i j

d c

−−

=

  −  = ∀ ∀  −   
∑                 (7) 

where, l is the number of iterations and cluster centers cj are computed in Equa-
tion (8) as: 

( )
( )

1

1

mn
ij i

j mn
i j

i

i

u d
c

u
=

=

=
∑
∑

                       (8) 

The fuzzy membership matrix U is generated using Equation (7) and the cor-
responding centroids are evaluated using Equation (8) in each iteration of the 
FCM algorithm, after which the sum of squared errors is computed using Equa-
tion (6). In FCM, the minimization of Equation (6) can be accomplished by 
maximizing the value of uij and minimizing the value of cj separately. As a result, 
we’ve broken down our multi-objective function into two sub-objective func-
tions. The following approach to infer the ideal number of clusters using FCM 
can now be used to solve these numerous objectives. 

1) Multi-Objective Evolutionary Algorithm Based on Decomposition: The 
evaluation of possible solutions in optimization problems can be computation-
ally intensive. The computational cost of predictive distribution models will be 
extremely expensive, if not unaffordable. MOEA/D optimizes multi-objective 
problems in order to obtain robust performance. It’s a brand-new multi-objec- 
tive evolutionary algorithm framework based on traditional aggregation me-
thods. It decomposes a multi-objective problem (MOP) into a series of single- 
objective optimization sub-problems, which are solved primarily utilizing know-
ledge from the sub-problems around them. The following is a description of it 
[30]: 

( ) ( ) ( ) T
1 2min , ,F x f x f x=                       (9) 

subject to ( )T
1 2, , , nx x x x= ∈Ω , where F(x) consists of k objective functions, 

x∈Ω  denotes a decision variable vector where Ω  corresponds to the decision 
space, and n is the dimension of variable x. Accordingly, the fuzzy clustering 
problem is converted into a MOP which is defined as follows: 

( ) ( ) ( ) ( ) T
1 2min , , , ,kF x f x f x f x=                  (10) 

( )
( ) 12 1

1
1

m
k i j

j
l i k

d c
f c

d c

−−

=

  −  =   −   
∑                  (11) 

and ( ) ( )
( )

1
2
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mn
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mn
i

i
ij

ij

u d
f u

u
=

=

=
∑
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                   (12) 

Considering the relationship between the two objectives, we adopt the decompo-
sition strategy in MOEA/D to decompose the optimization of our two objective 
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functions into amounts of scalar optimization sub-problems. Here, Tchebycheff 
approach is utilized as the decomposition strategy, and the sub-problem is defined 
by: 

( ) ( )( ){ }*
1maxte

i m i i ig x f x zλ λ≤ ≤= −                (13) 

where [ ] ( )
1

*
,

min n
ii i

i ix a b
z f x

=∈∑
=                  (14) 

Here, * * *
1 , , mz z z=   refers to the ideal point in the objective space. For each 

Pareto optimal point *x , there exists a weight vector λ  such that *x  is the 
optimal solution of Equation (13) and each optimal solution of Equation (13) is 
a Pareto optimal to Equation (9). 

6. Experimental Analysis 

The experimental evaluation details of the suggested strategy in this section and 
compares the results to the current state of the art. A thorough explanation of 
the simulation setup, current strategies, and assessment settings is provided. The 
evaluation findings for both the authentication and intrusion detection modules 
are shown in this section. 

6.1. Authentication Module 

Security Analysis: This part emphasizes the proposed protocols’ resistance to 
various cyberattacks, such as cloning and de-synchronization attacks. In this 
paper, we looked at scenarios in which the suggested module of authentication 
integrity can be compromised, putting the system at risk. The proposed protocol 
is capable of smoothly resisting the attack vectors listed below. 

Mutual Authentication Supports: The developed authentication system al-
lows for mutual authentication between the CA and the CH, as well as between 
the CH and the IoT devices. As a result, the validity of the involved entities can 
be verified before the data transmission can commence. The ECC-enabled veri-
fication module’s second and third stages, as previously indicated, demonstrate 
this. Validation tokens are used in each of these stages (AuthCA, AuthCA and 
Authveh) the ECC duplication of certain text data is used to create (R1, R2, R3) 
with the corresponding private keys (k, ki, kj ) of the entities involved. As a re-
sult, it assures that only authorized persons with real a private and personal key 
participating in the whole process. Furthermore, in the realm of ECC, extracting 
separating shared key from private ones is a difficult operation. Furthermore, the 
developed security protocol resists eavesdropping attempts even on unsecured 
channels, preventing the opponent from extracting/decrypting the exchanged 
communications. This is due to the whole authentication process’s utilization of 
random integers (r1, r2, r3), location attributes (Loci, Locj), time-stamps (TSCA, 
TSi, TSj) information, and private keys. 

Supports Anonymity: Our authentication mechanism is also intended to ac-
commodate the idea of anonymity. The complexity of the underlying decryption 
procedure is increased by the usage of the following new characteristics (r1, r2, r3) 
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per each run; as well as the usage of ECC-computed encryption key (k, ki, kj ) 
and ECC-computed random numbers (R1, R2, R3). Furthermore, the usage of lo-
cations, timestamps, and random numbers results in the development of new 
tokens with each run, promoting the notion of anonymity. 

Replay Attacks Resistant: The suggested authentication protocol is also rep-
lay attack resistant. This is due to the fact that each phase computes and trans-
mits a separate set of tokens related to (AuthCA, AuthCA and Authveh). Further-
more, the designed protocol’s temporal features (TSCA, TSi, TSj) improve security 
by a factor of ten, with replayed messages being ignored and dropped by the de-
signed solution. 

Resists Tracking Attacks: A prospective adversary’s tracking of specific IoT 
devices might have serious effects in the context of autonomous IoT devices, and 
the effects of VNs may be life-threatening. As a result, the designed solution 
must be resistant to tracking attacks. The suggested system generates interme-
diate tokens using This security advantage is provided by the underlying ECC, 
one-way hash algorithms, XOR and concatenation operations. Furthermore, 
the developed authentication protocol’s location information (Loci, Locj) is also 
conveyed via ECC multiplication, prohibiting the extraction of location infor-
mation [7]. 

Spoofing Attacks Resistant: The attacker cannot spoof the identity of the 
CA, CH, or IoT devices in the designed authentication approach. This is because 
the individual’s private key generates the intermediate tokens (TK1, ..., TK10), 
and extracting them from the public keys is impossible with ECC. 

Supports Forward Security: The suggested authentication system also pro-
vides forward security, which is achieved via the use of pseudo-random integers 
(r1, r2, r3), the location (Loci, Locj) and time-stamp (TSCA, TSi, TSj) attributes; 
This improves the security of the underlying communications. As a result, even 
if the adversary has current knowledge about the system, he cannot derive the 
prior communications. 

Using SPAN for Formal Security Verification: This section shows how the 
suggested authentication protocol was formalized using the AVISPA’s com-
monly used Security Protocol ANimator (SPAN) [31]. It has been implemented 
on SPAN to validate the security elements of the specified protocol, with 
high-level programming done using High Level Protocol Specification Language 
(HLPSL). In a combination of “session” and top-level role “environment,” three 
basic roles (CA, CH, and IoT devices) have been defined. The basic roles are 
specified in detail by the following parameters: information they can use at first 
(represented as “parameters”), their initial state (kept by the parameter “State”), 
and state changes (denoted by one or more “transition”). In HLPSL, each transi-
tion is accompanied by RCV or SND parameters. The former denotes a message 
that is being sent out on the channel “dy,” whereas the latter denotes a message 
that has been received by an agent. These transitions are followed by state changes, 
and they are the same as the execution steps listed in Table 1 and Table 2. The  
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Table 1. Formal security verification using SPAN. 

% OFMC 

% Version of 2006/02/13 

SAMMMARY 

SAFE 

DETAILS 

BOUNDED_NUMBER_OF _SESSIONS PROTOCOL 

C: 

Program 1 

SPAN 

Output 

ECCAutherCHCAvehiele.if 

GOAL 

As_ Specific 

BACKEND 

OFMC 

COMMENTS STATITICS 

parseTime: 0.00 s 

SearchTime: 0.56 s 

visitedNodes: 53 nodes 

depth: 5 plies 
 

Table 2. Evaluation of the proposed authentication module to the current state-of-the-art. 

Schemes SF1 SF2 SF3 SF4 SF5 SF6 SF7 

Boahen et al. [32] X X      

Zhong et al. [33] X     X X 

Boahen et al. [34] X    X   

Li et al. [12]  X X   X  

Proposed model        

SF1: Mutual Authentication; SF2: Resists Eavesdropping; SF3: Supports Anonymity; SF4: 
Resists Replay; SF5: Resists Tracking; SF6: Resists Spoofing; SF7: Supports Forward 
Secrecy. 

 
“environment” role also defines various sessions between legitimate agents and 
invaders. This role also specifies how much information the intruder already 
possesses. In addition, HLPSL uses a separate “goal” block to express the pro-
posed protocol’s several security goals. For example, the suggested protocol has a 
number of different purposes, including the secrecy of private keys (kj, k) and 
randomness. 

Strong authentication on intermediate tokens (A, X, AuthCA, AuthCH, R2, 
Authveh), numbers (r1, x, r2), etc. For threat analysis objectives, Dolev-(dy) 
Yao’s model is considered [32] [35]. The adversary has access to the channel in 
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this threat model for sniffing and message alteration, which is similar to real-life 
events. The back-end of the OFMC has also been considered in order to test the 
security characteristics of the designed authentication protocol. The acquired 
findings, as shown in Table 1, show that the protocol is safe from both active 
and passive attacks. Comparison with the Existing State-of-the-Art: This section 
compares the proposed authentication module for use in virtual reality with ex-
isting techniques. The comparison is based on the security characteristics that 
each protocol supports. Table 2 summarizes their information. 

6.2. Overhead Analysis 

In terms of computation time and communication costs, Table IV summarizes 
the findings. We did not include the cost of the initial key generation step in our 
evaluation since it is a one-time activity. Authors are advised to see [14] for fur-
ther details on the simulation setup. 

For the computational cost, let us assume that Tecm, Teca, Th, Tmac, Tinv,Tbp, 
Tsig-BOOS, Tsig-IBS, Tenc, and Tdec relate to the time necessary to execute ECC point 
multiplication, ECC point addition, one-way hash function, message decryption, 
IBOOS signature generation, modular inverse, IBS signature generation, bi-linear 
pairing, symmetric encryption and authentication code, etc. The suggested ap-
proach requires a total of 6Tecm + 12Th; wherein 3Tecm + 6Th and 3Tecm + 6Th for 
authentication between CH and IoT devices. The overall computing cost for the 
suggested approach is 0.1061 seconds where Th and Tecm were equivalent to 
0.00032 and 0.0171 seconds, respectively. 

The following assumptions were used in the communicational overhead study. 
The output of location, Identity, timestamp, and hash was calculated to be 160 
bits, 32 bits, 32 bits, and 160 bits, respectively. In addition, a 160 bit ECC was 
used, but an elliptic curve point requires a total of 320 bits. According to these 
facts, the suggested scheme’s communicational overhead was quantified in terms 
of the number of messages exchanged between CH and the IoT device. In addi-
tion, the total cost of communication (in bits) was considered. The suggested 
method sent a total of four messages, i.e., M1 = {Locj, IDj}, M2 = {R2, TSi}, M3 = 
{Authveh, R3, TSi}, and M4 = {AuthCH, IDj, GCH, TSi }. The sizes of M1, M2, M3, and 
M4 were 352 bits, 192 bits, and 512 bits, respectively. This led to a significant 
communication overhead of 1568 bits. In compared to the other approaches, the 
suggested authentication module had lower overheads while providing the best 
level of security. 

6.3. Intrusion Detection Module 

Various attack vectors, including selective forwarding, DoS assaults, black holes, 
wormholes, resource exhaustion, Sybil, and packet duplication, were purposely 
added into the sample space to compare the proposed intrusion detection ap-
proache’s performance to the current state-of-the-art. Existing-Schemes: AECFV 
[36], WEKNN [32], T-Claids [37] and PSOGSA [34] All of them have been tho-
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roughly compared against the present state-of-the-art in intrusion detection al-
gorithms.. Evaluation Parameters: According to the results of our evaluations, 
the following factors were taken into account while evaluating our new model: 

Detection Rate (DR): DR, the total number of intrusions identified during 
the period of time is shown. To put it another way, it’s a reference to the right 
way to classify occurrences as harmful or benign. Mathematically, it is expressed 
as follows: 

TPDR
TP FN

=
+

                       (15) 

False Positive Rate (FPR): It’s a measure of how often a trustworthy entity is 
mistakenly labeled malignant by the model under consideration. This is how you 
say it: 

FPDR
FP TN

=
+

                       (16) 

Accuracy: It is expressed using the following equation: TP + TN 

Accuracy TP TN FP FN= + + +                  (17) 

Detection Time (DT): The model’s time to discover harmful entities in the 
configuration under consideration is represented by this value. The following 
equation is used to calculate it [36]: 

1
DT

Sampling Frequency
i i

i

D T
n

n=

−
=

×∑                 (18) 

The variables Di, Ti, and n in the preceding equation denote the time it takes 
to detect a prospective adversary Ai, the time it takes for the Ai to launch an at-
tack vector, and how many adversaries there are in total. 

Communication Overhead: It refers to the total number of messages trig-
gered by the IoT device to achieve a high level of security. 

Performance Evaluation: Figure 2 compare the planned intrusion detection 
network efficiency to already installed systems. The tests were carried out on a 
variety of IoT devices (ranging from 50 to 300) using various assault vectors. The 
DR comparisons, for example, are shown in Figures 2(a)-(e) The collected data 
show that as the number of IoT devices increases, all of the systems reach a peak 
in their DR capabilities. The proposed approach, on the other hand, is best in the 
above case, and has the least variation in DR as the number of IoT devices fluc-
tuates. Furthermore, given the studied setup, IDFV with T-CLAIDS have the 
poorest performance. Figure 2(a) depicts the corresponding results related to 
accuracy, which are also similar. Figure 2(b) demonstrates the recommended 
FPR comparison to AECFV, EKNN, T-CLAIDS and PSOGSA (b). The proposed 
strategies provide the fewest FPR fluctuations in the setting, followed by AECFV, 
EKNN, T-CLAIDS and PSOGSA. The collected data show that the FPR rises as 
the number of IoT devices increases. PSOGSA and T-CLAIDS, on the other 
hand, have demonstrated rapid fluctuations in the FPR value, whilst the other 
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approaches have seen gradual variations. In Figure 2(c), an emphasis is placed  

 
Figure 2. Show the performance assessment of the proposed intrusion detection scheme as compared to existing systems. (a) Ac-
curacy; (b) FalsePositive; (c) DetectionTime; (d) OverHead; (e) DetectionRate. 
 

on how one technique compares to the others in terms of detection time (c). In 
this scenario, all of the assault vectors have been introduced into the configura-
tion in question in order to assess their impact on the various numbers of IoT 
devices. Overall, the proposed strategy with the shortest detection time demon-
strated the best performance in this scenario. Figure 2(d) shows the proposed 
scheme’s communication overhead analysis in comparison to existing schemes. 
The proposed scheme clearly illustrates the most desirable outcomes in terms of 
communication overhead, as evidenced by the shown findings. The reason for 
this can be linked to the suggested scheme’s dimensionality reduction characte-
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ristic, In compared to previous techniques, this minimizes the bulk of the data to 
be analyzed and processed. In a word, the suggested approach outperforms ex-
isting strategies in terms of the evaluation parameters under consideration. 

7. Conclusion 

Future IoTNs are expected to face additional challenges as a result of the com-
bination of SDN plus 5G cellular connection. In such situations, it is critical to 
give an all-encompassing security solution for IoT networks in order to protect 
them from unanticipated effects. In this regard, many models are created in the 
literature that enable either detection mechanism or authentication protocols. 
Furthermore, these existing methods fail to meet a variety of evaluation criteria. 
For example, authentication techniques fall short of providing acceptable secu-
rity, while intrusion detection solutions have significant FPR when traffic in-
creases on the IoT devices. As a result, this paper presents a modular security 
framework for current IoTNs. Its integrated features, such as authentication. In 
future, we will research into applying blockchain in the area of security to en-
hance the scheme. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Fattah, H. (2018) Internet of Things. In: Fattah, H., Ed., 5G LTE Narrowband In-

ternet of Things (NB-IoT), CRC Press, Boca Raton, 1-6.  
https://doi.org/10.1201/9780429455056-1 

[2] Lee, J., Kim, Y., Kwak, Y., Zhang, J., Papasakellariou, A., Novlan, T., Sun, C. and Li, 
Y. (2016) LTE-Advanced in 3GPP Rel-13/14: An Evolution toward 5G. IEEE Com-
munications Magazine, 54, 36-42.  
https://doi.org/10.1109/MCOM.2016.7432169 

[3] Dong, P., Zheng, T., Yu, S., Zhang, H. and Yan, X. (2017) Enhancing Vehicular 
Communication Using 5G-Enabled Smart Collaborative Networking. IEEE Wireless 
Communications, 24, 72-79. https://doi.org/10.1109/MWC.2017.1600375 

[4] Rastogi, E., Saxena, N., Roy, A. and Shin, D.R. (2020) Narrowband Internet of 
Things: A Comprehensive Study. Computer Networks, 173, Article ID: 107209.  
https://doi.org/10.1016/j.comnet.2020.107209 

[5] Chaudhary, R., Aujla, G.S., Garg, S., Kumar, N. and Rodrigues, J.J.P.C. (2018) 
SDN-Enabled Multi-Attribute-Based Secure Communication for Smart Grid in IIoT 
Environment. IEEE Transactions on Industrial Informatics, 14, 2629-2640.  
https://doi.org/10.1109/TII.2018.2789442 

[6] Kaur, K., Garg, S., Aujla, G.S., Kumar, N., Rodrigues, J.J. and Guizani, M. (2018) 
Edge Computing in the Industrial Internet of Things Environment: Software- 
Defined-Networks-Based Edge-Cloud Interplay. IEEE Communications Magazine, 
56, 44-51. https://doi.org/10.1109/MCOM.2018.1700622 

[7] Garg, S., Kaur, K., Kumar, N. and Rodrigues, J.J. (2019) Hybrid Deep-Learning-Based 
Anomaly Detection Scheme for Suspicious Flow Detection in SDN: A Social Multi-

https://doi.org/10.4236/ijcns.2023.168012
https://doi.org/10.1201/9780429455056-1
https://doi.org/10.1109/MCOM.2016.7432169
https://doi.org/10.1109/MWC.2017.1600375
https://doi.org/10.1016/j.comnet.2020.107209
https://doi.org/10.1109/TII.2018.2789442
https://doi.org/10.1109/MCOM.2018.1700622


I. Appiah et al. 
 

 

DOI: 10.4236/ijcns.2023.168012 188 Int. J. Communications, Network and System Sciences 
 

media Perspective. IEEE Transactions on Multimedia, 21, 566-578.  
https://doi.org/10.1109/TMM.2019.2893549 

[8] Fang, L., Li, Y., Yun, X., Wen, Z., Ji, S., Meng, W., Cao, Z. and Tanveer, M. (2019) 
THP: A Novel Authentication Scheme to Prevent Multiple Attacks in SDN-Based 
IoT Network. IEEE Internet of Things Journal, 7, 5745-5759.  
https://doi.org/10.1109/JIOT.2019.2944301 

[9] Molina Zarca, A., Garcia-Carrillo, D., Bernal Bernabe, J., Ortiz, J., Marin-Perez, R. and 
Skarmeta, A. (2019) Enabling Virtual AAA Management in SDN-Based IoT Networks. 
Sensors, 19, Article 295. https://doi.org/10.3390/s19020295 

[10] Tayyaba, S.K., Shah, M.A., Khan, O.A. and Ahmed, A.W. (2017) Software Defined 
Network (SDN) Based Internet of Things (IoT) a Road Ahead. Proceedings of the 
International Conference on Future Networks and Distributed Systems, Cambridge, 
19-20 July 2017, 1-8. https://doi.org/10.1145/3102304.3102319 

[11] Tangade, S., Manvi, S.S. and Lorenz, P. (2018) Decentralized and Scalable Priva-
cy-Preserving Authentication Scheme in VANETs. IEEE Transactions on Vehicular 
Technology, 67, 8647-8655. https://doi.org/10.1109/TVT.2018.2839979 

[12] Kaur, K., Garg, S., Kaddoum, G., Gagnon, F. and Ahmed, S.H. (2019) Blockchain- 
Based Lightweight Authentication Mechanism for Vehicular Fog Infrastructure. 
2019 IEEE International Conference on Communications Workshops (ICC Work-
shops), Shanghai, 20-24 May 2019, 1-6.  
https://doi.org/10.1109/ICCW.2019.8757184 

[13] van der Heijden, R.W., Dietzel, S., Leinmüller, T. and Kargl, F. (2018) Survey on Mis-
behavior Detection in Cooperative Intelligent Transportation Systems. IEEE Com-
munications Surveys & Tutorials, 21, 779-811.  
https://doi.org/10.1109/COMST.2018.2873088 

[14] Gupta, D., Garg, S., Singh, A., Batra, S., Kumar, N. and Obaidat, M.S. (2017) Pro-
IDS: Probabilistic Data Structures Based Intrusion Detection System for Network 
Traffic Monitoring. GLOBECOM 2017—2017 IEEE Global Communications Con-
ference, Singapore, 4-8 December 2017, 1-6.  
https://doi.org/10.1109/GLOCOM.2017.8254439 

[15] Sedjelmaci, H., Senouci, S.M. and Abu-Rgheff, M.A. (2014) An Efficient and Light- 
weight Intrusion Detection Mechanism for Service-Oriented Vehicular Networks. 
IEEE Internet of Things Journal, 1, 570-577.  
https://doi.org/10.1109/JIOT.2014.2366120 

[16] Wu, W., Huang, Y., Kurachi, R., Zeng, G., Xie, G., Li, R. and Li, K. (2018) Sliding 
Window Optimized Information Entropy Analysis Method for Intrusion Detection 
on in-Vehicle Networks. IEEE Access, 6, 45233-45245.  
https://doi.org/10.1109/ACCESS.2018.2865169 

[17] Sharma, P.K., Singh, S., Jeong, Y.S. and Park, J.H. (2017) DistBlockNet: A Distri-
buted Blockchains-Based Secure SDN Architecture for IoT Networks. IEEE Com-
munications Magazine, 55, 78-85. https://doi.org/10.1109/MCOM.2017.1700041 

[18] Flauzac, O., González, C., Hachani, A. and Nolot, F. (2015) SDN Based Architecture 
for IoT and Improvement of the Security. 2015 IEEE 29th International Conference 
on Advanced Information Networking and Applications Workshops, Gwangju, 24-27 
March 2015, 688-693. https://doi.org/10.1109/WAINA.2015.110 

[19] Hu, J., Reed, M., Thomos, N., AI-Naday, M.F. and Yang, K. (2020) Securing 
SDN-Controlled IoT Networks through Edge Blockchain. IEEE Internet of Things 
Journal, 8, 2102-2115. https://doi.org/10.1109/JIOT.2020.3017354 

https://doi.org/10.4236/ijcns.2023.168012
https://doi.org/10.1109/TMM.2019.2893549
https://doi.org/10.1109/JIOT.2019.2944301
https://doi.org/10.3390/s19020295
https://doi.org/10.1145/3102304.3102319
https://doi.org/10.1109/TVT.2018.2839979
https://doi.org/10.1109/ICCW.2019.8757184
https://doi.org/10.1109/COMST.2018.2873088
https://doi.org/10.1109/GLOCOM.2017.8254439
https://doi.org/10.1109/JIOT.2014.2366120
https://doi.org/10.1109/ACCESS.2018.2865169
https://doi.org/10.1109/MCOM.2017.1700041
https://doi.org/10.1109/WAINA.2015.110
https://doi.org/10.1109/JIOT.2020.3017354


I. Appiah et al. 
 

 

DOI: 10.4236/ijcns.2023.168012 189 Int. J. Communications, Network and System Sciences 
 

[20] Shafi, Q., Basit, A., Qaisar, S., Koay, A. and Welch, I. (2018) Fog-Assisted SDN 
Controlled Framework for Enduring Anomaly Detection in an IoT Network. IEEE 
Access, 6, 73713-73723. https://doi.org/10.1109/ACCESS.2018.2884293 

[21] Rathore, S., Kwon, B.W. and Park, J.H. (2019) BlockSecioTNet: Blockchain-Based 
Decentralized Security Architecture for IoT Network. Journal of Network and Com-
puter Applications, 143, 167-177. https://doi.org/10.1016/j.jnca.2019.06.019 

[22] Boukria, S., Guerroumi, M. and Romdhani, I. (2019) BCFR: Blockchain-Based Con-
troller against False Flow Rule Injection in SDN. 2019 IEEE Symposium on Com-
puters and Communications (ISCC), Barcelona, 29 June-3 July 2019, 1034-1039.  
https://doi.org/10.1109/ISCC47284.2019.8969780 

[23] Yazdinejad, A., Parizi, R.M., Dehghantanha, A. and Choo, K.K.R. (2019) Block-
chain-Enabled Authentication Handover with Efficient Privacy Protection in SDN- 
Based 5G Networks. IEEE Transactions on Network Science and Engineering, 8, 
1120-1132. 

[24] Vasundhara, S. (2017) The Advantages of Elliptic Curve Cryptography for Security. 
Global Journal of Pure and Applied Mathematics, 13, 4995-5011. 

[25] Zheng, Z., Yang, Y., Niu, X., Dai, H.N. and Zhou, Y. (2017) Wide and Deep Con-
volutional Neural Networks for Electricity-Theft Detection to Secure Smart Grids. 
IEEE Transactions on Industrial Informatics, 14, 1606-1615.  
https://doi.org/10.1109/TII.2017.2785963 

[26] Garg, S., Kaur, K., Kumar, N., Batra, S. and Obaidat, M.S. (2018) Hyclass: Hybrid 
Classification Model for Anomaly Detection in Cloud Environment. 2018 IEEE In-
ternational Conference on Communications (ICC), Kansas City, 20-24 May 2018, 
1-7. https://doi.org/10.1109/ICC.2018.8422481 

[27] Kuang, L., Hao, F., Yang, L.T., Lin, M., Luo, C. and Min, G. (2014) A Tensor-Based 
Approach for Big Data Representation and Dimensionality Reduction. IEEE Trans-
actions on Emerging Topics in Computing, 2, 280-291.  
https://doi.org/10.1109/TETC.2014.2330516 

[28] Kaur, D., Aujla, G.S., Kumar, N., Zomaya, A.Y., Perera, C. and Ranjan, R. (2018) 
Tensor-Based Big Data Management Scheme for Dimensionality Reduction Prob-
lem in Smart Grid Systems: SDN perspective. IEEE Transactions on Knowledge and 
Data Engineering, 30, 1985-1998. https://doi.org/10.1109/TKDE.2018.2809747 

[29] Garg, S. and Batra, S. (2017) A Novel Ensembled Technique for Anomaly Detection. 
International Journal of Communication Systems, 30, e3248.  
https://doi.org/10.1002/dac.3248 

[30] Zhang, M., Jiao, L., Ma, W., Ma, J. and Gong, M. (2016) Multi-Objective Evolutio-
nary Fuzzy Clustering for Image Segmentation with MOEA/D. Applied Soft Com-
puting, 48, 621-637. https://doi.org/10.1016/j.asoc.2016.07.051 

[31] Avispa, S. (2019) The Security Protocol Animator for Avispa. 

[32] Boahen, E.K., Changda, W. and Brunel Elvire, B.M. (2020) Detection of Compro-
mised Online Social Network Account with an Enhanced Knn. Applied Artificial In-
telligence, 34, 777-791. https://doi.org/10.1080/08839514.2020.1782002 

[33] Zhong, H., Wen, J., Cui, J. and Zhang, S. (2016) Efficient Conditional Priva-
cy-Preserving and Authentication Scheme for Secure Service Provision in VANET. 
Tsinghua Science and Technology, 21, 620-629.  
https://doi.org/10.1109/TST.2016.7787005 

[34] Boahen, E.K., Bouya-Moko, B.E. and Wang, C. (2021) Network Anomaly Detection 
in a Controlled Environment Based on an Enhanced PSOGSARFC. Computers & 

https://doi.org/10.4236/ijcns.2023.168012
https://doi.org/10.1109/ACCESS.2018.2884293
https://doi.org/10.1016/j.jnca.2019.06.019
https://doi.org/10.1109/ISCC47284.2019.8969780
https://doi.org/10.1109/TII.2017.2785963
https://doi.org/10.1109/ICC.2018.8422481
https://doi.org/10.1109/TETC.2014.2330516
https://doi.org/10.1109/TKDE.2018.2809747
https://doi.org/10.1002/dac.3248
https://doi.org/10.1016/j.asoc.2016.07.051
https://doi.org/10.1080/08839514.2020.1782002
https://doi.org/10.1109/TST.2016.7787005


I. Appiah et al. 
 

 

DOI: 10.4236/ijcns.2023.168012 190 Int. J. Communications, Network and System Sciences 
 

Security, 104, Article ID: 102225. https://doi.org/10.1016/j.cose.2021.102225 

[35] Kaur, K., Kumar, N., Singh, M. and Obaidat, M.S. (2016) Lightweight Authentica-
tion Protocol for RFID-Enabled Systems Based on ECC. 2016 IEEE Global Com-
munications Conference (GLOBECOM), Washington DC, 4-8 December 2016, 1-6.  
https://doi.org/10.1109/GLOCOM.2016.7841955 

[36] Sedjelmaci, H. and Senouci, S.M. (2015) An Accurate and Efficient Collaborative 
Intrusion Detection Framework to Secure Vehicular Networks. Computers & Elec-
trical Engineering, 43, 33-47. https://doi.org/10.1016/j.compeleceng.2015.02.018 

[37] Kumar, N. and Chilamkurti, N. (2014) Collaborative Trust Aware Intelligent Intru-
sion Detection in VANETs. Computers & Electrical Engineering, 40, 1981-1996.  
https://doi.org/10.1016/j.compeleceng.2014.01.009 

 
 

https://doi.org/10.4236/ijcns.2023.168012
https://doi.org/10.1016/j.cose.2021.102225
https://doi.org/10.1109/GLOCOM.2016.7841955
https://doi.org/10.1016/j.compeleceng.2015.02.018
https://doi.org/10.1016/j.compeleceng.2014.01.009

	A 5G Perspective of an SDN-Based Privacy-Preserving Scheme for IoT Networks
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. System Model
	4. Proposed System
	4.1. Preliminary Generation of Key
	4.2. Process of Authentication between CA and CH
	4.3. Authentication Process between CH and IoT Devices

	5. Intrusion Detection System
	5.1. Phase I: Pre-Processing of Data
	5.2. Phase II: Tensor-Based Dimensionality Reduction
	5.3. Phase III: Fuzzy C-Means (FCM) Clustering

	6. Experimental Analysis
	6.1. Authentication Module
	6.2. Overhead Analysis
	6.3. Intrusion Detection Module

	7. Conclusion
	Conflicts of Interest
	References

